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Abstract—In human interactions, hands are a powerful way
of expressing information that, in some cases, can be used as
a valid substitute for voice, as it happens in Sign Language.
Hand gesture recognition has always been an interesting topic
in the areas of computer vision and multimedia. These gestures
can be represented as sets of feature vectors that change over
time. Recurrent Neural Networks (RNNs) are suited to analyse
this type of sets thanks to their ability to model the long term
contextual information of temporal sequences. In this paper, a
RNN is trained by using as features the angles formed by the
finger bones of human hands. The selected features, acquired
by a Leap Motion Controller (LMC) sensor, have been chosen
because the majority of human gestures produce joint movements
that generate truly characteristic corners. A challenging subset
composed by a large number of gestures defined by the American
Sign Language (ASL) is used to test the proposed solution and
the effectiveness of the selected angles. Moreover, the proposed
method has been compared to other state of the art works on
the SHREC dataset, thus demonstrating its superiority in hand
gesture recognition accuracy.

Index Terms—Hand Gesture Recognition, Deep Learning,
Human Interactions, Leap Motion

I. INTRODUCTION

Hands can express a lot of information thanks to the many
gestures that their fingers can compose. There are different
types of gestures depending on the kind of information that
they intend to transmit. Based on the researches of Kendon [1]
and Quek et al. [2], a taxonomy of possible gesture categories
is proposed as follows:
• Deictic Gestures are the gestures that involve pointing

to establish the identity or spatial location of an object
within the context of the application domain.

• Manipulative Gestures are usually performed by free-
hand movements to mimic manipulations of physical
objects as in virtual reality interfaces.

• Semaphoric Gestures are particular gestures that define
a set of symbols to communicate with machines.

• Gesticulation is one of the most natural forms of ges-
turing and it is commonly used in combination with
conversational speech interfaces. These gestures are often
unpredictable and difficult to analyse.

• Language Gestures are the gestures used for sign lan-
guages. They are performed by using a series of gestures
that combine to form grammatical structures for conver-
sational style interfaces. In case of finger spelling, these
gesture can be considered as semaphoric.

Hand gesture recognition provides a means to decode the
information expressed by the reported categories which are
always more used to interact with innovative applications,
such as interactive games [3], [4], serious games [5], [6],
sign language recognition [7]–[10], emotional expression iden-
tification [11], [12], remote control in robotics [13], [14]
or alternative computer interfaces [15]–[18]. In general, the
approaches used in hand gesture recognition can be divided
into two main classes: 3D model-based [19] and appearance-
based [20]. The first uses key elements of the body parts to
acquire relevant 3D information, while the second one uses
images or video sequences to acquire key features. In the past,
several RGB cameras were necessary to obtain a 3D model
of body parts, including hands. Recent works, supported by
advanced devices, e.g., Microsoft Kinect [21], LMC [22], and
novel modelling algorithms based on depth map concept [23]
have enabled the use of 3D models within everyday application
domains.
In this paper, a language hand gesture recognition solution
using 3D model-based approaches is presented. Specifically,
the proposed method uses skeletal-based modelling, where a
virtual representation of skeleton hands (or other parts of the
body) is mapped to specific segments. This technique uses
joint angle parameters along with segment lengths, instead
of intensive processing of all 3D model parameters. Then, it
measures the variations over time of the skeleton joints whose
spatial coordinates are acquired by a LMC. In particular, the
angles formed by a specific subset of joints that involve distal,
intermediate, and proximal phalanges for the index, middle,
ring, and pinky, as well as the metacarpal for the thumb,
can be considered highly discriminating to recognize many
kind of hand gesture as confirmed by our tests. Moreover,
these features have been selected as easy and quick to be
extracted. Spatial information about the fingertips are also
considered by the method in order to manage not articulated
movements of the hands. In order to obtain a more accurate
classifier, the information of the intra-finger angles and the
spatial information of the palm of the hand are also considered.
During the design of the proposed method, two challenges
were fixed:

• the search of a robust solution able to recognize also
gestures that are similar to each other;

