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Connecting Subspace Learning and Extreme
Learning Machine in Speech Emotion Recognition

Xinzhou Xu , Jun Deng , Eduardo Coutinho, Chen Wu, Li Zhao, and Björn W. Schuller, Fellow, IEEE

Abstract—Speech emotion recognition (SER) is a powerful tool
for endowing computers with the capacity to process information
about the affective states of users in human–machine interactions.
Recent research has shown the effectiveness of graph embedding-
based subspace learning and extreme learning machine applied to
SER, but there are still various drawbacks in these two techniques
that limit their application. Regarding subspace learning, the
change from linearity to nonlinearity is usually achieved through
kernelization, whereas extreme learning machines only take label
information into consideration at the output layer. In order
to overcome these drawbacks, this paper leverages extreme
learning machines for dimensionality reduction and proposes a
novel framework to combine spectral regression-based subspace
learning and extreme learning machines. The proposed framework
contains three stages—data mapping, graph decomposition, and
regression. At the data mapping stage, various mapping strategies
provide different views of the samples. At the graph decomposition
stage, specifically designed embedding graphs provide a possibility
to better represent the structure of data through generating virtual
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coordinates. Finally, at the regression stage, dimension-reduced
mappings are achieved by connecting the virtual coordinates
and data mapping. Using this framework, we propose several
novel dimensionality reduction algorithms, apply them to SER
tasks, and compare their performance to relevant state-of-the-art
methods. Our results on several paralinguistic corpora show that
our proposed techniques lead to significant improvements.

Index Terms—Speech emotion recognition, extreme learning
machine, subspace learning, graph embedding, spectral regression.

I. INTRODUCTION

IN MANY Machine Learning problems, particularly those in-
volving real world applications, researchers have to deal with

high or very high dimensional data, particularly in the context
of ‘Big Data’ analytics [1]. Unfortunately, due to computational
constraints, dealing with such large feature spaces can be im-
practical (if not impossible). Therefore, it is essential to explore
alternative representations (i.e., lower dimensionality) that are
computationally manageable whilst maintaining the relevant in-
formation about the original feature spaces. This need is appar-
ent in many human-computer interaction tasks such as Speech
Emotion Recognition (SER), which aims to detect emotional
information conveyed by the human voice [2]–[5], but many
of the typically used acoustic features contain information that
may not be relevant for emotion recognition [6], [7]. Thus SER
requires new methods for obtaining factors specifically related
to emotional representation from large feature spaces [6], [8].

Motivated by this need, in recent years a multitude of tech-
niques for dimensionality reduction have been proposed, and
subspace learning has become a central topic in machine learn-
ing. Prominent algorithms in the field of pattern recognition are
Graph Embedding (GE; [9], [10]) and Spectral Regression (SR;
[11]–[13]). These two classes of algorithms include popular
dimensionality reduction techniques, such as, Principal Com-
ponent Analysis (PCA), Fisher Discriminant Analysis (FDA),
Linear Discriminant Projections (LDP) [14], Locality Preserv-
ing Projections (LPP; [15]), Locally Discriminant Embedding
(LDE; [16]), and Graph-based Fisher Analysis (GbFA; [17]), all
of which can be seen as particular cases (i.e., graph structures)
of a general GE framework [9], [10], [17]. At their core, both
GE and SR utilise embedding graphs to calculate projections
for optimal subspaces. However, GE computes these projec-
tions directly, whilst SR makes use of regression on spectral
coordinates to calculate the projections with the goal of achiev-
ing computational efficiency and better performance [12], [13],
[18], [19]. The linear and kernelised forms of GE and SR are
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known as Linear GE (LGE), Kernel GE (KGE) [10], Linear SR
(LSR; [11], [13]) and Kernel SR (KSR; [20]), respectively.

A. Extreme Learning Machines

Recently, Extreme Learning Machines (ELMs) have been in-
troduced as an alternative approach [21]–[26] for emotion recog-
nition tasks [27], [28]. ELMs’ working principles are similar to
those of Single-hidden Layer Feedforward Neural Networks
(SLFNs; [21], [24]). However, from an optimisation perspec-
tive, the calculation of the weights to the output layer in ELM
is related to Support Vector Machines (SVMs), Least Square
Support Vector Machines (LSSVM; [23], [25]), and Ridge Re-
gression (RR; [29]–[31]). Compared to SLFNs, a major advan-
tage of ELMs is to generate the input to hidden layer weights
directly without training, as well as adopting RR for hidden to
output layer weights in order to increase computational speed
[23], [25]. Motivated by the appealing characteristics of ELM
and SR, various attempts have been made to apply ELM meth-
ods to subspace learning. For example, [30], [31] computed a
low-dimensional space directly using spectral regression, while
Huang et al. [32] and Iosifidis et al. [33] improved the opti-
misation procedures of ELMs by adding additional terms for
regression.

In spite of the clear benefits of GE, SR, and ELM, there are
evident limitations associated with the application of these meth-
ods in subspace learning. First, the nonlinear extension in GE
and SR relies on kernelisation [10], [20], which in essence maps
the original feature space to a new space represented by training
samples. This process may lead to decreased performance when
the training data maps the original features to a poorly repre-
sented space. Second, with respect to ELM, the calculation of
the decision values at the output layer depends exclusively on
the labels [21], [23], whereas the unsupervised relationship be-
tween training samples (addressed by most GE based methods,
e.g., neighbouring information) is simply ignored. This leads
to a limitation related to correctly representing the structure of
data according to GE related methods [10], [15]–[17].

B. Overview of This Paper

Inspired by previous work showing that ELM can be adapted
for subspace learning by employing different optimisation struc-
tures [23], [25], [30]–[33], in this paper we propose a novel
framework – Generalised Spectral Regression (GSR) – that ex-
ploits the relationships between ELM and subspace learning to
overcome the above mentioned drawbacks associated with both
methods.

