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Accessible Melanoma Detection using Smartphones
and Mobile Image Analysis
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Aaron Tan and Suat-Hoon Tan

Abstract—We investigate the design of an entire mobile imag-
ing system for early detection of melanoma. Different from
previous work, we focus on smartphone-captured visible light
images. Our design addresses two major challenges. First,
images acquired using a smartphone under loosely-controlled
environmental conditions may be subject to various distortions,
and this makes melanoma detection more difficult. Second,
processing performed on a smartphone is subject to stringent
computation and memory constraints. In our work, we propose a
detection system that is optimized to run entirely on the resource-
constrained smartphone. Our system intends to localize the skin
lesion by combining a lightweight method for skin detection with
a hierarchical segmentation approach using two fast segmen-
tation methods. Moreover, we study an extensive set of image
features and propose new numerical features to characterize
a skin lesion. Furthermore, we propose an improved feature
selection algorithm to determine a small set of discriminative
features used by the final lightweight system. In addition, we
study the human-computer interface (HCI) design to understand
the usability and acceptance issues of the proposed system. Our
extensive evaluation on an image dataset provided by National
Skin Center - Singapore (117 benign nevi and 67 malignant
melanoma) confirms the effectiveness of the proposed system for
melanoma detection: 89.09% sensitivity at specificity > 90%.

Index  Terms—Multimedia-based healthcare, malignant
melanoma (MM), mobile image analysis, feature selection,
Human-Computer Interface.

I. INTRODUCTION

OBILE devices, including smartphones, are being used

by billions of people all around the world. This creates
the opportunity to design a wide variety of mobile image
applications, e.g., mobile image search [I]-[3]], landmark
recognition [4]], [S]], mobile video type classification [|6] and
3-D scene video [/]. Among many imaging applications,
healthcare applications have drawn a lot of attentions recently.
Several methods [8[|-[11] have been proposed to support ef-
ficient and timely image-related diagnosis. Apart from normal
imaging healthcare applications, mobile imaging healthcare
applications have the advantages of being practical, low-cost
and accessible [12]|—[[14].

The work focuses on accessible detection of malignant
melanoma (MM) using mobile image analysis. MM is a type
of skin cancer arising from the pigment cells of the epidermis.
There are three main types of skin cancers: MM, basal cell
carcinoma and squamous cell carcinomas. Among them, MM
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Fig. 1: Comparison of dermoscopic images (a, b) and visible
light images (c, d) of skin lesions. Dermoscopic images are
taken with the aid of liquid medium or non-polarized light
source and magnifiers, and they include features under the skin
surface (e.g., pigment network, aggregated globules). On the
contrary, visible light images (e.g., taken with smartphones) do
not include these features. This work focuses on the analysis
of visible light images. Source: www.dermoscopy.org, NSC.

is considered most hazardous. According to an annual [15],
the American Cancer Society projected 87,110 new cases of
melanoma in the United States by the end of 2017, with almost
9,730 estimated deaths. MM may be treated successfully, yet
the curability depends on its early detection and removal when
the tumor is still relatively small and thin. Therefore, there is
a pressing need for tools that can assist early and accurate
diagnosis.

The current practice of initial melanoma diagnosis is clinical
and subjective [16], relying mainly on the use of naked
eye examination. Therefore, the diagnostic accuracy is highly
dependent on the trained expertise of dermatologists, which is
estimated to be about 85% [17]].

In order to improve the diagnostic identification of MM,
dermatologists may use other visual aids such as der-
matoscopy [[17]]. In clinical evaluation, dermatologists typically
apply the ABCDE signs [18] (which stands for Asymmetry
of the lesion, Border irregularity, Color variation, Diameter,
and Evolving), the 7-point checklist [[19], and the Menzies
method [20], followed by biopsy confirmation of diagnosis.
While diagnosis by dermatologists is accurate, a clinic visit
may be less easily accessible and may require the primary
physician to make the initial referral. There is a need for the
public to be educated and equipped with a more accessible
method of self-assessment for early diagnosis of melanoma.

Nowadays our industry faces the junction of two rapidly de-
veloping markets: healthcare and emerging mobile computing.
The ever-increasing availability of mobile devices equipped
with multi-core CPUs and high resolution image sensors have
the potential to empower people to become more proactive
and engaged in their own healthcare processes [21]].



Our contribution is the design of a complete mobile imaging
system to detect melanoma. Our system uses an ordinary
smartphone as the platform. Thus, the proposed system is
remarkably accessible. Our system employs state-of-the-art
image analysis algorithms to enable automatic assessment of
the malignancy of the skin lesion. Our goal is that the general
public can use our proposed mobile health (mHealth) system
to perform preliminary assessment frequently and detect any
anomalous skin lesion in their early stage.

As will be further discussed, the proposed system has
four major components. The first component is a fast and
lightweight segmentation algorithm for skin lesion local-
ization. The second component incorporates new computa-
tional features to improve detection accuracy for smartphone-
captured skin lesion images. The third component applies new
feature selection tools to select good features used for the
classification. The fourth component includes a classifier array
and an algorithm to fuse classification results. An iterative
design approach is used to assess and improve the performance
and utility of the proposed system. We extensively study the
system in pre-clinical settings, based on a large number of
MM and benign nevi images.

Note that using visible light images captured from smart-
phones for automatic melanoma detection is quite new. Most
previous works focused on dermoscopic images that are cap-
tured in the well-controlled clinical environments with special-
ized equipments [22]—[24] (including [25]], which uses a smart-
phone for dermoscopic image analysis). Dermoscopic images
include features below the skin surface, which cannot be cap-
tured with normal cameras equipped in smartphones (Fig. [I)).
In addition, smartphone-captured images may be subject to
various types of distortion (illumination variation, motion
blur, defocus aberration). Therefore, melanoma detection using
smartphone-captured visible light images poses some unique
challenges, and the problem is not well-understood [26], [27].
Furthermore, in order to perform the entire image analysis on
the smartphone, we need to design efficient algorithms and
system feasible for the strict computation, memory and power
constraints of a smartphone. To address all these challenges,
our works make the following novel contributions [28]]:

« We propose a light-weight skin lesion localization algo-
rithm suitable for the resource-constrained smartphone.
Our localization algorithm comprises skin / non-skin
detection, hierarchical segmentation, and combination
of Otsu’s method and Minimum Spanning Tree (MST)
method.

« We use novel color and border features to quantify the
color variation and the border irregularity of skin lesions.
We evaluate 116 computational features to quantify the
color, border, asymmetry and texture of a skin lesion,
including our proposed features that are suitable for
visible light images captured under loosely-controlled
lighting conditions.

« We investigate feature selection to identify a small set
of the most discriminative features to be used in the
smartphone. Using a small set of discriminative features
not only reduces the storage and computation overhead
but also improves the classification performance, as low

dimensional feature vector is more robust to over-fitting.
We focus on the framework using normalized mutual
information and propose an improvement that takes into
account the feature coordinates.

« We propose several methods to fuse the classification
results of individual category classifiers.

e« We evaluate our system using a dataset from National
Skin Center (NSC) of Singapore.

« We study the Human Computer Interface (HCI) aspect of
the proposed system.

The remaining sections of the paper are structured as
follows. Section [[| reviews melanoma analysis methods. Sec-
tion presents the details of our proposed system and al-
gorithms. Section [[V| presents the evaluation and experiments.
Finally, Sections [V] and [VI|discuss the limitation of the system
and conclude the paper by highlighting several future research
directions. A preliminary version of this work has been re-
ported [28]], [29]. This paper discusses substantial extension to
our previous work: (i) We improve and quantitatively evaluate
the proposed segmentation method (Section [[V-B). (ii) We
employ and evaluate the Local Binary Pattern descriptor [30]]
for the skin lesion analysis (Section [V-D). (iii) We propose
new methods for fusing the results of individual category
classifiers (Section [[II-D). The experimental results show that
the proposed fusion methods boost the classification accuracy.
(iv) We compare the proposed system to the recent melanoma
detection methods [31]], [32] (Section [[V-E). (v) We also study
the human-computer interface (HCI) aspect of the proposed

system (Section [[V-F).