• the achievement of the highest accuracy level compared
with works of the current literature.
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These goals have been obtained by using a stack of RNNs [24]
with Long Short Term Memory (LSTM) [25] architecture, a
particular type of Deep Neural Network (DNN) where con-
nections between its units form a directed cycle. The RNNs,
unlike the common DNNs, can model long term contextual
information of temporal sequences thus obtaining excellent
results in the sound analysis and speak recognition, as reported
in [26]. The LSTM is an architecture where a RNN uses
special units instead of common activation function. LSTM
units help to propagate and preserve the error through time
and layers. This aspect of the LSTMs allows the net to learn
continuously over many time steps, thereby opening a channel
to link causes and effects remotely. An architecture formed by
two or more stacked LSTM RNNs is defined as Deep LSTM
(DLSTM). Such an architecture allows to learn at different
time scales over the input sequences [27]. In the experiment
section, we focused on a challenging subset of gestures defined
by the ASL [28]. This ASL is chosen because it is composed of
a considerable number of types of gesture with several degrees
of complexity. The method proposed in this paper provides the
following contributions:
• the selection of a simple set of features based on the joint

angles that are highly discriminative for the recognition
of any kind of hand gesture, especially for language
gestures;

• the capability of analyzing and recognizing large number
of gestures in the field of language gesture classification.
The study of static and dynamic gestures, belonging to
the ASL, provides the prerequisites for achieving a wider
recognition system for sign language;

• the DLSTM in combination with the skeleton extracted
by the LMC has never been used before to recognize
hand gestures. In addition, the LMC has been used in the
design and collecting of a dataset, composed of a high
number of gestures, that guarantees a high precision in the
estimation of the positions of the joints of the hand [29].

The rest of the paper is structured as follows. In Section II,
the state-of-the-art of the gesture recognition is provided.
The proposed method is described in Section III. Extensive
experimental results are presented and discussed in Section IV.
Finally, conclusions are drawn in Section V.

II. RELATED WORK

In the current literature, hand and body gesture recognition
are based on a conventional scheme: the features are acquired
from one or more sensors (such as Kinect [30]–[32] and
LMC [8], [33]) and machine learning techniques (e.g., Support
Vector Machine (SVM) [34], [35], Hidden Markov Models
[36], [37] or Convolutional Neural Networks (CNNs) [26],
[38]) are used to perform a classification phase. A reference
work is reported in [34], where SVM is used with Histogram
of Oriented Gradients (HOG) as feature vectors. Wang et al.
[35] and Suryanarayan et al. [39] used a SVM with volumetric
shape descriptors. Using same classifier, Marin et al. [9]
applied a combination of features extracted by Kinect and
LMC sensors. Other interesting solutions are based on Hidden
Markov Models (HMMs): Zun et al. [40] propose a robust

hand tracking to recognize hand signed digit gestures.
Different well-known techniques are extended and customized
to reach increasingly better results. An example is shown in
[7], where a semi-Markov conditional model to perform finger-
spelling gesture recognition on video sequences is reported.
The Hidden Conditional Random Field (HCRF) method pro-
posed in Wang et al. [36] is instead used to recognize different
human gestures. Lu et al. [8] use an extension of the HCRF
to recognize dynamic hand gestures driven by depth data. Re-
garding the hand pose estimation, the solution proposed in Li
et al. [37] shows excellent results by applying a Randomized
Decision Tree (RDT).
Another common solution is based on the use of Dynamic
Time Warping (DTW). Although DTW does not belong to the
class of machine learning techniques, it is often used in time
series classification. In Vikram et al. [33], a DTW to support a
handwriting recognition process based on the trajectory of the
fingers extracted by a LMC is presented. In [41], the DTW
with a novel error metric to match patterns, combined with a
statistical classifier, is used to perform a tool to aid the study of
basic music conducting gestures. In Sohn et al. [10], a pattern
matching method by the combination of a DTW and a simple
K-Nearest Neighbor (K-NN) classifier is used. Recently, the
great performance of the deep neural networks has motivated
the use of Convolutional Neural Networks (CNNs) in dif-
ferent application domains, including the gesture recognition
as proposed in [38]. In addition, analysing the behaviour of
these nets in other fields [24]–[26], we have understood that
the RNNs can suitably support the classification of temporal
data sequences. Based on these observations, the proposed
method was designed starting from two works that achieve
outstanding results in the current literature: the first, proposed
by Du et al. [42], where an hierarchical RNN for skeleton
action recognition is used, and the second, proposed by Graves
et al. [26], using a Deep Bidirectional LSTM for the speech
recognition.