We use this framework to design several embedding graphs
for SER tasks at the stage of graph decomposition, which takes
both of neighbouring and supervised information from train-
ing samples into consideration [16], [17], in order to construct
suitable graph structures representing the inherent properties
of the data. We argue that this makes the system more robust
and effective by providing additional unsupervised information.
Then, the proposed methods are evaluated and compared to
other state-of-the-art methods in multiple SER tasks. The main
contributions of this paper are:

� A new framework (GSR) for dimensionality reduction
combining ELM and subspace learning;

� A set of novel feature reduction algorithms specifically
developed to improve the performance of SER systems;

� A demonstration of the effectiveness of the proposed
framework and methods in the context of SER, including
a thorough comparison with existent methods.

The remainder of this paper is organised as follows. In
Section II, we review the essential background for this work,
including the notation used, and the basic principles of ELM,
GE frameworks, and SR. In Section III, the proposed GSR
framework is presented in detail, and the different GSR strate-
gies developed are described in Section IV. Then, in Section V,
we introduce the experimental methodology, and in Section VI
we evaluate the performance of the algorithms on multiple SER
corpora. Finally, in Section VII we discuss our work, and pro-
pose future research directions.

II. BACKGROUND

In this section, we introduce the basic concepts, variables,
and notations used throughout this article.

Let X = [x1 , x2 , . . . , xN ] ∈ �n×N and Y = [y1 , y2 , . . . ,
yN ] ∈ �d×N be sets of N labelled training samples in the
original feature space with dimensionality n and the lower-
dimensional feature space with the dimensionality d, respec-
tively. Each column of φ(X) = [φ(x1), φ(x2), . . . , φ(xN )] is
the Reproducing Kernel Hilbert Space (RKHS) of the cor-
responding column in X . The Gram matrix K is defined as
φT (X)φ(X). It is assumed that all samples (training and test)
in the original and reduced dimensionalities can be represented
by column vectors x ∈ �n×1 and y ∈ �d×1 , respectively. The
RKHS of x is defined as φ(x). For sample x, its kernelised
coordinate is Kx = φT (X)φ(x).

Each column of the label matrix S = [s1 , s2 , . . . , sN ] =
[ŝ1 , ŝ2 , . . . , ŝc ]T ∈ �c×N represents the labelling information
of each training sample, where c is the number of classes.
Sij = 1 when sample j belongs to class i, otherwise Sij = 0,
where i = 1, 2, . . . , c and j = 1, 2, . . . , N . I ∈ �N×N is the
identity matrix. Every element of e ∈ �N×1 is equal to 1.

A. Extreme Learning Machines

ELM [21]–[24] assumes that L is the number of hidden neu-
rons. H = [h1 , h2 , . . . , hN ] ∈ �L×N represents the outputs of
the hidden neurons pertaining to the sets ofN training samples,
with each column representing one training sample in the feature
space generated by the input nodes. The label coordinate matrix
of extreme learning is T = 2ST − eeTc , where each element of
ec ∈ �c×1 is equal to 1. The hidden neurons’ parameters are
selected randomly [24], and the activation functions of these
hidden neurons can be sigmoidal, hard limit or Gaussian (for
more details please refer to [21]–[25]). The typical optimisation
function of extreme learning is represented as

min
β

(‖ β ‖2
F + C ‖ HT β − T ‖2

F

)

, (1)
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where, β ∈ �L×c represents the matrix of output weights, and
C > 0 is a constant value controlling the relation between the
Frobenius norm of the coefficients β and the linear regression
term. The optimal value of β is determined by RR:

β∗ =
(

IL
C

+HHT

)−1

HT, (2)

where IL is the identity matrix with the dimensionality of L.
In order to reduce the computational cost, we obtain the op-

timal β as

β∗ =

{
(

IL
C +HHT

)−1
HT, L < N,

H
(

I
C +HTH

)−1
T, L ≥ N.

(3)

B. Graph Embedding Frameworks

GE frameworks [10] aim to find optimal embedding graphs
in tandem with data mapping types and optimisation forms, to
unveil the internal structure of a given data set. The optimisation
forms of GE frameworks with penalty and scaling constraints
are shown, respectively, in Eqs. (4) and (5):

min
N

∑

i,j=1

‖ yi − yj ‖2 W
(I )
ij s.t.

N
∑

i,j=1

‖ yi − yj ‖2 W
(P )
ij =μ,

(4)

min
N

∑

i,j=1

‖ yi − yj ‖2 W
(I )
ij s.t.

N
∑

i=1

yi
2Dii = μ, (5)

where W (I ) ∈ �N×N and W (P ) ∈ �N×N are the adjacency
matrices of the intrinsic graph and the penalty graph. D is a
diagonal matrix to control weights of samples, and μ is a pos-
itive constant value. With one mapping direction a ∈ �n×1 for
sample i, yi = aT xi . For the training set with multiple map-
ping directions A = [a1 , a2 , . . . , ad ] ∈ �n×d , Y = ATX . The
kernelised form of Y can be written as Y = AT

Kφ
T (X)φ(X) =

AT
KK, where AK = [aK 1 , aK 2 , . . . , aK d ] ∈ �N×d is the ker-

nelised mapping. We reformulate the optimisation function
(Eq. (4)) to obtain the optimal one-dimensional new features
of N samples

z∗ = arg min
z

zL(I )zT

zL(P )zT
, (6)

where z ∈ �1×N . L(I ) = D(I ) −W (I ) , with each element
of the diagonal degree matrix D(I ) ∈ �N×N as D

(I )
ii =

∑N
j=1 W

(I )
ij , where i = 1, 2, . . . , N . Similarly, L(P ) = D(P ) −

W (P ) and the diagonal matrixD(P ) ∈ �N×N contains elements
D

(P )
ii =

∑N
j=1 W

(P )
ij .