II. RELATED WORKS

Depending on the mechanism used to evaluate the skin
lesion, melanoma diagnosis schemes can be classified into
the following classes: manual methods [20], which require the
visual inspection by an experienced dermatologist, and auto-
mated (computed-aided) schemes [22], [25]], [33]], that perform
the assessment without human intervention. A different class,
called hybrid schemes, can be identified when dermatologists
jointly combine the computer-based result, context knowledge
(e.g., skin type, age, gender) and his experience during the
final decision [34].

In general, an automatic melanoma analysis system can be
constructed in four main phases. The first phase is the image
acquisition which can be performed through different devices
such as dermatoscope, spectroscope, standard digital camera
or camera phone. The images acquired by these devices
exhibit peculiar features and different qualities, which can
significantly change the outcome of the analysis process. The
second phase involves skin detection, by removing artifacts
(e.g., ruler, hair), and lesion border localization. The third
phase computes a compact set of discriminative features.
Finally, the fourth phase classifies the lesions based on the
extracted features.

There is a plethora of computer-aided systems for segmen-
tation and classification of skin lesions [22]], [23]], [33]], [35]],
[36]. Most of these works investigated for lesion segmentation
of a dermoscopic image by using classic image segmentation
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Fig. 2: The flowchart of the proposed method.

methods such as histogram thresholding, adaptive threshold-
ing, difference of Gaussian filter, morphological thresholding,
wavelet transform, active contours, adaptive snake and random
walker algorithm. However, it is worth noting that these works
focused on dermoscopic images which are acquired under
controlled clinical conditions by employing a liquid medium
(or a non-polarized light source) and magnifiers. This type
of images includes features below the skin surface which
cannot be captured with standard cameras. It is also worth
noting that many of these previous works focused on only a
certain aspect (e.g., lesion border localization), and they did
not provide a complete solution that integrates all the steps. In
addition, they focused on processing on powerful workstations
/ servers, where computation and memory are abundant. In the
cases of redundant memory and computation capability, recent
dermoscopic images-based melanoma detection leverage the
power of deep neuron network (DNN) as this could help to
achieve very competitive performances [37], [38].

Recently, several mobile connected dermatoscopic devices
have been developed, such as DermLite (3Gen Inc, USA) and
HandyScope (FotoFinder Systems, Germany). However, the
cost to acquire such an additional device is expensive and they
are not accessible to everyone. Furthermore, trained personnel
are required to operate dermatoscopic devices.

There are only few systems working on mobile platforms:
Lubax (Lubax Inc, CA, USA), [25], [27], [39]], [40]. However,
many methods merely use the mobile device for capturing,
storing and transmission of the skin lesion images to a remote
server without performing any computation locally on the mo-
bile device. For example, [39], [40] use a mobile dermatoscope
attached to the mobile device to capture dermatoscopic images
and send the images to the server for computer assessment.

A few isolated works perform the analysis of smartphone-
captured visible-light images directly on the mobile devices.
In [26], a mobile-system working for images taken from
mobile cameras is presented. In particular, they presented a
preliminary system: to detect a lesion, they used a very basic
thresholding method; to describe the lesion, only standard
color feature (such as mean and variance of the color channels,
the difference of color through vertical axis) and border
features (convexity, compactness) are extracted. In [27]], the
authors also focused on images taken from mobile cameras.

The lesion detection and feature extraction are performed on
mobile while the classification can be performed on mobile or
cloud. However, the authors put more emphasis on the system
integration, without mentioning the details of the features used
for diagnosis. Recently, the works [31], [41]] propose complete
systems that segment, extract visual features and classify
lesions. In [31]], in addition to the automatic extracted color
and texture features, additional human annotated information,
including lesion’s locations, lesion size, number of lesions, etc.
is also utilized to differentiate melanoma from nevocellular
naevi. The work [41] only uses the automatically extracted
features, which are based on the ABCD rule, i.e., Asymmetry,
Border, Color, and Diameter features, for the classification
process. Different from these works, which only use general
features such as mean, variance of different color channels,
convexity, solidity, compactness of shape etc., in our work,
we propose novel and robust features specifically for charac-
terization of lesions. We also propose a novel feature selection
method to select a small but very discriminative set of features
which not only helps boost the classification accuracy but also
reduce the computation and memory costs. Additionally, even
though the works [31], [41] propose complete systems, the
efficiency of these systems running on resource-constrained
smartphones has not been reported. On the other hand, our
method is very efficient on a smartphone as discussed in
Section

Recently, there are several DNN-based systems that have
been proposed for non-dermatoscopic image analysis: lesion
segmentation [42] and melanoma detection [43]], [44]. How-
ever, due to the high computation and memory cost of DNN,
it is very challenging for such systems to be used on resource-
constrained smartphone platforms.

III. THE METHOD FOR EARLY MELANOMA DETECTION

Fig. depicts our proposed scheme. It is challeng-
ing to achieve accurate segmentation of skin lesions from
smartphone-captured images under loosely controlled lighting
and focal conditions. Instead of using sophisticated segmen-
tation algorithms, which can be computationally expensive,
we propose to localize the skin lesion with a combination
of skin detection and a fast hierarchical segmentation. More
precisely, we first downsample the skin image, and based on



the downsampled version our system generates a coarse model
of the lesion by combining two lightweight segmentation
algorithms. Then, to outline the lesion contour, we employ
a fine segmentation by using as input the coarse segmentation
result. From the final segmented region, we extract four
feature categories which accurately characterize the lesion
color, shape, border and texture. To classify the skin lesion, a
classifier is built for each feature category and then the final
results is obtained by fusing their results.

A. Lesion segmentation

Our segmentation process consists of two main steps. At the
first step, a mask of skin regions is generated using the skin
detection method. The purpose of the skin detection module is
to discard pixels from non-skin regions to simplify the image
for the subsequent processing step. At the second step, we
extract the lesion by using a hierarchical segmentation method.

1) Skin Detection: The reason for applying a skin detection
procedure first is to filter the image from unwanted artifacts, so
an exact classification of skin/non-skin regions are not needed
as long as we extract the foreground and keep the whole lesion
region within. Here we use an approach based on skin color
model to detect skin pixels [45]. We choose this particular skin
model since it is more discriminative, providing 32 skin and
non-skin color maps of size 64 x 64 x 64 for each skin color. We
use the original RGB color image, without any preprocessing,
as input to the skin detection model.

In order to build the skin detection model, we followed
the steps given in [45]: we first collected a set of skin/non-
skin images to construct our skin detection dataset. Skin
images are selected with different skin colors and various
lighting conditions for model generalization. The skin color
distribution is estimated by a Gaussian mixture model. Since
the skin mole we want to localize may not have a similar color
as the surrounding skin, we use a filling method for all the
holes inside the skin region.

2) Hierarchical Lesion Segmentation: Since our objective
is to develop a mobile-based diagnosis system, we need
a lightweight segmentation method that can achieve high
precision under severe computational constraints. Therefore,
for the segmentation engine we employ several segmentation
methods with low computational requirements, followed by
the use of a criterion to merge the results. It worth noting that
the skin lesion images are converted to the grayscale space for
the hierarchical segmentation.

a) Coarse Lesion Localization: After getting the skin
region area we downsample the image and perform two
segmentation methods and use rules to combine the results
of both methods. Here we select Otsu’s method [46|] and
Minimum Spanning Tree (MST) method [47] to get the initial
segmentation results. Fig. 3] shows the flowchart of the coarse
lesion localization procedure.

Otsu’s method [46] is a simple and fast thresholding method
that automatically calculates a threshold value from image
histogram. The threshold value is then used to classify image
pixels based on their intensities. However, Otsu thresholding
may not detect clear edges on the image, for example, the
lesion boundaries.

On the other hand, the Minimum Spanning Tree (MST)
method [47]], a fast region-based graph-cut method, is sensitive
to clear edges. However, MST is not robust to detect smooth
changes of color intensity. In our method, the parameters of the
MST are optimized such that we could get enough candidate
region of interest (ROIs) while avoiding over-segmentation
near the skin mole region. As segmentation-based MST al-
gorithm that can run at nearly linear time complexity in the
number of pixels, we achieve a low time complexity after
running two different segmentation methods, i.e., Otsu’s and
MST methods.