III. METHOD

Let us consider, each hand gesture acquired by a user is
represented by a set X = {x0, x1, ..., xT−1} of feature vectors,
where T indicates the maximum number of time instants,
inside a time interval Θ, in which the features are extracted
by a LMC. LMC is chosen as reference device for the acqui-
sitions because it is optimized for the hands and the obtained
skeleton model provides very accurate dynamic information
about finger bones [43]. A DLSTM is applied to model these
sequences of data, where a time series of feature vectors (one
vector for each time instant) is converted into a series of output
probability vectors Y = {y0, y1, ..., yT−1}. Each yt ∈ Y
indicates the class probability of the gesture carried out at
time t, with 0 ≤ t ≤ T − 1. Finally, the classification of the
gestures is performed by a softmax layer [44] using K = |C|
classes, where C is the set of the considered gesture classes
of the ASL. The logical architecture of the proposed method
is shown in Fig. 1.
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Fig. 1: Logical architecture of the proposed method. The training phase is performed by a DLSTM with two stacked LSTM
RNNs. Given a sequence of input vectors, the DLSTM returns an output vector for each time instant t, with 0 ≤ t ≤ T − 1,
that contains the probabilities for each class. K and T are the different classes of the hand gestures and the maximum number
of time instants in which a gesture is acquired, respectively.

A. Feature Extraction

Each gesture can be considered as the composition of
different poses, where each pose is characterized by particular
angles. Such a concept has already been applied in several
works to recognize human actions, using the angles formed
by the body joints [45]–[47]. So, each feature vector xt ∈ X ,
with 0 ≤ t ≤ T − 1, is mainly composed by (Fig. 2):
• the internal angles ω1, ω2, ω3, and ω4 of the joints

between distal phalanges and intermediate phalanges. The
internal angle ω0 considered for the thumb is computed
between distal phalanx and proximal phalanx;

• the internal angles β1, β2, β3, and β4 of the joints
between intermediate phalanges and proximal phalanges.
The internal angle β0 considered for the thumb is com-
puted between proximal phalanx and metacarpal;

Each finger can be seen as a set of segments, where CD is
the distal phalanx, BC is the intermediate phalanx (with the
exception of the thumb, where BC is the proximal phalanx),
and AB is the proximal phalanx (with the exception of the
thumb, where AB is the metacarpal). The angles are calculated
as follows:

ωj = arccos(
BC · CD
|BC||CD|

) (1)

βj = arccos(
AB ·BC
|AB||BC|

) (2)

with j = 0, .., 4. Since the information provided by the
angles is not sufficient to manage all types of existing ges-
tures, especially dynamic gestures that perform movements in
3D space, additional information is used by considering the
following features:
• 3D displacements u5, v5, z5 of the position of the central

point Ph of the palm of the hand. These features are
considered to manage hand translation on the 3D space;

• 3D displacements ul, vl, zl of the fingertip positions, with
l = 0, .., 4. These features are considered to manage hand
rotation in 3D space;

Fig. 2: The features extracted from the hand: joint angles and
fingertip positions. The yellow points indicate the fingertip po-
sitions on which the 3D displacements are computed. The red
points indicate the joints on which the angles are computed.

• the intra finger angles γ1, γ2 and γ3, i.e., angles between
two consecutive fingers. The fingers considered are the
pointer finger, the middle finger, the ring finger and the
pink finger. These features are used to handle special
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Fig. 3: Example of static gestures differentiated by the intra
finger angles γ1, γ2 and γ3.

cases of static gestures that differ from each other only
in intra finger angles, as shown in Fig. 3.