The mapping coefficients connecting training and test data
can be obtained by reformulating z directly in Eq. 6 and solving
the Generalised Eigenvalue Problem (GEP; [10], [15]).

For FDA, given that N ≥ c, the adjacency matrices of
intrinsic and penalty graphs are represented as W (I ) =
W

(I )
F DA = ST (SST )−1S =

∑c
l=1(ŝ

T
l e)

−1 ŝl ŝ
T
l and W (P ) =

W
(P )
F DA = 1

N ee
T . Similarly for LDP, W (I ) = W

(I )
LDP = ST S

and W (P ) = W
(P )
LDP = eeT − ST S.

C. Spectral Regression

SR [13], [18], [19] is a two-stage process developed to solve
GE problems efficiently that divides the GE solution into spec-
tral graph learning and regression. By setting the new dimen-
sionality of the feature space as one, according to Eq. (6), we can
draw a new, optimal one-dimensional feature vector of training
samples, written as z∗.

In the linear case, assuming z = aTX , the optimal linear map-
ping vector a∗ can be obtained by a least-square form. However,
the least-square solution is often not satisfactory, when the di-
mensionality of features n is higher than the number of training
samples N . Thus we obtain the optimal a as

a∗ = arg min
a

(

‖ a ‖2 + C ‖ XT a− z∗T ‖2
)

. (7)

It has been shown in [18] that when 1
C decreases to zero, a∗

turns to be the optimal solution for the LS Regression. Eq. (7)
also can be solved by RR. In the kernelised form of SR (i.e.,
KSR), the optimisation method is changed to obtain the optimal
kernelised mapping as

a∗K = arg min
aK

(

‖ aK ‖2 +C ‖ KaK − z∗T ‖2
)

. (8)

III. PROPOSED FRAMEWORK

In this section, we describe the proposed GSR framework
which consists of three stages: 1) data mapping; 2) graph de-
composition; and 3) regression. At the first stage, the features
of a give sample are projected into a new feature space, and we
show that kernel and linear forms in subspace learning [34] fol-
low similar rules as the input-hidden layer procedures in ELMs.
By including the data mappings adopted in LSR, KSR, and
ELM, different types of data mapping can be employed to gener-
ate relevant underlying subspaces. At the second stage, we make
use of embedding graphs [10] to automatically generate virtual
feature vectors for each training sample [35]. This process cre-
ates corresponding coordinates of the embedding graphs, which
reflect the relationship between each pair of training samples.
The goal is to enhance the performance on the target task by
better depicting the salient structure in feature space of the data
set. Finally, at the third stage, in order to construct a connec-
tion between the mapping data and the virtual feature vectors,
the subspace mapping matrix is learnt by fitting the new fea-
ture space to virtual coordinates employing different regression
algorithms.

A. Data Mapping

By representing the data mapping of sample x as f(x), we
draw the mapping x→ f(x) for the cases of kernelisation and
ELM. Note that for the linear case, the mapping is written as
x→ x directly.
Data mapping in kernelisation

In the linear domain, the lower-dimensional features of
N training samples are Y = ATX , assuming that A =
φ(X)AK + φ⊥(X)A′

K , where the columns of φ⊥(X) represent
the basis of the null space of {φ(x1), φ(x2), . . . , φ(xN )}, and
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Fig. 1. Generation of NA new features by NA anchor points for a certain
sample x when the dimensionality of the original feature space is n = 3.

A′
K contains their linear coefficients. Then Y = AT

KK, where
X is transformed into its RKHS φ(X).

According to the equation Y = AT
KK, kernel tricks essen-

tially employ a type of data mapping, which maps the original
feature space into a new space created from multiple views of
all the training samples. The dimensionality of the linear feature
mappings in the dimensionality reduction process also changes
to fit the dimensionality of the new space.

Further, on the assumption that φT⊥(X)φ(x) = 0, the data
mapping in kernelisation for sample x is drawn as

x→ f(x) = φT (X)φ(x) = kx , (9)

where the column vector kx ∈ �N×1 . It can thus be concluded
from Eq. (9) that the newly generated features of sample x are
written in the form of

kx =
[

φT (x1)φ(x), φT (x2)φ(x), . . . , φT (xN )φ(x)
]T
. (10)

Anchor points
In typical kernelisation methods, kernel tricks only present

a fixed set of bases in nonlinearisation. Moreover, φT⊥(X)φ(x)
= 0 does not always hold when x is excluded from the columns
ofX . Hence, it is feasible to solve the problems through chang-
ing the columns of φ(X).

We define a set of NA anchor points XA =
[xA1 , x

A
2 , . . . , x

A
N A ] to replace X , where usually NA > N and

xAi ∈ �n×1 with i = 1, 2, . . . , NA . This leads to a set of vectors
{

φ(xA1 ), φ(xA2 ), . . . , φ(xAN A )
}

in RKHS, as

φ(XA ) =
[

φ(xA1 ), φ(xA2 ), . . . , φ(xAN A )
]

. (11)

We assume that the basis of
{

φ(xA1 ), φ(xA2 ), . . . , φ(xAN A )
}

is able to span the space of {φ(x1), φ(x2), . . . , φ(xN )}, and
φT⊥(XA )φ(x) = 0. Therefore, the new features generated by
the anchor points are

kAx = φT (XA )φ(x). (12)

Fig. 1 illustrates the generation of new features when anchor
points are provided. For a given sample x, its new features can
be generated by NA views of NA anchor points with the same
dimensionality.
Data mapping in ELM

For ELM, the number of anchor pointsNA is exactly equal to
the number of hidden neurons L. Assuming that the coordinates

of the anchor points are the columns of Ψ = [ψ1 , ψ2 , . . . , ψL ] ∈
�n×L , the data mapping of ELM is

x→ f(x) = g(φT (Ψ)φ(x)) = hx , (13)

where hx ∈ �L×1 is the L-dimensional feature vector in the
newly generated space. g(·) represents a certain mapping since
the output of the activation function is not always nonnegative.