To filter the segmentation results, we firstly remove all
candidate ROIs that are connected to the boundary of skin
image. In addition, we assume that the skin mole is located
in a region (called the valid region) near the center of the
image. This hypothesis is adopted since most of the users
focus their camera phone on the object of interest (i.e., the
skin mole) when capturing a picture. As a consequence,
all the candidate ROIs that have the centroid coordinates
outside the valid region are discarded. Furthermore, we use
a constraint to further discard the noisy ROIs. Specifically, for
each segmentation method, we identify the ROI by:
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where, for the i™ ROI, A; denotes its area, and ¢? and
Qﬁi’ are centroid coordinates. W and H are the width and
the height of the downsampled image, respectively. ng rep-
resents the total number of ROIs that are located in the
valid region. The basic idea is to give central ROIs high
weights while penalizing ROIs near to boundary. When both

€7 and €Y are close to the image center, then the value
4

1—9. \/(Q;f — W/Q)2 + (€Y — H/Q)2 is close to 1. On

the other hand, if the ROI is far from the image center, that
value is small. The quantity is raised to the fourth power to
impose penalty for boundary ROIs.

By merging the two filtered segmentation results, we expect
to get a good segmentation on lesion with either distinct border
or diffuse border. Based on the rules to perform a fusion of
different segmentation given in [23]], we take the union of the
two results and then find the largest connected region in the
union result. The fused segmentation result is post processed
by applying a majority filter to remove the noise.

b) Border Localization: Given the coarse segmentation
result, in order to correctly localize the border of the lesion,
we first crop the corresponding ROI from the original high-
resolution image. As downsampling performed in the “Coarse
Lesion Localization” step may smear the mole boundary, this
mapping is not exact and generates some uncertainty related
to mole boundary. Thus, another fine-grained segmentation
operation is performed to improve the lesion border localiza-
tion. The segmentation algorithm used for this stage is similar
to the one presented in the previous section (i.e., applying
Otsu and MST, filtering near boundary segments, and fusing
filtered segments), except that we adapt the segmentation
parameters to the cropped image characteristics, i.e., a skin
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Fig. 3: The block diagram of the coarse lesion localization.

image containing a mole which occupies a large part of the
image.

B. Feature Descriptors for Describing Lesion

Given the lesion image segmented from section [[II-A] we
compute features belonging to four categories (color, border,
asymmetry and texture) to describe the lesion. The summary
of features is given in Table [} Detail of features are presented
in the follows.

1) Lesion Color Feature (LCF) (54 Features): Given a skin
lesion, we calculate the color features widely used in the
literature such as mean, variance of the pixel values of several
color channels. The used color channels were red, green, blue
from the RGB image; gray scale from the gray image, and
hue and value from the HSV image.

To capture more color variation from the skin lesion, we
use the information from the histogram of pixel values [22],
[23]]. A histogram, with fixed number of bins (i.e. 16 bins),
of the pixel values in the lesion is computed and the number
of non-zero bins is used as the discriminative feature. The
features generated from the corresponding color channels are
called num_red, num_green, num_blue, num_gray, num_hue
and num_value. As melanoma samples usually have higher
color variation than benign samples [18]], we expect that the
number of non-zero histogram bins of melanoma samples is
higher than that of the benign samples.

Novel feature to quantify color variation: Generally,
there are different color distribution patterns over a MM
lesion, whereas the normal pigmented nevi exhibit a more
uniform color representation. Therefore, another measurement
is needed to determine if there is a color variation all over
the lesion or the color varies uniformly from the center to
the border. Inspired by the clinical research [24], we use a
feature called Color Triangle (CT) [28]. Specifically, given a
lesion region (represented by a binary image), we first compute
the center of mass of the region. Let N be the number of
boundary pixels of the region. Starting from the left most
boundary pixel, we divide the region boundary into PA parts
in which the number of boundary pixels of each part is equal
(i.e. each part has N/PA boundary pixels). Each triangular
part is now represented by two segment lines (from the lesion
region center to the boundary). We further equally divide each
segment line into S'P parts. By connecting corresponding parts
on two segment lines, we get S P subparts for each triangular
region.

After that, each triangular part is described by a SP-
component vector, where each component is the mean pixel

ay, as, aa]
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Fig. 4: Novel features to quantify color variation (a): Color
Triangle (CT): SP = 4 and PA = 8 and border irregularity:
nt = 20 (b) of a skin lesion [28]]

values of the subpart [28]]. Finally, the maximum Euclidean
distance between the vectors is used to quantify the color
variation of the skin lesion. As the description, the Color
Triangle features are designed to assess the color spreading
from the lesion center to the lesion boundary. As melanoma
mole has non-uniform color spreading [18]], we expect that
when the CT feature is large, the chance of melanoma is high.
In our experiments, the values of PA are empirically chosen
as 4,8,12 and 16. For each value of PA, values of SP are
chosen as 2, 4 and 8. The Color Triangle features are computed
for gray scale, red and hue channels of the lesion. Fig. @fa)
illustrates for the proposed Color Triangle feature in which
PA =8 and SP = 4. Totally, we extract 54 color features to
describe the color variation. This original feature set is subject
to feature selection subsequently to identify a small subset of
discriminative features for mobile implementation.

Note that we have included mean/variance of the color
channel as the candidates in the original feature set. While
we expect our new color feature (Color Triangle) to be
more discriminative, we have also included mean/variance in
the original feature set (before feature selection) for these
reasons: 1) mean/variance are conventional features and we
have included them as baseline for comparison (during feature
selection); 2) mean/variance do not have any parameter to
decide, potentially they could be rather general and robust.
On the other hand, for histogram or Color Triangle, we
need to decide the number of bins / partitions. Nevertheless,
as will be discussed, our feature selection results suggest
that the generality of mean/variance cannot compensate for
their inadequacy in discriminativeness in this application, and
mean/variance are not selected in our final feature set.

2) Lesion Border Feature (LBF) (16 Features): To describe
the irregularity of the border, we compute shape features such
as compactness, solidity, convexity, and variance of distances
from border points to centroid of lesion [24]. Border irregu-



larity is useful for melanoma detection: mole with irregular
border has a higher probability of being melanoma [18].

Novel feature to quantify border irregularity: We also
propose the Border Fitting feature to quantify the border irreg-
ularity [28]]. The main idea is to approximate the lesion contour
by multiple straight lines and then to use the angles between
these lines to quantify the irregularity. Regular borders tend
to have smooth and consistent changes between consecutive
contour fitting lines, compared with the irregular ones.

We use a linear regression model to determine the contour
fitting lines. We partition the contour (border) points of the
lesion into nt segments and {xy,y;} are the corresponding
coordinates for the ¢-th segment. In the linear regression, the
predicted coordinate ¢ can be expressed as gy = a% + aﬁ g,
where ajy and a® are the slope and intercept of the regression
line for the ¢-th contour segment.

To quantify the border irregularity, we compute the angles
between consecutive regression lines (i.e., regression lines
for the i-th contour segment and the (i + 1)-th contour
segment). Then, we compute the average and the variance of
the angles, and use these statistics as the border irregularity
features. In our experiments, number of lines nt are chosen as
8,12, 16,20, 24 and 28. Fig. f|b) illustrates the Border Fitting
feature in which nt = 20. Totally, we extract 16 features to
describe the border irregularity.

Note that we have included other conventional border fea-
tures in the original feature set, e.g., convexity, as baseline for
comparison (during feature selection), but we expect that they
are less discriminative for border irregularity. Our proposed
new feature Border Fitting can capture border irregularity well
as we directly fit line segments on the border of the mole, and
we compute mean / variance of angles between consecutive
line segments. In particular, Border Fitting can capture notches
on the mole border and is useful for melanoma detection [/18]].