All the listed features are independent by the reference.
Thus, the input vector assigned to the DLSTM at time t is:

xt = {ω0, ..., ω4, β0, ..., β4, u0, v0, z0, ..., u5, v5, z5, γ1, γ2, γ3}
(3)

B. Sampling Process

As each person can perform the same gesture with different
speeds, and as we want to analyze the sequences having all the
same number T of samples, we have implemented a sampling
process able to select the most significant feature values
within the entire time interval Θ of the gesture sequence. This
means that data are acquired only in the most significant T
time instants, where an instant of time t ∈ Θ is defined as
significant when the joint angles and the hand central point
position Ph vary substantially between t and t+1 (as explained
below). Let fωi

(t), fβi
(t) and fγj (t), with 0 ≤ i ≤ 4 and

1 ≤ j ≤ 3, be the functions that represent the value of ωi, βi
and γj angles at time t, and let fφ(t)

be the function that
represents the value of φ (i.e., the displacement of the centre
of the hand Ph with respect to the previous position at time
t − 1) at time t. For each function fg(t), with g ∈ G and
G = {ωi, βi, γj , φ}, the Savitzky-Golay filter [48] is applied.
The Savitzky-Golay filter is a digital filter able to smooth
a set of digital data in order to increase the signal-to-noise
ratio without greatly distorting the signal. Now, the significant
variations on the considered features are identified through the
relative maximum and minimum of each fg(t). All the time
instants t associated with at least one relative minimum or
relative maximum of a feature g are used to create a new
set Θ∗, which represents a set of possible important time
instants to sample. In Fig. 4, an example of this sampling
phase is shown, where the behaviour of the function fω1(t)
(the angle of the distal phalange of the index finger) for an
instance of the gesture ”milk” is considered. The signal in
Fig. 4 is cleaned of any noise, caused by the acquisition device
or tremors of the hand, by applying the Savitzky-Golay filter.
Then, the maximum and minimum relative points are identified
and sampled. In the example, only the procedure for the feature
ω1 is shown, but this step is performed for each feature g ∈ G.
Now, depending on the cardinality of the set of the sampled
time instants, the following cases must be considered:
• if |Θ∗| < T , then the remaining (|Θ∗| −T ) time instants

to be sampled are randomly selected in Θ;

• if |Θ∗| > T , then, only some significant time instants
are sampled for each g feature. Let Θg be the set of the
samples in Θ∗ obtained from the relative maximum and
minimum of the feature g (Θg ⊆ Θ∗), we want to know
the number of time instants Tg that can be sampled for
each g such that

∑
g∈G Tg = T . Each Tg is obtained

thought the following proportion |Θg| : |Θ∗| = Tg : T .
Then, from each Θg set, we will randomly take Tg
samples.

Fig. 4: Sampling example for the feature ω1 on the ”milk”
gesture.

After the sampling step, each acquisition instance is com-
posed by a sequence {x0, .., xT−1} of feature vectors. The
proposed sampling procedure is dynamically based on the
value of the features.

C. Deep Last Short Term Memory network

A fundamental component in the proposed work is the
network used in the classification of the hand gesture. This
network is based on multiple LSTMs, which unlike other types
of NN, is able to efficiently analyze time sequences of data.
Several factors, such as the error blowing up problem [49] and
the vanishing gradient [50], do not allow the use of common
activation functions (e.g., tanh or sigmoid) to suitably train a
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Fig. 5: Example of a LSTM unit. The internal state is main-
tained with a recurrent connection. The input gate it (orange)
and the output gate ot (red) scale the input and output of the
cell ct, while the forget gate ft (azure) scales the internal state.

network composed by multiple RNNs. This problem can be
tackled with the LSTM units (Fig. 5).