For sample x in ELM, the implicit inner product φT (Ψ)φ(x)
can be represented as an explicit new feature vector hx . The
explicit mapping depends on random anchor points in ELM
[21]–[24]. The theory of ELM also indicates that it is possible
to select the parameters randomly in the mapping forms. Con-
sequently, the original anchor points and the model parameters
can be chosen as random values.

B. Graph Decomposition

We define the embedding graphs as G(I ) and G(P ) . The for-
mer represents intrinsic information, whereas the latter repre-
sents penalty properties. With this notation, the optimal virtual
one-dimensional coordinates are drawn as

z∗ = arg min
z

or arg max
z

zG(I )zT

zG(P )zT
, (14)

where the selection of minimisation and maximisation, as well
as the elements in graphs G(I ) and G(P ) , depends on practi-
cal requirements as in [10], [15], [36], [37]. This optimisation
process can be adapted to solve the GEP

G(I )zT = λG(P )zT , (15)

where λ is the eigenvalue of the GEP. G(I ) and G(P ) are the
matrices of the intrinsic and penalty graphs, without considering
the trivial eigenvectors.

For multiple locally optimal zs in constructing the optimal
subspace, we define the zs as the ‘virtual coordinates’ of training
samples. Thus, we get zi ∈ �1×N , where i = 1, 2, . . . , d, and

[

zT1 , z
T
2 , . . . , z

T
d

]T
= Z ∈ �d×N , (16)

which leads to the optimal Z, namely Z∗, by

Z∗ = arg min
Z

or arg max
z

tr
(

ZG(I )ZT
)

tr
(

ZG(P )ZT
) , (17)

which is a trace-ratio problem and it can be solved either by iter-
ative procedures with the orthonormalisation assumption [38],
or by the the approximate ratio-trace form

Z∗ = arg min
Z

or arg max
z

tr

(

[

ZG(P )ZT
]−1 [

ZG(I )ZT
]

)

, (18)

when ZG(P )ZT is invertible. This results in solving the GEP
of Eq. (15), resorting to the Lagrangian method using Singular
Value Decomposition (SVD). Theorem 1 shows the effective-
ness on using the GEP to solve the optimisation, which can be
proved by pre-multiplying z on both sides of Eq. (15).

Theorem 1: The nontrivial eigenvectors corresponding to
minimal/maximal eigenvalues in Eq. (15) are the optimal so-
lutions of Eq. (14).
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Fig. 2. Schematic diagram of the proposed GSR framework. The features of training samples X are utilised in data mapping and sometimes in graph design.
Given the set of new features and a set of virtual coordinates, we can predict y for sample x in the regression process.

It should be noticed that the newly generated coordinates can
be processed before the stage of regression (as in ELM and SR).
The processing is defined as

Z → ˜Z = [z̃T1 , z̃
T
2 , . . . , z̃

T
d ]T , (19)

with each row corresponding to the respective row in Z. It
is also feasible to employ normalisation or orthonormalisation
using their corresponding constraints on each column of Z at
this stage [39], [40].
Graph decomposition in SR and ELM

In the context of SR, the work presented in [20] shows that
the graph-decomposition solution is straightforward to obtain by
solving Eq. (17), with ˜Z = Z. According to previous work on
ELM [21], [23], [25] and SR [11], [13], [18], [20],ST (SST )−1S
and I can be used as the embedding graphs. The lth virtual set of
coordinates zTl = ŝl , where the elements of ŝl corresponding to
the lth class are equal to 1, and all the other elements are equal
to 0, with l = 1, 2, . . . c. This solution is presented in Theorem
2, and the proof is shown in Appendix A. For ELM, d is fixed
as c, whilst for the SRs (in [11], [13], [18], [20]) d is equal to
c− 1.

Theorem 2: For SR (in [11], [13], [18], [20]) and ELM,
one selection of the embedding graphs is: G(I ) = W

(I )
F DA =

ST (SST )−1S and a scaling diagonal matrix G(P ) = I .

C. Regression

Note that ω ∈ �N A ×1 is the mapping direction for dimen-
sionality reduction on samples, and ω∗

i is its optimal value cor-
responding to the virtual coordinate vector z̃i . As in elastic nets
[11], [41], the unified regression form of GSR is defined to
calculate

ω∗
i = arg min

ω

(‖fT (X)ω − z̃Ti ‖2 +γ1 ‖ ω ‖1 +γ2 ‖ ω ‖2) ,

(20)

where f(X) = [f(x1), f(x2), . . . , f(xN )] is the mapping set of
training samplesX . i = 1, 2, . . . , d represents the ith dimension
of the virtual coordinates generated at the stage of graph decom-
position. γ1 , γ2 ≥ 0 are the constant weights for the l1-norm
and l2-norm minimisation terms.

Regarding the choices of parameters γ1 and γ2 , if γ1 = γ2 =
0, Eq. (20) becomes an LS Regression problem. When γ1 = 0

and γ2 > 0, this equation changes into an RR problem, whilst
if γ1 > 0 and γ2 = 0 it becomes a Least absolute shrinkage
and selection operator (Lasso) problem [42]. These forms are
minimised with various norms on the basis of SR.

Finally, Ω = [ω1 , ω2 , . . . , ωd ] represents the dimensionality-
reduced mapping matrix.
Regression in SR and ELM

In [11] (Unified Sparse Subspace Learning framework
(USSL)), γ1 > 0 and γ2 = 0. Eq. (20) can be solved by the
LeastAngleRegression (LARS) algorithm [11]. In previous SR
[13], [18], [20], [35] and ELM [21], [23], [25] research, these
parameters were set as γ2 > 0 and γ1 = 0, and consequently
the solution can be written in the form of a column vector:

ω∗
i =

(

IN A

γ2
+ f(X)fT (X)

)−1

f(X)z̃Ti , (21)

where IN A is the NA -dimensional identity matrix, and zi is
equal to ŝTi , where i = 1, 2, . . . , c.