3) Lesion Asymmetry Feature (LAF) (1 Feature): The
lesion asymmetry can also reveal valuable information for
the lesion categorization. According to the analysis in [24],
melanoma samples tend to be asymmetric, while benign sam-
ples tend to be symmetric. To compute the lesion asymmetry,
we use a method similar to the one introduced in [24]. The
major and minor axes of lesion region, i.e., the first and second
principal components, are determined. The lesion is rotated
such that the principal axes are coincided with the image axes
x and y. The object was hypothetically folded to the z-axis and
the area difference i.e., A,, between the two parts was taken
as the amount of asymmetry corresponding to the x-axis. We
followed the same procedure, for the y-axis, to obtain A,.
The asymmetric feature is computed as Asym = (A« +A4y)/4,
where A is the lesion area.

4) Lesion Texture Feature (LTF) (45 Features): To quantify
the texture of the skin lesion, we investigated several feature
descriptors such as:

o those derived from the gray level co-occurrence matrix

(GLCM) and

« those based on the local binary patterns (LBP).

The GLCM of the entire lesion characterizes the texture by
calculating how often pairs of the pixel with specific brightness
values and orientation occur in an image. GLCM-based texture

Feature Used features

Category

Mean, variance of different color spaces
(RGB, HSV and grayscale).

Number of non-zero bins of the histograms
of different color spaces (RGB, HSV and
grayscale).

Color Triangle feature.

LCF

Shape features such as compactness, solidity,
convexity

Variance of distances from lesion border
points to the lesion centroid.

Border Fitting feature.

LBF

LAF Shape asymmetry.

Edge density.

Features computed from the GLCM [48] like
energy, correlation, contrast, entropy.

Rotation invariant sign and magnitude of
LBP [50] of different color spaces (RGB and
grayscale).

LTF

TABLE I: Computed features according to their relevant
categories and their corresponding descriptions.

description is one of the most well-known and widely used
methods in the literature [22], [48]].

In this work, GLCM is constructed by considering each
two adjacent pixels in the horizontal direction. The features
extracted from GLCM used to describe the lesion are contrast,
energy, correlation, and homogeneity. To achieve a reasonable
estimation of the features, the GLCM should be a dense
matrix. Hence, before GLCM calculation, the pixel values are
quantized to 32 and 64 levels. It means that we computed 8
texture features from two quantized GLCMs.

To capture edge map (structure) of the lesion, we employed
the Canny edge detector method. The number of edge pixels
is counted and normalized by total lesion area and the resulted
number is used as an edge density feature.

Another widely used texture descriptor that we employed
for skin lesion analysis is Local Binary Pattern (LBP) [30].
LBP combines shape and statistical information by a histogram
of LBP codes which resemble microstructures in the image.
The LBP is a scale invariant measure that describes the local
structure in a 3 x 3 pixel block [49]]. The LBP was further
adapted to accommodate arbitrary block sizes [30]]. Two main
parameters of LBP are P and R, i.e., the number of pixel
neighbors P on a circle of radius R of a given center pixel. To
generate rotation invariant LBPg, P-1 bitwise shift operations
of the circle are performed, and the smallest value is selected.
In this application, we adopt the LBP framework introduced
in [30], since it has a complete mathematical formulation of
the LBP operator and it has been extensively tested, offering
the best performance. Following [|30]], we extract the sign LBP
(LBPs) from the grayscale channel of the lesion image. The
resulted LBPg is a 36-dimensional vector.



C. Feature Selection

Given the feature set § and the class label L, we perform
feature selection offline to identify a set & C § (|&] < |3
such that the relevance between L and & is maximized.
The relevance is usually characterized in terms of Mutual
Information (MI) [51]]-[53]. Considering all possible feature
subsets requires an exhaustive search which is not practical
for a large feature set.

In our method, we use the well-known feature selection
procedure called Normalized Mutual Information Feature Se-
lection (NMIFS) [53]]. Mutual information is widely employed
for the feature selection problem to capture the relevance
between variables. In NMIFS, features are selected one by
one from § iteratively. Initially, the feature that maximizes
relevance with target class L is selected as the first feature.
Given the set of selected feature & = {fs},s = 1,...
the next feature f; € §\ & is chosen such that it maximizes
the relevance of f; with the target class L and minimizes the
redundancy between it and the selected features in G. In other
words, f; is selected by the following condition:

argmax; ¢ MI(L, f;) — ZNMI fuls) e @

f€(‘3

where MI(X,Y) is the mutual information, which measures
the relevance between two random variables X and Y and is

defined as (@)
= zz: zy:p(mvy)logm 3)

while NM1I is the normalized mutual information and is

defined

efined as MI(X,Y)
min{H (X), H(Y)}
where H is the entropy. From information theory, it is known

that MI(X,Y) > 0; if X or Y is binary variable then
MI(X,Y) < 1; and we always have 0 < NMI(X,Y) < 1.

NMI(X,Y) =

“4)

Novel feature selection criterion [28]: From we ob-
serve that the mutual information is a metric that relies on the
probability functions, and it is independent of the coordinate of
the features. On the other hand, the coordinate of the features
may help in the classification context. For example, in a binary
classification problem, suppose that the number of samples in
each class are equal and there are two features f; and f; which
perfectly separate the two classes. The feature that has a larger
margin between the two classes has a better generalization
error. However, by using mutual information, it can be seen
from (@) that these features have the same MI value (Fig. [5).
Furthermore, by using the feature coordinates, we can access
the local neighborhood structure of data. This also helps the
classification [54]]. Therefore, we take into consideration the
feature coordinates when selecting the feature.

A well-known criterion considering the coordinate of fea-
tures is Fisher criterion. Nevertheless, there are several issues
with the Fisher criterion [55]). In particular, if the data in each
class does not follow a Gaussian distribution, or if the mean
values of the classes are approximately equal, Fisher criterion
fails.

Margin Margin
Mon-cancer <—— Cancer MNon-cancer «e———> Cancer
"’/ \"- r"/ \‘- :'/ \"- r'/ \‘a
NS \ f ya S AN f
i i

Fig. 5: Two features f; and f; that can perfectly separate
the two classes. Feature f; has a larger margin between the
two classes and has a better generalization error. However, in
conventional feature selection, these features have the same MI
value following @) as feature coordinates are not considered.

Inspired by the method “Average Neighborhood Margin
(ANM) maximization” [54] method proposed for face recog-
nition problem, we adapt that method to the feature selection
problem and define the quality of feature f as

)||1> ‘

Z <Z @) = F@)ly = 1/ (%)
(&)

i=1 teng JENY

where, for each sample 7, n{ is the set of the most similar
samples which are in the same class with ¢ and n{ is the set
of the most similar samples which are not in the same class
with ¢ [28]]. In () a feature has good discriminative power
if we can used it to separate each sample from the samples
belonging other classes whilst it is close to samples belonging
to the same class. Since (5) makes use of local information
and does not make any assumptions on the distributions of
samples, it can overcome the drawbacks of the Fisher test.

In order to combine the advantages of both (5) (which
works on the local neighborhood structure of data) and MI
(which works on the distribution of data), we propose the new
criterion which combines both (5) and MI in a single criterion
as follows:

U(fi) = a-Q(fi)+

(6)

(1—a)-§ MI(L, f;) — Z NMI(f;, fs)

fsEG

where « € [0, 1] is a weight factor that controls the influence
of () and MI in the proposed hybrid criterion [28].

D. Classifier

The offline feature selection process is performed individ-
ually for each feature category. A compact set of features is
identified for each category (color, border, asymmetry, texture:
GLCM features and edge density feature). For a given lesion
image, our system computes these selected features for each
category and passes them into SVM [56] classifiers. We train
four different SVM classifiers, each corresponding to a single
feature category. In this application, we apply a higher penalty
for each misclassification of MM samples than each of benign
samples (i.e., the penalty is 1.5 and 1 for MM and benign,
respectively) as we want to achieve high sensitivity while
maintaining a reasonable specificity.

For the LBP features, we use a different classifier. The
k nearest neighbor classifier (KNN) has been applied for



classification of a majority of LBP descriptors [57] since it is
a good candidate when working in a distance representation of
objects. Furthermore, since LBP produces a high dimensional
feature vector, we will require a large number of samples in
order to project the LBP features to higher space where we
can use SVM. As a consequence, we adopt KNN classifier.
In general, several metrics have been employed to compute
the distance between the LBP histograms such as chi-square
distance, L1 distance, and cosine distance. In this study, we
adopt the cosine distance metric for the kNN classifier since
it is more robust to outliers and it has been widely used in
many previous works [57]].