The LSTM can be seen as memory blocks that are one
or more self-connected memory cells and three multiplicative
units: the input, output and forget gates. These gates provide
continuous analogues of write, read, and reset operations for
the cells. Although LSTM allows to manage the problem of
the vanishing gradient, the input time series often have a
temporal hierarchy, with information that is spread out over
multiple time scales which can not be adequately recognized
by simple recurrent networks such as LSTMs. For this reason,
Deep RNNs or LSTMs were introduced. In fact, by con-
structing recurring networks formed over multiple layers, a
higher abstraction on the input data is reached [27]. Increased
input abstraction does not always bring benefits because the
effectiveness of these networks depends on the task and the
analysed input. In several works, such as [26], [51], [52], it
was observed empirically that Deep LSTMs work better than
shallower ones on speech recognition. The audio signals, for
example analysed in speech-to-text task, can be elaborated on
more abstractions ranging from the entire pronounced phrase
to the syllables of each word, and each abstraction can be
captured in different time scales within the period considered.
Like in the case of audio sequences analysed in the speech
recognition problem, gestures of the hand can be examined
over multiple time scales. In fact, every gesture can be seen as
the composition of so many small movements and sub-gesture
of the hand, and its suitable for this type of network. Based
on these considerations, the LSTM stack-based solution have
been experimented and then compared to the performance of a
single-level network. The first step is to define the activation
functions of memory cell of the LSTM0 (the first layer of
the proposed neural network), as well as the input, output,
and forget gates computed by using iteratively the following
equations (from t = 0 to T − 1):

i0,t = σ(Wxixt +Whih0,t−1 +Wcic0,t−1 + bi) (4)
f0,t = σ(Wxfxt +Whfh0,t−1 +Wcfc0,t−1 + bf ) (5)
c0,t = ft � ct−1 + i0,t � tanh(Wxcxt +Whch0,t−1 + bc) (6)
o0,t = σ(Wxoxt +Whoh0,t−1 +Wcoc0,t−1 + bo) (7)
h0,t = o0,t � tanh(c0,t) (8)

where i, f , o, and c denote the input gate, forget gate, output
gate and cell activation vectors, respectively. These vectors
have the same length of the hidden vector h. Instead, Wxi,

Fig. 6: Example of connections between two stacked LSTM,
where the first level is placed at the bottom of the image and
is represented by the LSTM0. For each level, the units that
handle the inputs xt−1 and xt are shown.

Wxf , Wxo, and Wxc are the weights of the input gate, forget
gate, output gate and cell to the input. In addition, Wic, Wfc,
and Woc are the diagonal weights for peep-hole connections.
Finally, the terms bi, bf , bc, and bo indicates the input, forget,
cell and output bias vectors, respectively. We have that σ is the
logistic sigmoid function and � is the element-wise product
of the vectors. Once the activation functions for the first level
have been defined, the next step is to define the upper level
activation functions.

DLSTMs are architectures obtained by stacking multiple
LSTM layers where the output sequence hl of one layer l
forms the input sequence for the next layer l+ 1 (Fig. 6). The
memory cell of an LSTMl at time t, in addition to the classic
xt and hl,t−1 vectors, takes in input the hl−1,t, i.e., the hidden
state at time t of the below LSTMl−1. So, the activations of
the memory cells of LSTMl of the network higher levels (i.e.,
l > 0) are given by the following equations:

il,t = σ(Wxixt +Whlihl,t−1 +Whl−1ihl−1,t +Wcicl,t−1 + bi) (9)
fl,t = σ(Wxfxt +Whlfhl,t−1 +Whl−1fhl−1,t +Wcfcl,t−1 + bf ) (10)
cl,t = ft � ct−1 + il,t � tanh(Wxcxt +Whlchl,t−1 +Whl−1chl−1,t + bc) (11)
ol,t = σ(Wxoxt +Whlohl,t−1 +Whl−1ohl−1,t +Wcocl,t−1 + bo) (12)
hl,t = ol,t � tanh(cl,t) (13)

The output of the DLSTM network, at time t, with N -layers,
is given by:

yt = WhN−1,thN−1,t + by (14)

where by is a bias vector, hN−1,t is the hidden vector of the
last layer and WhN−1,t is the weight from the hidden layer
hN−1,t to output layer. The output yt defines a probability
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distribution over the K possible gesture classes, where ykt (the
kth element of yt) is the estimated probability of a specific
class Ck at time t for the acquired gesture X . Finally, all
results yt are collected and normalized into the softmax layer,
through the following equations:

ŷ =

T−1∑
t=0

yt (15)

ỹk = p(Ck|X) =
eŷ

k∑K−1
q=0 eŷq

(16)

for each k, with 1 ≤ k ≤ K. The classification of gesture X
will be given by the highest probability contained in ỹ.