However, for ELM, the decision procedure is similar to
what has beenfrequently employed in neural networks. Instead
of directly using nearest-neighbour classifiers, ELM implic-
itly assumes that for each training sample xj , the regression
fT (xj )α∗

i = (z̃i)j always holds for j = 1, 2, . . . , N . With this
assumption, the decision process in ELM is equivalent to that
of a nearest-neighbour classifier.

D. Generalised Spectral Regression Framework

In this section, we present the complete GSR framework,
and demonstrate that several existing methods are particular
instances of this framework.

As illustrated in Fig. 2, given the originally extracted fea-
tures from N training samples X and a given sample x,
we can obtain the data mapping f(X) and f(x) for sam-
ples X and x, respectively, as described in Section III-A.
When designing embedding graphs, both X and their corre-
sponding labels can be employed to construct suitable embed-
ding graphs. The designed embedding graphs are utilised to
generate virtual coordinates by solving the GEP in graph de-
composition, as described in Section III-B. At the regression
stage (see Section III-C), the linear d-dimensional mapping ma-
trix Ω∗ is obtained according to Eq. (20), and from it we derive
the low-dimensional feature vector y = Ω∗T f(x) for sample x.
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TABLE I
THE PARAMETERS (f (·), NA , G(I ) , G(P ) , ˜Z , γ1 , γ2 ) OF FREQUENTLY USED SRS AND ELMS IN THE GSR FRAMEWORK

*N̄ = N + NU L : the total number of training samples with NU L unlabelled ones. L ( 0 ) : Laplacian matrix of W ( 0 ) , with W ( 0 )
i j obeying that, when x i and xj (i, j =

1, 2, . . . N ) are labelled, W ( 0 )
i j = 1 if the labels are same, while W ( 0 )

i j = 0 if the labels are different; otherwise, W ( 0 ) is the k -nearest neighbours adjacency matrix.

Table I shows how the proposed GSR can be parameterised
to include LSR, KSR, and ELM, through regulating the data
mapping form f(·), the number of anchor points NA , the trans-
formation from Z to ˜Z, as well as the regression parameters
γ1 , γ2 ≥ 0 (where i, j = 1, 2, . . . , d). Note that, for the meth-
ods shown in Table I, we set the optimisation types in graph
decomposition of Eq. (14) to maximum. The description of the
remaining variables shown in Table I can be found in Section II.

IV. GSR APPLIED TO SPEECH EMOTION RECOGNITION

SER focuses on exploring relevant features and algorithms to
infer the emotional state of speakers from paralinguistic infor-
mation, i.e., the nonverbal aspects of speech (including speech
prosody, voice quality, and other quantities estimated directly
from the acoustic signal). In a typical framework, a set of (rel-
evant) acoustic descriptors is extracted from spoken utterances,
which are then used as features in estimating speakers’ emo-
tional states using machine learning methods.
System setup

At the stage of data mapping, the anchor points can be
random coordinates or training samples. Considering the differ-
ent data mapping methods, we define three GSRs as:Random-
anchor-points GSR (RGSR), Training-sample-anchor-points
GSR (TGSR), andLinear GSR (LGSR). In RGSR, the anchor
points are randomly chosen (as in ELM), while TGSR utilises
training samples as the anchor points (as in KSR).Linear GSR
(LGSR) represents the data mapping x→ x as in LSR.

At the stage of graph decomposition, several pairs of em-
bedding graphs are proposed in the GSR framework, since the
embedding graphs of ELM are only related to labelling infor-
mation. As shown in Fig. 2, together with labelling information,
features extracted from training samples are also available for
graph design. This leads to the creation of k-nearest neighbour
graphs or some other distance-based representations. It should
be noticed that we only consider the fully supervised case, where
each training sample is labelled by a single emotional class. The
embedding graphs (G(I ) and G(P )) are obtained using pre-
existent GE based algorithms – FDA [6], [10], LDP [14], LDE
[16], GbFA [17], and Locally Penalised Discriminant Analysis
(LPDA; [8]). The description of the FDA and LDP embed-
ding graphs can be found in [6], [10], [14] (also introduced in

Section II-B). The embedding graphs of LDE and GbFA are
shown mathematically in Eqs. (22) and (23).

For LDE,
{

W (I ) = W
(I )
LDE = ST S 
Wk1NN ,

W (P ) = W
(P )
LDE = (eeT − ST S) 
Wk2NN ,

(22)

where the operator ‘
’ represents the element-wise product be-
tween two matrices. Wk1NN and Wk2NN are k1- and k2- near-
est neighbour adjacency matrices of training samples, where the

elements (Wk1NN )ij = 1 or e−
‖x i −x j ‖2

t , when xi is among k1-
nearest neighbours of xj or vice versa, with i, j = 1, 2, . . . , N
and the constant value t > 0. Otherwise, (Wk1NN )ij = 0.
Wk2NN uses k2-nearest neighbours, similar as in Wk1NN .

For GbFA,
{

W (I ) = W
(I )
GbF A = ST S 
WGram ,

W (P ) = W
(P )
GbF A = (eeT − ST S) 
WGram ,

(23)

where (WGram )ij = e−
‖x i −x j ‖2

t . Thus, nearest neighbour trun-
cation is considered in GbFA.

The embedding graphs for LPDA [8] are given in Eq. (24).
The intrinsic embedding graph of LPDA is designed as FDA,
so as to remove the impact from the relatively inaccurate neigh-
bouring information in SER. The penalty graph of LPDA aims
to penalise neighbouring between-class sample pairs, similar as
in LDE and GbFA.