Additionally, it is very helpful to fuse the results from indi-
vidual classifiers as this combines valuable information gained
in the training phase of each feature category. Specifically, we
propose and experiment these fusion methods:

1) Non-weighed sum: We sum the hard classification results
of each classifier (1: cancer or 0: non-cancer). By using
the sum rule, we base on the assumption that each feature
category contributes equally during the diagnosis deci-
sion. Consequently, a skin lesion is judged as cancerous
if the sum of the four hard classification values is > 1
[28]].

2) Weighted sum: Potentially, individual feature categories
have different discriminative power. Therefore, we fuse
their classification results by summing the weighted hard
classification values. Particularly, we compute the weights
in two different ways: (2a) sensitivity@50% specificity
and (2b) the Area Under Receive Operating Curve (AUC).
We compute these quantities for individual classifiers
during the validation phase, and apply these quantities
as weights during the testing phase. For this method,
a threshold on the sum of weighted hard classification
values is required to decide if a sample is cancerous. We
select the threshold that maximizes the accuracy in the
validation set.

3) Hierarchical SVM: We concatenate the soft classification
values of individual classifiers, resulting a new feature
vector. The new feature vector is subjected to another
SVM for classification. We call this fusion method as
hierarchical SVM. This fusion method can uncover the
underlying non-linear combination of features in the
diagnosis.

Note that we have two techniques to extract skin lesion
texture: GLCM plus edge density, and LBP. Thus, we experi-
ment these fusion methods for two sets of feature categories:
(i) color, border, asymmetry, GLCM plus edge density and (ii)
color, border, asymmetry, LBP.

E. Human Computer Interface (HCI) Design

We also study the HCI aspects of the proposed system. The
proposed system can be regarded as self-diagnosis applications
[58]. Self-diagnosis applications refer to a type of accessible
healthcare systems that can help users detect illness at the
early stages. Users of self-diagnosis applications are non-
patients: people who do not have the explicit awareness of their
potential diseases or health problems. For these self-diagnosis

applications, it is not clear how to incentivize usage, how to
best present the results, and how to sustain habit formation for
periodic long-term use. To understand these issues, we conduct
an exploratory case study to investigate the special HCI design
challenges of such systems. In particular, we conduct a semi-
structured interview with 16 healthy young people and 13
healthy older adults to investigate the specific HCI challenges
of our proposed application.

IV. EVALUATION AND RESULTS
A. Dataset and evaluation protocol

To evaluate the proposed scheme, we use the dataset pro-
vided by the National Skin Center (NSC) of Singapore. There
are totally 184 color images (SET1) consisting of two classes:
117 images of benign nevus and 67 images of MM, acquired
by cameras under different resolutions, sizes, and conditions.
Due to various acquisition conditions (such as lighting and
focus) and presences of other anatomical features (e.g, eye,
eyebrow, nail, etc.) near the skin lesions, many of these images
are challenging for the segmentation and classification.

In regards to the ground truth for both segmentation and
classification tasks, we obtained the diagnosis of the melanoma
cases which were determined by histopathological examination
or clinical agreement by several expert dermatologists from
NSC. Furthermore, an expert was engaged in the annotation
process to help achieve the reliable ground truth ROIs for the
skin lesions.

A smaller dataset called SET2, which is a subset of SET1,
i.e. 52 benign images and 29 MM images, is used as the
working data for the feature selection phase.

Additionally, we partition SET1 into two subsets. The first
subset, called SET3, consists of 30 images, i.e., 18 benign
nevi and 12 MM. This subset is used as working data to
determine the weight values for the fusion method 2 proposed
in section The second subset, called TEST SET,
consists of 154 images, i.e., 99 benign nevi and 55 MM. We
perform 10-folds cross validation on this TEST SET to obtain
the final classification results. We evaluate the classification
performance in terms of sensitivity (i.e., Sens = TP/(TP +
FN)), specificity (i.e., Spec = FN/(FN + FP)) and balanced
accuracy (i.e., Acc = (Sens + Spec)/2).

B. Segmentation Results

The hierarchical segmentation process discussed in Sec-
tion [III| is applied on the SET1 to extract lesion ROIs.

To measure the segmentation results, we used the true
detection rate (TDR), which quantifies the rate of pixels
correctly classified as lesion. The TDR is computed as follows:

#(GT N SEG)
#(GT)
where SEG denotes the segmentation result and GT denotes

the ground truth segmentation.

Table [[I] presents segmentation results of Otsu [46], MST
[47], and the proposed method. It clearly shows that the
proposed hierarchical segmentation significantly improves the
segmentation results over Otsu and MST methods.

TDR(GT, SEG) = 100 - @)



Method
Accuracy(%)

TABLE II: Segmentation accuracy on the SET1 of Otsu [46],
MST [47], and the proposed segmentation method.

MST
64.71

Otsu
72.26

Proposed
80.09

Fig. [6] shows the segmentation results for two MM lesions.
These are difficult cases where one of the algorithms fails
to localize the lesions ROI (for example, Otsu in Fig. [f[b),
MST in Fig. [6[c)). The melanoma lesion shown in Fig. [6{(a),
Fig. [f[c) and Fig. [6e) contains several regions with different
visual features. This image was well segmented only by the
Otsu method (Fig. [6fa)), while MST was trapped in one of
the regions of different color intensity (Fig. [f[c)).

For the MM displayed in Fig. [6(b), Fig. [6(d), and Fig. [6{(f)
the MST method was able to accurately localize its center
part (Fig. [6(d)) while Otsu method fails entirely (Fig. [[(b)).
However, by using the proposed method we can determine the
lesion boundary when one of the segmentation methods fails.

There are several computation and memory efficient seg-
mentation methods proposed in the literature which may be
suitable for mobile-based applications [59]-[61]. Here we
give qualitative comparison between the proposed segmenta-
tion method with the state-of-the-art level set segmentation
method [59] and interactive segmentation method [61].

Comparison with level set segmentation: Level set seg-
mentation is a fast and accurate segmentation method that
has been widely used in many applications. Here we compare
with a state-of-the-art level set segmentation proposed in [|59]]
and we use the software by the authors for comparison [|62].
We found that there are several advantages of our proposed
combination of Otsu and MST when comparing with level set
segmentation for this application: 1) Level set segmentation
would not work well when the boundary of the mole is not
clear and the background in the image is complex. As an
example from our dataset, Fig.|/} in this case the boundary of
the mole is not clear and the background is not uniform, and
the level set segmentation boundary is not accurate compared
to our proposed method. 2) There are some parameters needed
to be tuned for level set segmentation. As there are different
types of images in our dataset (i.e., different background,
shape, color of moles), it is difficult to find an optimal set of
parameters for our dataset and in general for this application.
3) Our proposed method is time efficient and it is faster than
level set. Given the image shown in Fig. [7] for example, it
takes 0.4 seconds with our method, and around 4 seconds to
run with level set in 200 iterations (both experiments are done
on the same desktop and implementation in Matlab). Note that
level set segmentation requires on an initial rectangle provided
by the user to crop around the mole region, and its accuracy
depends on this initial rectangle. Thus, it is non-trivial to set up
a fair and thorough comparison between level set segmentation
and our proposed automatic segmentation. We will investigate
this in future work.

Comparison with interactive segmentation: We have
compared with a state-of-the-art interactive method [61] for
segmentation on our dataset. The code of interactive seg-
mentation is provided by the authors, available from [63].

Some comparison results between interactive and our proposed
method are shown in Fig. 8] As we can see from the example
images, the segmentation results of interactive method depend
significantly on the initial strokes drawn by users. In some
cases, even when the initial strokes have only small mistakes,
the interactive segmentation results could be quite inaccurate
as shown in Fig. [8] In order to properly segment the mole, it
requires accurate user input, which maybe sometimes difficult
for users, especially elders. Therefore, here we apply automatic
segmentation method for our application. The use of inter-
active segmentation for this application will be investigated
thoroughly in future. It is worth noting that the accuracy of
interactive segmentation depends on the initial strokes drawn
by users. Therefore, it is non-trivial to set up a fair and
thorough comparison between interactive segmentation [61]]
and our proposed automatic segmentation.