D. Network Training

Given a dataset D composed of M train gesture sequences,
the goal is to minimize the following maximun-likelihood loss
function:

L(D) = −
M−1∑
m=0

ln

K−1∑
k=0

δ(k, τ)p(Ck|Dm) (17)

where Dm, 0 ≤ m ≤M , is an input sequence of the training
dataset D, τ is the ground-truth label of Dm and δ(•, •)
is the Kronecker delta or delta function. This formulation is
referred to the cross-entropy error proposed in [53]. The Back-
Propagation Through Time (BPTT) algorithm [50] is used
to obtain the objective function derived with respect to all
the weights and to compute the minimization based on the
stochastic gradient descent.

IV. EXPERIMENTAL RESULTS

This section describes the experiments performed to evalu-
ate the behavior of the proposed approach. All the experiments
were performed by using a LMC on an Intel i5 3.2GHz,
16GB RAM, with a GeForce GTX 1050ti graphics card. The
DLSTM network and the BPTT algorithm, used to compute
the minimization based on the stochastic gradient descent,
are implemented by using the Keras1 framework. The main
purposes of the experiments were the assessment of the joint
angles as salient features for the recognition of the hand
gestures, the overall robustness of the proposed method and
its higher accuracy compared with the current literature. The
experiments were performed by using a challenging subset of
gestures defined by the ASL and described in Section IV-A. A
discussion of the obtained results is presented in Section IV-D,
and a comparison of the proposed method with key works of
the current state-of-the-art is reported in Section IV-E.

A. Dataset

Currently, there is no public ASL dataset with a large num-
ber of classes and with information on the hand joint. Based
on these reasons, we acquired the data of 30 gestures to create
a new dataset. This dataset consists of 12 dynamic gestures
and 18 static gestures taken by the ASL. These additional

1https://keras.io/

(a)

(b)

Fig. 7: Accuracy results on the proposed dataset by varying
the number of stacked LSTMs in the network architecture.
(a) Accuracy results using 800 epochs for each considered
architecture and (b) accuracy results using 800 epochs for 1-
LSTM, 2-LSTM, 3-LSTM and 4-LSTM; for the 5-LSTM and
6-LSTM are used 1600 and 1800 epochs, respectively. The
x-axis indicates the number of the stacked LSTMs, while the
y-axis indicates the accuracy values.

gestures are chosen to represent much of the variations in
joint angles and finger positions that occur when the hand
perform a gesture. The static gestures are: 1, 2-V, 3, 4, 5, 6-
W, 7, 8, 9, A, B, C, D, H, I, L, X and Y. indeed, the dynamic
gesture are: bathroom, blue, finish, green, hungry, milk, past,
pig, store and where. The dataset is composed of 1200 hand
gesture sequences, coming from 20 different people. Each
gesture was collected by 15 males and 5 females, aged 20
to 28 years. Each person performed the K hand gestures
twice, once for each hand. K = 30 different gestures are
considered. The sequences from 14 people are used to create
the train set while sequences of the remaining 7 people were
used to form the test set. So, the 7 people used in the tests
are never taken into consideration during the training phase.
As previously described in Section III-A, each sequence is
acquired according to a sampling process, with T = 200 and
Θ = 5s.

B. Selection of the Optimal Number of Stacked LSTM

Several tests have been conducted to chose the optimal
number of stacked LSTMs to use in the proposed architecture.
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Fig. 8: The confusion matrix related to the proposed gesture dataset. The overall accuracy is 96.4102%.

ωi βi γj uw, vw, zw ωi, βi ωi, γj , βi
accurancy% 62.70% 68.1204 % 46.67% 56.92% 79.74% 85.13%

TABLE I: Accurancy of the proposed solution obtained on datasets of 30 by varying the features, where 0 ≤ i ≤ 4, 0 ≤ j ≤ 3
and 0 ≤ w ≤ 5.

Accurancy Precision Recall F1-Score
96.4102% 96.6434% 96.4102% 96.3717%

TABLE II: Performance of the proposed solution on dataset
of 30 gestures using Precision, Recall, and F1-Score metrics.