For LPDA,
{

W (I ) = W
(I )
LP DA = W

(I )
F DA = ST (SST )−1S,

W (P ) = W
(P )
LP DA = 1

N ee
T + δ0W

(P )
LDE ,

(24)

where the constant value δ0 > 0 controls the relation between
scattering (as in PCA) and the labelling penalty of training
samples. It is equivalent to FDA when δ0 deceases to zero.

In accordance with GE frameworks, we use the Laplacian
matrices L(I ) and L(P ) of W (I ) and W (P ) (respectively) in
graph decomposition. This implies setting the optimisation type
to minimum for Eq. (14). In order to avoid the theoretically
minimal zero value of the term zG(I )zT for the intrinsic graphs,
we add a term δI with a small value δ > 0 in G(I ) . This leads
to G(I ) = δI + L(I ) and G(P ) = L(P ) . We only list each W (I )

and W (P ) , for G(I ) and G(P ) (respectively) in Eq. (22), (23),
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TABLE II
DESCRIPTION OF THE EMOTIONAL CORPORA GEMEP, ABC, VAM, AND ENTERFACE FOR THE AUDIO SECTIONS

*We choose 12 classes according to the set in the INTERSPEECH 2013 Computational Paralinguistics Challenge [47].
**In order to make the two folds balance, we keep the samples from 40 speakers (each one contains 30 samples) in the experiments.

and (24). The virtual coordinates relate to the eigenvectors cor-
responding to minimal eigenvalues [10], [15].

At the regression stage, we keep the form of RR employed in
the SRs in [13], [18], [20], [35] and the ELMs in [21], [23]–[25].
This leads to the parameter settings as γ1 = 0 and γ2 �= 0 in the
regression of Eq. (20). The solution of the regression problem
can be determined by Eq. (3) or the previously proposed LSQR
method [13], [18], [35].

The proposed GSRs described above aim at obtaining multi-
ple linear mapping directions reflecting emotional dimensions.
However, general feature sets used in SER often include fea-
tures that are relevant to other linguistic and paralinguistic ap-
plication, e.g., Automatic Speech Recognition (ASR) or Speaker
Identification (SI) [6]. Since the feature sets contain information
that may not be relevant to SER, all the embedding graphs in
the proposed methods include supervised information, consid-
ering that the target labels play a crucial role in determining the
relevant features for the SER task. The new features are used in
the procedure of classification or decision making.
Computational complexity

The computational complexity of the proposed methods pri-
marily depends on graph decomposition and regression:

� Graph decomposition: The conventional GEP solution
using SVD requires the complexity O

(

N 3
)

; when using
the fast Monte Carlo algorithm [48], the complexity is
O

(

r2N
)

, where r is the predefined approximate rank in
solving SVD.

� Regression: When directly solving RR, the maxi-
mal complexity is O

(

(min(N,L))3 + min(N,L)LN +
min(N,L)Nd

)

for random data mapping, and is
O

(

2N 3 +N 2d
)

for kernelisation; when using LSQR, the
complexity turns to be O(NLDl0) for random data map-
ping, while O(N 2Dl0) for kernelisation, where l0 is the
iteration number in LSQR.

V. EXPERIMENTAL METHODOLOGY

A. Selected Corpora

In our experiments, we use four corpora that are commonly
used in SER tasks. Each corpus is described in the next para-
graphs, and Table II summarises the key information.

GEMEP: The GEneva Multimodal Emotion Portrayals
(GEMEP; [43], [47]) is a database of audio and video recordings
featuring 10 actors portraying 18 affective states. In this work
we use 12 of these states or classes–amusement, pride, joy, re-
lief, interest, pleasure, hot anger, panic fear, despair, irritation,
anxiety, sadness, as in [47]. The number of samples per class

is 90. The full database was divided into training and test sets,
with 648 (6 speakers; 3 female) and 432 (4 speakers; 2 female),
respectively.

ABC: The Airplane Behavior Corpus (ABC; [44], [49]) con-
tains speech recordings labelled in six emotions: aggressive,
cheerful, intoxicated, nervous, neutral, tired. The numbers of
samples in each emotional class are 95, 105, 33, 93, 79, 25,
respectively, leading to a total number of 430 samples. The
samples were obtained from 8 speakers (4 female). For our
experiments, the full corpus was divided into two folds, each
including the recordings of 4 speakers (2 female). Then, one
fold is for training while the other for testing, and vice versa,
which is equivalent to a 2-fold CV (Cross-Validation).

VAM: The “Vera am Mittag” German audio-visual emotional
speech database (VAM; [45], [49]) includes 12 hours of spon-
taneous and very emotional audio-visual recordings of the Ger-
man TV show “Vera am Mittag”. The corpus includes natural
speech utterances in four emotions: happy / excited, angry / anx-
ious, sad / bored, and relaxed / serene, which are here referred
to as q1 (21 instances), q2 (50 instances), q3 (451 instances),
and q4 (424 instances), respectively, based on quadrants in the
arousal/valence plane. The corpus includes recordings from a
total of 47 different speakers (36 female). For the purposes of
our work, the corpus was divided into 5 (speaker-independent)
folds. In order to also balance for gender, the first fold contains
the samples from 11 speakers, while all other folds contain the
recordings of 9 speakers.

eNTERFACE: The eNTERFACE’05 (eNTERFACE; [46],
[49]) database contains speech utterances recorded in office en-
vironment expressing six basic emotions (happiness, sadness,
surprise, anger, disgust, fear) as defined by Ekman et al. [50].
There are a total of 42 different speakers (8 female) in the
database. In our work, we employed the samples from 40 speak-
ers (8 female), and 200 samples per emotion category. Half of
the samples were used for training while the rest were used for
test (and vice versa; 2-fold CV).