C. Feature Selection Results

Our proposed feature selection tool is employed on indi-
vidual feature categories, i.e., color (54 features), border (16
features) and texture (8§ GLCM features and 1 edge density
feature). Note that we have not applied the feature selection
for the asymmetry category since it contains only one feature.
We also have not applied feature selection to LBP, as the
LBP descriptors have high dimension and this requires a
large dataset to estimate the probability distribution in () to
compute the mutual information.

In order to compute the mutual information, features should
be first discretized. To discretize each feature, the original
interval is divided into a number of equal bins. Feature values
falling outside the interval are assigned to the extreme left or
right bin. We run feature selection with the number of bins
equal to {2,3,4,5,6} and let feature selection determine the
optimal number of bins. The best classification accuracy is
achieved when the number of bins is equal to 5.

The values of n¢ and n¢ in (5) are set to 50% number of
samples of class containing the sample ¢, and « in (6) is set to
0.4. For the CT feature the number of partitions considered in
feature selection are PA = {4,8,12,16}, while the number
of subparts are SP = {2,4,8}. For the Border Fitting feature
the number of lines analyzed are nt = {8, 12,16, 20, 24, 28}.

Table [IIT] shows selected features in each category when
Ml-based criterion and our proposed criterion (6)) are used
during the feature selection [28]. The classification accuracy
of different feature categories for MI-based criterion and our
proposed criterion is given in Table

From Table we can see that CT and Border Fitting
features are always selected for both MI and proposed criteria.
This confirms the efficiency of our proposed novel features.
For the texture category, both feature selection-based MI and
the proposed method select same feature set, i.e., edge density,
the contrast of 64 quantization level GLCM, and correlation
of 32 quantization level GLCM. In following sections, we
refer these three selected features as GLCM+edge features for
distinguishing with LBPg features.

Additionally, Table [[V] shows that the proposed feature se-
lection method can select more discriminative sets of features.
In particular, for the color feature category, the proposed
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Fig. 6: Segmentation evaluation for the Otsu (a), (b), the MST (c), (d), and the proposed (e), (f) methods. The green rectangle
represents the ground-truth, the red rectangle denotes our segmentation result.

(a) (b) (©
Fig. 7: Comparison with level set segmentation for an example
image with complex backgrounds. (a): cropped O-level initial-
ization for level set segmentation (provided by the user). (b):
level set segmentation result. (c): segmentation result using
our proposed method.

Feature Mutual Information Proposed

Category
color triangle (SP = | color triangle (SP =
16, PA=238), 16, PA = 8)

color
num_red, num_hue, num_gray, num_hue
num_green

border mean of border Vaﬁances of border
fitting (nt = 12) fitting (nt = {8,12})

edge density
texture contrast of GLCM (64 quantization levels)
correlation of GLCM (32 quantization levels)

TABLE III: Selected features from each category when mutual
information criterion and proposed criterion are used.

Mutual Information Proposed
color border texture | color border texture
Sens | 94.00 82.55 84.55 | 94.18  79.27 84.55
Spec | 86.00  66.00 76.67 | 90.00 76.00 76.67
Acc | 90.00 74.27 80.61 92.09 77.64 80.61

TABLE IV: Feature selection results: the classification per-
formance when MI-based criterion and our criterion are used
to select features for individual categories. The classification
results are with SVM classifier with 5-folds cross validation
on SET2.

method can gain about 2% accuracy improvement by selecting
a set of only 3 features instead of a set of 4 features of
MlI-based method. For the border feature category, the MI-
based criterion achieve highest accuracy of 74.27% when
only one feature is selected. By using MI-based criterion,
we cannot obtain higher accuracy even when more border
features are included. On the other hand, the highest accuracy
of the proposed criterion is 77.64% when 2 border features
are selected.

The importance of using multiple features for each cate-

Fig. 8: Example of segmentation result using interactive
method [[61]. Left & middle columns: Interactive method with
different initial strokes (red and white color). Right column:
segmentation result using our proposed method.

gory: We remark that we use multiple features for each feature
category because of the large variation of the data (e.g., color
variation). Using a single feature for each feature category is
not enough to distinguish the melanoma and benign samples.
For examples, although many melanoma samples usually have
the variation in the color (e.g., the color spreads from white
to dark), using only num_gray feature (the number of non-
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Fig. 9: Examples of (a) benign sample and (b) melanoma
sample. Both have high color variation (i.e., high num_gray)
values.

Feature  CI" num_gray num_hue Combined
Sens 85.21 76.92 88.39 94.18
Spec 77.85 68.97 65.52 90.00
Acc 81.53 72.94 76.96 92.09

TABLE V: The classification performance on the SET2 for
each selected color feature (the results are with SVM classifier
with 5-folds cross validation). For the Color Triangle (CT)
feature, SP = 16; PA = 8.

Feature  Variances of Border = Combined
nt=28 nt =12
Sens 78.20 68.96 79.27
Spec 56.83 57.69 76.00
Acc 67.52 63.32 77.64

TABLE VI: The classification performance on the SET2
for each selected border feature (the results are with SVM
classifier with 5-folds cross validation).

zero histogram bins on gray channel) does not give a high
classification accuracy. It is because there are some benign
samples which also have the color spreading from white to
dark. Two examples of the benign (left) and melanoma (right)
samples are provided in Fig. 0]

Similarly, there are some benign samples which their color
do not vary uniformly from the center to the border. In those
cases, using only Color Triangle feature is not sufficient for
the classification. Hence, using both num_gray and Color
Triangle features helps overcome the data variation issue, and
boost the classification accuracy.

We provide here the Table [V] which shows the classifica-
tion accuracy, the sensitivity, and the specificity when the
selected color features (Color Triangle (SP = 16; PA =
8), num_gray, num_hue) are used individually or are used
together. We can see that combining selected color features
significantly boosts the accuracy.

We also provide here VI which
shows the classification accuracy, the sensitivity,
and the specificity when selected border features
(variances of Border Fitting for nt = 8,12) are
used individually or are used together. The results show that
combination of selected border features boosts the accuracy.

the Table

D. Classification Results

As discussed in section [[II-D] four binary SVMs are applied
to the selected features from four feature categories (color,
border, asymmetry, and GLCM+edge) and the kNN is applied
for LBPg features. To aggregate useful information in individ-
ual classifiers, these classification results are processed further
using several proposed fusion methods.

Performance of individual classifiers: For SVM classi-
fiers, to estimate the generalization error of the models based
on the selected features, we employ the 10-folds cross valida-
tion on the TEST SET, i.e., 154 segmented ROIs. SVMs return
soft values which present the confidence level of a sample
belongs to MM. By applying a threshold, we can obtain the
hard output values, which is O (non-cancer, benign nevus) or 1
(cancer, MM). The columns “Color”, “Border”, “Asymmetry”,
“GLCM+edge” of Table [VII] show the performance of the
system on TEST SET for each feature category at the threshold
of 0.5.

Fig. [T0] shows the visualization of the SVM outputs of
the LCF (color features) after dimension reduction and color-
coding by the clinical labels. The visualization reveals a
good separation of regions corresponding to benign nevus and
melanoma classes. This suggests that distinct color character-
istics are presences of different skin lesion classes which are
captured by the selected features. Particular image samples in
Fig. [I0] demonstrate how the proposed scheme allows a good
separation of skin lesions.

As discussed, for the LBPg features, we use a kNN classi-
fier. We consider various settings, i.e., parameters for LBP:
R = {1,2},P = {8,16}; number of neighbors of kNN:
k = {1,2,3}. We empirically achieve the best results for
following the parameters: R = 1, P = 8, and k = 2. The
kNN returns soft values that indicate the confidence level of
a sample belonging to MM. Particularly with k¥ = 2, kNN
returns 1 (or 0) when two nearest neighbors (NN) are MM
(or benign); in the remaining situation, i.e., one NN is MM
and another NN is benign, the distance from the test sample
to its two NNs is utilized to calculate the soft output values.
The classification results are showed in the “LBPg” column of
Table [VII] after applying a threshold of 0.5 on the soft output
values.