The hidden units per LSTM are 200, i.e., the hidden units
are equal to the number of input time instances considered
for each gesture. In Fig. 7a, it is shown as an architecture
composed by 4 levels gives the best accuracy results using

800 epochs. In fact, although several levels of LSTM allow
to analyze complex time sequences by dividing them into
multiple time scales, the 5-LSTM and the 6-LSTM require
more epochs to be trained. Increasing the number of epochs
needed to train the 5-LSTM and 6-LSTM architectures (i.e.,
1600 epochs for the 5-LSTM and 1800 for the 6-LSTM),
the Fig. 7b shows how their results improves. We can notice
how greater abstraction on input does not provide substantial
benefits from a certain number of levels, and the accuracy
gained by the network begins to converge to a precise value. In
conclusion, 4 levels are appropriated for the proposed network
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and represent a good compromise between training times and
system accuracy. The choice of the learnig rate influences the
speed of the convergence of the cost function. If the learning
rate is too small, the convergence is obtained slowly, while
if the learning rate is too large, the cost function may not
decrease in every iteration and therefore it could not converge.
In the proposed method, the learning rate is set to 0.0001
through large empirical tests.

(a) 6 and W gestures. (b) 2 and V gestures.

Fig. 9: Pairs of gestures joined into a common class.

C. Feature Effectiveness Analysis

In order to verify the effectiveness of the features in
classifying the set of gestures taken by the ASL dataset, some
tests have been carried out. The tests carry out the training
of the network and the subsequent classification (using two
different sets to train and test the network, respectively) of
the ASL gestures, where the number of stacked LSTM is 4
(as explained in Section IV-B), using only subsets of xt as
features. The results in Table I shown as the combination of
ωi and βi features is able to discern alone an high number
of gestures of the ASL vocabulary and it reaches better
classification results with respect to separate use of these two
features. Although the single γj feature does not offer good
performance, it greatly improves classification when used with
ωi and βi. Instead, the combination of features that relate
to the movements of the hand (uw, vw, zw) are unable by
themselves to classify the gesture of the hand but, if combined
with the features of the angles, allow the method to achieve
high performance (as discussed to follow).

D. Hand gesture recognition on the ASL dataset

To evaluate the method, we have used very popular metrics.
First of all, we have used the accuracy as main metric. In
addition, we have also introduced precision, recall and f1-score
metrics can be considered a de facto standard to measure the
quality of this class of algorithms [54]. the obtained results are
presented in Table II. To better analyse the proposed approach
and according to the tests performed to recognize the different
hand gestures, the confusion matrix is computed (Fig. 8).
Each column of the matrix represents the instances in a
predicted gesture, instead each row represents the instances in
a current gesture. The main diagonal of the matrix represents
the instances correctly classified by the DLSTM. The elements
below the diagonal represent the false positives, i.e. the ges-
tures that are incorrectly classified within a class of interest.
The elements above the diagonal are the false negatives, i.e.,

the gestures incorrectly classified as not belonging to a class
of interest. The distinction of some gestures is very hard,
since they are very similar to other gestures in the dataset.
Despite this, the proposed method does not suffer of ambiguity
issues. The only exceptions are given by the gestures 6 with W
(Fig. 9a) and 2 with V (Fig. 9b). The variations in their joint
angles are minimal and difficult to see even to the human eye:
moreover, the LMC device fails to capture these variations.
For this reason, these gestures have been gropued in the same
class. Tests performed without grouping these classes achieved
91.5178% of accuracy. In fact, the decrease in accuracy is
caused precisely by some incorrect classifications regarding
the 2,6,v and W classes.

(a)

(b)

Fig. 10: Train/Val Curves: The progress of training and testing
over iteration based on (a) the accurancy and (b) the loss. After
100000 iterations, the test accuracy curve converges. The x-
axis represents the progress of training/validation stage and
the y-axis represents the number of training iterations.