B. Features

For our experiments we adopt the official feature set of the IN-
TERSPEECH 2013 Computational Paralinguistics Challenge
(ComParE; [47]), which includes 6 373 static features of func-
tionals of 65 Low-Level Descriptor (LLD) contours (a thor-
ough description of the feature set is given in [51]). All fea-
tures were extracted with openSMILE (version 2.0; [52]), a
framework for extracting general-purpose acoustic and prosodic
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features, which has been successfully applied in a variety of SER
and other paralinguistic tasks.

C. Preprocessing

As discussed in Section IV, at the stage of data mapping, the
anchor points are chosen as training samples for TGSR (KSR),
or as random points for the RGSR (ELM) case. The number
of anchor points for the TGSR based methods is N , while the
number of anchor points L for RGSR based methods is set to
500, 1 000, 3 500, 5 000, and 10 000. In accordance with the
min-max normalisation of the training samples in TGSR, we
set each attribute of the random anchor points in RGSR ranging
between 0 and 1. In addition, the random anchor points are the
same for each method when the number of the points is fixed.
The random choices of anchor points are repeated 10 times in
our experiments. For each experiment, we only consider the best
accuracies among the dimensions no larger than 100.

Similar as in existing SR and ELM approaches, the data map-
ping employs the popular Gaussian Kernel form. For sample x,
the generated new features, represented as kx and hx for TGSR
and RGSR respectively, are given as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

kx =
[

e−
‖x−x 1 ‖2

t 0 , e−
‖x−x 2 ‖2

t 0 , . . . , e−
‖x−x N ‖2

t 0

]T

,

hx =
[

e−
‖x−ψ 1 ‖2

t 0 , e−
‖x−ψ 2 ‖2

t 0 , . . . , e−
‖x−ψ L ‖2

t 0

]T

,

(25)

where also for fair comparison, the scaling parameter t0 is set
as n (no random selection).

At the stage of graph decomposition, the embedding graphs,
including LDE, GbFA, and LPDA, as well as FDA and LDP, are
used as terms of comparison in our experiments (an introduction
to these graph types is given in Sections II-B and IV). The k1
and k2 parameters in Eq. (22) for LDE are both set to 30, and
the strategy with (Wk1NN )ij = 1 is adopted. The t parameter
in Eq. (23) is chosen as n for GbFA. For LPDA, δ0 is set to 10−4

in Eq. (24).
At the regression stage, the weights of γ1 and γ2 in Eq. (20)

are set to γ1 = 0 and γ2 = 10−3 , respectively, and δ is set to
10−6 . At the decision level, a k Nearest Neighbour classifier
(kNN) is adopted in order to better evaluate the performance
compared to other classifiers with complex structures. Thus,
kNN can be seen as the baseline. We set k = 1 in the experi-
ments.

VI. RESULTS

A. RGSR vs. ELM

This section shows a comparison between our proposed
method RGSR and its counterpart ELM. As mentioned above,
on the one hand, both ELM and RGSR adopt the same random
anchor points at the data mapping stage. On the other hand,
it is possible for RGSR to use different embedding graphs for
graph decomposition, whereas ELM only employs the fixed em-
bedding graphs as shown in Table I. Hence, in this article, we
first conduct a series of experiments with ELM and RGSR on
multiple speech emotion corpora using the same sets of random

anchor points for all tests. The RGSR algorithms using FDA,
LDP, LDE, GbFA, and LPDA embedding graphs are denoted as
RGSR-{FDA, LDP, LDE, GbFA, LPDA}, respectively.

In Table III, we show the classification results for the var-
ious corpora and different numbers of anchor points (L ∈
{500, 1 000, 3 500, 5 000, 10 000}) on the four corpora. Exper-
iments were run 10 times in order to obtain a distribution of
Unweighted Accuracies (UAs; indicated as percentages) as the
performance measure. As shown in Table III, RGSR-{LDE,
GbFA, LPDA} always achieve better performance than ELM on
the four chosen databases. For example, the proposed RGSR-
LPDA get a UA of 48.0 % on the ABC database, representing
a 4.1 % relative improvement over the ELM system. Note that,
RGSR-LPDA performs better than RGSR-LDE, and RGSR-
GbFA on GEMEP, ABC, and VAM, except the six-class emo-
tion recognition task on the eNTERFACE corpus. This re-
flects that the proposed GRSR with LPDA embedding graphs
(i. e., GRSR-LPDA) is more robust across different emotional
corpora.

In order to verify whether there are statistically significant
differences between the performance obtained for each method
and number of anchor points, we conducted a three-way Anal-
ysis of Variance (ANOVA) (factors shown in Table IV) and
analysed the main effects. The results reveal significant main
effects of Method (F (5, 1167) = 19.068, p < 0.0001) and L
(F (4, 1167) = 151.327, p < 0.0001). This indicates that the
factors of Method and the number of anchor points L have a
statistically significant influence on the accuracies for recognis-
ing speech emotion. We conducted a post-hoc analysis on the
factors to determine the direction of the various effects using
Tukey’s Honest Significant Difference (Tukey’s HSD) test. In re-
spect of Method (see Table V), the RGSR-{LDE, GbFA, LPDA}
methods result in significantly better performance when com-
pared to the ELM model across the four corpora (p < 0.0001),
implying that the proposed RGSR algorithms considerably ben-
efit from the graph decomposition.

B. RGSR vs. Conventional Algorithms

Having shown that RGSR algorithms yield better perfor-
mance than ELMs on the four different corpora, we now focus
on the performance comparison between our proposed meth-
ods and state-of-the-art supervised learning algorithms that are
typically used to build speech emotion recognition systems. To
this end, we compared the performance of RGSR-{LDE, GbFA,
LPDA} with standard supervised learning methods, including
SVM, Generalised RR (noted as RR; [29]), kNN, and Naive
Bayes (NB). For the SVM tests, we used a ‘one-against-one’
strategy and the Sequential Minimal Optimisation (SMO) for
training using a penalty constant C = 0.001. For the RR tests,
the weight of the l2 norm was set as 0.001 (in accordance with
the RGSRs), and to achieve a fair comparison, we employed a
1-nearest neighbour classifier (the same used for RGSRs).