Performance with fusion of individual classifiers: Fur-
thermore, we employ three proposed fusion methods for
fusing the results of the four classifiers, i.e., (Color, Border,
Asymmetry, and GLCM+edge) or (Color, Border, Asymmetry,
and LBPy), as discussed in section [[lI-D}

For the fusion method 2 (Weighed sum, 2a and 2b), we
need to determine the weight values and the threshold to
classify cancerous samples. Specifically, by running 3-folds
cross validation on SET3, we achieve soft classification values.
From these classification values, we calculate the weight,
i.e., sensitivity@50% specificity and the Area Under Receive
Operating Curve (AUC), using for the fusion. Additionally, the
threshold is set to the value that maximizes the accuracy on
SET3. The weight values are useful in providing a better view
of how feature categories contribute to the diagnosis process.

The results showed in Table [VII] and ROC in Fig. [TT]
demonstrate that fusion can improve the overall classification
performance. We achieve the best Sens @ Spec >= 90 % of
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Fig. 11: Receiver Operating Curve (ROC) for four feature
categories (color, border, asymmetry, and GLCM-+edge) and
hierarchical SVM fusion method. (Best view in color)

Feature ~ Color Border Asymmetry GLCM+edge LBPs
category
Length 3 2 1 3 36
Sens 96.36  69.09 47.28 69.09 79.10
Spec 83.84  70.71 87.88 82.83 87.17
Acc 90.01  69.90 67.58 75.96 83.14

TABLE VII: Individual Classifiers Performance: The clas-
sification performance on the TEST SET for each feature
category, i.e., without classifier fusion. The length of each
feature category is also provided.

89.09% for the hierarchical SVM (color, border, asymmetry,
and GLCM+edge) and AUC weighted sum (color, border,
asymmetry, and LBPg) methods. The results in Table [VII]|
suggest that different feature categories may not contribute
equally in the diagnosis procedure, and proper combination
and fusion of them significantly boost the accuracy.

E. Comparison with existing methods

In addition, we compare our proposed melanoma detec-
tion system with some recent melanoma detection methods:
MED-NODE and [32]], on the publicly available UMCG
dataset from Department of Dermatology of University Medi-
cal Center Groningen (UMCG) [64]. UMCG is a challenging
dataset. The dataset consists of 70 melanoma and 100 benign
images. MED-NODE performs the training on 45 ran-
domly selected images (20 melanoma and 25 benign images,
respectively) and reports the results on the remaining 125
images. [32] performs the training on 125 randomly selected
images (50 melanoma and 75 benign images, respectively)
and reports the results on the remaining 45 images. For fair
comparison, we apply exactly the same data division when
comparing to the corresponding methods. It is worth noting
that both MED-NODE and [32] use color and texture
features to describe the image. MED-NODE reports the
classification results for each feature category (i.e., color and
texture) independently, while reports the classification
results when both color and texture features are combined
together. For fair comparison, we also use only our proposed
color and texture features in this experiment.

Our system first performs the segmentation (Section III.A),
the feature computation for segmented lesion (Section III.B),
and the feature selection (Section III.C) on the training dataset.
We then report the results with the proposed hierarchical
SVM classifier (Section IIL.D). Similar to and [32], we
report following metrics: Sensitivity (Sens), Specificity (Spec),
Positive Predictive Value (PPV), Negative Predictive Values
(NPV), and Total Accuracy (TAcc - which is the number of
correct classified samples over the number of testing samples)
to assess the performance of our system. Our results are
the average of 50 random splits of training/testing sets. The
experimental results presented in Table [IX] show that our
proposed method outperforms recent methods [31]] and [32]. It
is worth noting that our proposed method is designed to work
on mobile device, while it is not clear if MED-NODE
and can work on a resource-constrained mobile device.



Feature categories (Color, Border, Asymmetry, and GLCM+edge) | (Color, Border, Asymmetry, and LBPs)
Fusion methods 1 2a 2b 3 1 2a 2b 3
Sens 94.55 94.55 94.55 92.73 100.00 100.00 89.09 98.18
Spec 83.84 7475 83.84 85.51 84.85 84.85 86.87 82.83
Acc 89.19 84.65 89.19 89.12 9242 9242 87.98 90.51
Sens@ Spec >=90% 72.73 76.73 87.27 89.09 67.27  73.72  89.09 80.00

TABLE VIII: The performance of the proposed system with fusion of individual classifier results, using different proposed
fusion methods: 1, 2a, 2b, and 3 are Non-weighted sum, Sens@ 50%spec weighted sum, AUC weighted sum and hierarchical

SVM respectively.

Color Texture Color+Texture
[31] Ours | [31] Ouwurs | [32] Ours
Sens 74 81 62 66 82 84
Spec 72 73 85 85 71 72
PPV 64 66 74 75 67 70
NPV 81 85 77 79 85 87
TAcc 73 75 76 78 76 77

TABLE IX: The comparative results (in %) between MED-
NODE [31]] and [32] and our proposed system. MED-NODE
[31] reports results for color and texture features indepen-
dently. [32] reports the results when color and texture features
are combined together. The results of MED-NODE [31] and
[32] are cited from the corresponding papers. We also follow
the experimental setups of the corresponding papers.

Furthermore, we would like to remark that: 1) While there

are other mobile applications (Apps) for melanoma detection
using smartphones (e.g., SkinVision [65]), we found that
they can only take an input image from the phone’s camera
directly. In particular, these Apps do not allow a user to
load a pre-captured image for testing. Therefore, it is not
possible to compare their accuracy using a common dataset.
2) Most of these Apps have not been thoroughly tested and
their performance is unknown. For a few Apps which have
been tested, their systems were evaluated using their own
proprietary images [66], making fair comparison with our
work difficult. Therefore, we focus on comparison with recent
works [31]], [32] that have been evaluated using the common
dataset, i.e., UMCG [64].
Computational complexity analysis and comparison with
recent methods: Several complete systems have been recently
proposed for non-dermatoscopic image-based melanoma de-
tection: [31]], [32], and the proposed one in this work. Al-
though these systems have similar general stages, i.e., lesion
segmentation, feature extraction, and classification, these sys-
tems use very different techniques at different stages.

For the lesion segmentation, we use MST and Otsu methods,
while [31], [32] used K-means. Given a lesion segmentation,
our method uses hierarchical SVM to classify the lesion by
using 9 selected features (3 color features, 2 border features, 1
asymmetry feature, and 3 texture features). On the other hand,
[32] uses Neural Network (NN) for classification by using
10 color features. [31] combines two different classifiers. The
authors use the Cluster-based Adaptive Metric (CLAM) [67]]
to classify 12 color features. Additionally, the authors also use

Unbiased Color Image Analysis Learning Vector Quantization
(Unbiased CIA-LVQ) [68]] method to classify texture features.

Here we perform a complexity analysis and comparison at
different stages of the processing:

Lesion segmentation stage: Let us define the number of
pixels in the skin region as N. For the lesion segmentation,
we aim to segment the skin pixels into 2 clusters, i.e., lesion
or non-lesion. We use MST and Otsu, and both methods have
O(N) complexity. The works [31], [32]] use K-means (in color
space) to segment the skin region into two clusters. Hence the
complexity of [[31]], [[32]] for lesion segmentation step is O(NT)
in which I is the number of iterations of K-meand!| Because I
is usually very small in comparison to NN, hence at this stage,
[31], [32] and ours have comparable complexity.

Feature extraction stage: Let us define the number of
pixels in the lesion region as IN. For the feature extraction,
among our 9 features, Color Triangle (CT) requires the most
computation. Specifically, its complexity is max((PA? x
SP),(SP x N)), in which PA and SP are the number of
parts and subparts of the CT feature. In our experiments, by
using PA =8 and SP = 16 (Table which are much less
than the number of pixels in the lesion, hence the complexity
of the CT feature is (SP x N).