In Fig. 10, the Train/Test plots are shown. The first plot
(Fig. 10a) shows the Train/Test accuracy over the iterations,
instead the second plot (Fig. 10b) contains the loss curves that
represent the sum of the errors provided for each training or
test instance. In this work, the loss curves are calculated as
maximum-likelihood loss function, described in Section III-D.
Instead, the curves of accuracy represent the training or vali-
dation instances correctly recognized. After a certain number
of iterations (∼ 125000), the test accuracy curve converges.
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Features Accuracy 14 Gestures Accuracy 28 Gestures
Proposed Method 97.62% 91.43%
Skeleton-based Dynamic hand gesture recognition [55] 88.24% 81.90%
Key frames with convolutional neural network [56] 82.90% 71.90%
Joint Angles Similarities and HOG2 for Action Recognition [46] 83.85% 76.53%
HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences [57] 78.53% 74.03%
3-D human action recognition by shape analysis of motion trajectories on riemannian manifold [58] 79.61% 62.00%

TABLE III: Comparison of the accuracy measure among different state-of-the-art approaches on the SHREC dataset.

E. Comparisons

We compared the proposed method with key works of the
current state-of-the-art presented in [46], [55]–[58] on the
SHREC dataset [56]. The SHREC dataset has been selected
as: (a) it provides different types of data to allow comparisons
between methods based on different acquisition sensors; (b) it
allows the classification of hand gestures with different degrees
of complexity; (c) it provides data that allow to extract all
the features necessary for the proposed method. The SHREC
dataset is also an excellent example of a semaphoric gesture
to show the effectiveness of the proposed method on other
categories of gesture. The SHREC dataset contains 14 dynamic
gestures performed by 28 participants (all participants are right
handed) and captured by the Intel RealSense short range depth
camera. Each gesture is performed between 1 and 10 times by
each participant in two way: using one finger and the whole
hand. Therefore, the dataset is composed by 2800 sequences
captured. The depth image, with a resolution of 640x480,
and the coordinates of 22 joints (both in the 2D depth image
space and in the 3D world space) are saved for each frame
of each sequence in the dataset. For the proposed method we
only needed the 3D coordinates of the joints from which we
derived the features of our interest. The depth images and
hand skeletons were captured at 30 frames per second and
the length of sample gestures ranges from 20 to 170 frames.
Since some sequences of the dataset are very short, in order to
avoid sampling with a very low T value, we used the padding
technique to increase the length of these sequences to an
acceptable value of T (i.e., T = 100). As shown in Table III,
the proposed method outperforms the accuracy values of the
other works, both in the dataset divided into 14 classes and
in the dataset divided into 28 classes. The confusion matrices
obtained from the tests are shown in Fig. 11. By analyzing
these matrices well we can see that the method can classify
very well the gestures performed using only one finger,
while in the version using the whole hand some mismatches
occur. In details, the gesture 16 (SWIPE LEFT) is sometimes
erroneously classified as gesture 26 (SWIPE V) and gesture 8
(PINCH), instead, the gesture 18 (SWIPE UP) is confused
with the gesture 6 (EXPAND). By carefully analyzing the
variations of the feature values, we notice that the angles
obtained from these instances are similar and the movements
of the hand in space are not substantial. Despite these isolated
cases, the method achieves excellent performance. This result
demonstrates how the DLSTM and the selected features are a
very powerful solution in recognizing different types of hand
gestures. Although our work is focused on language gestures,
the tests carried out on this dataset have highlighted how our
method can also handle semaphoric gestures, i.e., gestures that

define a set of symbols to communicate with machines.

V. CONCLUSION

In this paper, a novel language hand gesture recognition
approach based on a DLSTM is presented. A set of new
discriminative features based on both joint angles and fingertip
positions are used in combination with DLSTM for the first
time to obtain high accuracy in the hand gesture recognition. In
addition, a novel dataset based on a large subset of the ASL is
created to train and test the proposed method. Moreover, this
dataset is used to analyze the effectiveness of the extracted
features and the behavior of the network by varying the num-
ber of stacked LSTMs. As a future development, we would
like to create a public data set based on the ASL composed of
a higher number of gestures. A possible improvement of the
method could be obtained by integrating the RGB information,
as well as the skeleton, in order to solve ambiguous cases (such
as those between gesture 6 and gesture W).
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