In [32], the most complex feature is the Color Variation
which is computed by Fuzzy C-means (FCM) whose com-
plexity is O(NI), in which I is the number of iterations of
FCME

In [31]], for color features, it uses means and standard devia-
tions of color channels, which have the complexity of O(N).
For texture feature extraction, [31]] processes as follows: (i)
the salient point detector in [69] is used to detect the 50 most
interesting positions (pixels); (ii) at these positions, 15 x 15
patches are drawn and are used as texture features. Regarding
the salient point detection, it is a multi-stage processing, i.e.,
firstly, Gaussian filters are applied to input at multi-scales
to produce multi-scale feature maps. The feature maps are
then combined together. Finally, the combined feature map is
classified by a neural network to produce salient locations.
By using a multi-stage processing which consists of several

IThe general complexity of K-means is O(NICd), in which N is the
number of data points (i.e., pixels); I is the number of iterations of K-means;
C' is the number of clusters; d is dimension of each data point. Here C' and
d are very small in comparison to N, i.e., C = 2 and d = 3, respectively.

2The general complexity of FCM is O(NIC?d), in which N is the number
of data points (i.e., pixels); I is the number of iterations of FCM; C' is the
number of clusters; d is dimension of each data point. Here C' = 2 and d = 3,
respectively.



complex components, i.e., multi-scale filtering, classification-
based neural network, the computational cost of this detector
is high, so is the whole process. In summary, for the feature
extraction stage, the complexities of our method and [32] are
comparable and less than the complexity of [31].

Classification stage: For the classification, our system uses
hierarchical SVM comprised of two stages of classifiers. In the
first stage, we use 4 RBF-kernel SVM (one for each feature
category). In the second (last) stage, another RBF-kernel SVM
is used to fuse the soft decisions of the first stage’s classifiers.
The complexity of a RBF-kernel SVM is O(sd), where s is
the number of support vectors, which is around 50 in our
experiments, and d is the number of features. In particular,
in the first stage, we use d = {3,2,1,3} for color, border,
asymmetry, and texture features respectively, and d = 4 for
the second stage’s classifier.

The work [32] uses 2 layer feedforward neural network with
the sigmoid activation. Hence, its complexity is O(dH), in
which d = 10 is the number of features and H = 15 is
number of nodes in a hidden layer.

In [31]], the complexities of CLAM and Unbiased CIA-LVQ
classifiers are O(d?), where d is the numbers of features. The
input of CLAM is only 12 color features, so it is expected to
have a fast inference. However, for Unbiased CIA-LVQ clas-
sifier, it first performs the classification for each of 50 patches
in which the patch size (feature size) is d = 15 x 15 pixels.
It then fuses these 50 outputs to produce final classification
result. Hence, the classification stage of [31]] is dominated by
Unbiased CIA-LVQ classifier which is higher complexity than
the classifiers of [32] and ours.

Overall, according to the complexity analysis of the main
stages, our method’s complexity is comparable to [32] and
is smaller than that of [31f]. Furthemore, it is worth noting
that the processing time of [31], [32] on resource-constrained
smartphones has not been examined (the source codes of [31]],
[32] are not available). On the other hand, for our method,
the running time on a smartphone is presented in Section
Specifically, on the device “Samsung Galaxy S4 Zoom
smartphone, with Dual-core CPU running at 1.5GHz Cortex-
A9, GPU: Mali-400, RAM: 1.5GB, and storage memory of
8GB”, our method takes less than 5 seconds to process an
image.

F. Mobile Implementation and Human-Computer Interface
(HCI) Design

We implement our proposed image analysis engine and
the entire system on a consumer electronic mobile device:
Samsung Galaxy S4 Zoom smartphone, with Dual-core CPU
running at 1.5GHz Cortex-A9, GPU: Mali-400, RAM: 1.5GB
and storage memory of 8GB. The features of the backside
camera (the one used during the tests) are: 16 MP, image size:
4608 x 3456 pixels, with autofocus and 10x optical zoom. We
measured the average processing time spent for each image
and it is less than 5 seconds. It is worth pointing out that, the
mobile phone implementation of the algorithm has not been
explicitly parallelized using the available GPU.

HCI Design Study. We conducted a study with an aim to
understand the best HCI design principles for this applications.
The subjects selected for the study were recruited through a

local community center (i.e., older participants with ©=63.0
and 0=4.76) and from a local university (i.e., young partici-
pants with p=24.1 and 0=3.22). The whole evaluation study
lasts for 1.5 hours.

When entered the specific test, each participant was required
to take a photo of his/her arm skin and then to click the
“Start Diagnosis” button. After that, a progress bar was shown
to indicate the processing time. The participant was told
that he/she could stop the diagnosis process by clicking the
“Give up to know the result” button at any point during the
processing time. After the session, the researcher debriefed to
the participant that the participant should consult professional
doctors if he/she is interested in understanding his/her health
condition towards the presented disease.

After that, we conducted semi-structured interviews with
participants exposed to our prototype. Since our application
(a self-diagnosis application) can be considered as a subset
of personal informatics systems, we constructed our interview
questions based on the structure of stage-based model pro-
posed in [58]. We aimed to identify the design challenges
across the entire adoption process. Some important aspects
regarding acceptance, collection, integration, reflection, and
action, which have emerged from the study are:

o Acceptance. One HCI issue that has emerged is the
“perceived harmfulness” of the system. Despite our ap-
plication being implemented on a smartphone, older
participants raised questions and concerns about the po-
tential harmfulness of the application. Older adults may
internally associate our application with the hospital used
diagnostic machines, and they questioned about whether
some harmful detection methods (e.g., X-Ray, radiation)
were used. Even for the older adults who have been using
smartphones for a long period they have similar concerns.

e Reflection. Some participants expressed concerns regard-
ing the presentation of the diagnosis results, as P23
mentioned: “I want to know the result, but I don’t
want the application directly tells me the conclusion.
Instead, could it show me the percentage of risk ... or
how many people have been diagnosed the disease by
this application and the possibility of being proved fine
finally?” P5 mentioned: “It is very scary if the machine
tells me I have skin cancer ...”.

e Action. For an effective self-diagnosis application, it is
important to improve the trustfulness of the results and
encourage users to make certain action (e.g., visit a
hospital for a formal check). Some participants expressed
the expectation towards the format of the diagnosis result,
as P25 mentioned: “T hope the application can provide
me more information, such as how the machine gets
the diagnosis result. Which features, or what cause the
disease happened...otherwise, I couldn’t make decisions
about the next step.”

These HCI issues need to be addressed for successful adoption
of the proposed system.

V. DISCUSSION

The prototype presented in this paper has several limitations.
First, it is necessary to further validate the system with a



large database. It is worth pointing out that currently there are
no publicly available clinical large datasets of camera phone
images. It is very challenging and time consuming to generate
large datasets (especially for the MM cases), as these images
need to be analyzed histopathologically to produce the gold
standard.

Second, on some occasions, the images acquired by the
mobile devices can be heavily affected by distortions, in
particular, motion blur and illumination variations [70]], [[71].
These distortions can change the skin lesion appearance and
smooth the border of the skin mole, confusing the segmen-
tation and classification algorithms that our current system
cannot compensate them. It is desirable to include a module to
detect such distorted images and alert users in such situations.

Third, the feature categories exploited by our system are ex-
tracted merely from the skin images and attempt to incorporate
the main dermatologic signs. Our system can be enhanced by
incorporating patient-derived clinical data (e.g., age, gender,
size and location of the lesion). We believe that this side
information will improve the sensitivity and specificity of the
proposed system.

VI. CONCLUSION

We propose an accessible mobile health-care solution for
melanoma detection, using mobile image analysis. The main
characteristics of the proposed system are: an efficient hi-
erarchical segmentation scheme suitable for the resource-
constrained platform, a new set of features which efficiently
capture the color variation and border irregularity from the
smartphone-captured image, and a new mechanism for select-
ing a compact set of the most discriminative features. The
experimental results based on 184 camera images demonstrate
the efficiency of the prototype in accurate segmentation and
classification of the skin lesion in camera images. We foresee
several possible usage scenarios for the current solution: it
could be employed by the general public for preliminary self-
screening or it can assist the general physicians during the
diagnosis process.

In addition to the technical development, we paid attention
also to understand the usability and acceptance challenges.
For this purpose, we have investigated the HCI design issues
through an exploratory case study and semi-structured inter-
views. Our study discovered several important HCI issues that
should be addressed in future work.
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