The results are depicted in Fig. 3 for each corpus studied:
a) GEMEP, b) ABC, c) VAM, and d) eNTERFACE). A one-
tailed z-test [53] was also conducted to determine the signifi-
cance of the best algorithm’s UA performance (from the 10-time
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TABLE III
UAS (%) INCLUDING THE MEANS AND STANDARD DEVIATIONS IN THE TEN-TIME REPEATING EXPERIMENTS ON THE GEMEP, ABC, VAM,

AND ENTERFACE CORPORA, RESPECTIVELY

TABLE IV
FACTORS AND THE CATEGORIES (MARKED AS CATEG.) OF EACH FACTOR IN

THE THREE-WAY ANOVA

TABLE V
PAIRWISE COMPARISONS (MEAN DIFFERENCE AND SIGNIFICANCE) OF UAS

BETWEEN ELM AND RGSRS ACROSS THE FOUR CORPORA

RGSR experiments). As observed, our proposed RGSR-{LDE,
GbFA, LPDA}achieve better performance when compared to
other conventional methods (e. g., SVM and RR). For example,
the average UAs obtained using the RGSR and SVM methods
are similar on the GEMEP database, but the RGSR method is
significantly (p < 0.05) better than the kNN, NB, SVM, and RR
methods on the remaining databases.

We also compared the RGSRs with GMKDA [54] method on
the GEMEP corpus. GMKDA yielded a UA of 42.5%, while

the best UA performance of RGSR-LPDA is 43.3%. In addi-
tion, the proposed GMKDA requires a much higher iterative
computational complexity than the GSR algorithms.

C. RGSR vs. Conventional Subspace Learning Methods and
Spectral Regression

Next, we systematically compared our proposed method
with conventional subspace learning and existing SR methods.
Specifically, the conventional linear subspace learning methods
PCA, LPP [15], LDA, LDE [16] were considered. The recently
proposed linear subspace learning methods, LDP [14], GbFA
[17], and LPDA [8], were also used for comparison purposes.
Furthermore,we tested three kernel subspace learning methods
[10] using LDE, GbFA, and LPDA embedding graphs respec-
tively. The SR methods tested were LSR [13], [18] (with l2-
norm), LSR [11] (with l1-norm), KSR [20] (with l2-norm), and
KSR (with l1-norm). As shown in Table I, the γ2s in l2-norm
LSR and KSR were set to 0.001, while the γ1s in l1-norm LSR
and KSR were set to 0.1. Note that the LSR in [35] was used in
semisupervised learning. The experimental results on the four
corpora are shown in Table VI.

As it can be observed, the proposed RGSR subspace learning
framework always reaches the best results on the four emotional
corpora. More specifically, RGSR-LPDA achieves the average
UAs of 41.0%, 48.0%, and 39.2% on GEMEP, ABC, and VAM,
respectively. RGSR-GbFA achieves the average UA of 60.2% on
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Fig. 3. Column charts of the UAs for our proposed (red) RGSR-{LDE, GbFA, and LPDA }, and other conventional methods (blue) including SVM, RR [29],
kNN, and Naive Bayes (NB), on the corpora of (a) GEMEP, (b) ABC, (c) VAM, and (d) eNTERFACE.

TABLE VI
UAS (%) OBTAINED BY SUBSPACE LEARNING (SL) METHODS (INCLUDING LINEAR SL, AND KERNEL SL), AND EXISTING SPECTRAL REGRESSION (SR) METHODS

(INCLUDING LINEAR SR (LSR) AND KERNEL SR (KSR)), AND OUR PROPOSED RGSR METHODS, INCLUDING RGSR-{LDE, GBFA, LPDA} ON THE FOUR SPEECH

EMOTION CORPORA

the eNTERFACE corpus. The one-tailed z-tests reveal that our
proposed RGSR method significantly outperforms the widely
used subspace learning methods, PCA and LDA, and the adopted
linear spectral regression methods, l1-norm LSR and l2-norm

LSR. Further, RGSR consistently surpasses the performance
of other kernel subspace learning and kernel spectral regression
methods on the four speech emotion recognition benchmarks by
a large margin. These results suggest that our proposed RGSR
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TABLE VII
PAIRWISE COMPARISONS (MEAN DIFFERENCE AND SIGNIFICANCE) OF UAS FOR

THE RGSRS BETWEEN THE NUMBER OF ANCHOR POINTS L = 3 500,
L = 5 000, AND THE OTHER LS ACROSS THE FOUR CORPORA

Fig. 4. The column bar chart of the averaging UAs across the four corpora
when using different number of anchor points Ls, with the corresponding sig-
nificance level between Ls.

is an efficient method for supervised dimensionality reduction
in SER.

D. Influence of Anchor Points

As discussed above (cf. Section III), one major advantage of
our proposed method over previous spectral regression counter-
parts is that anchor points are randomly generated, leading to
the new features in RKHS. Here, we investigate the influence of
anchor points.

Following the three-way ANOVA analysis conducted in
Section VI-A, we first look into the effect of the number of an-
chor points L on our proposed method. The results are depicted
in Table VII and Fig. 4. As shown in Table VII, ‘L = 3 500’
and ‘L = 5 000’ lead to a significantly better performance than
‘L = 500’, ‘L = 1 000’, and ‘L = 10 000’ (p < 0.05). Further-
more, as can be seen in Fig. 4, the tests using more than 3 500
anchor points yield significant performance improvements when
compared with the ones using a lower number of anchor points
(p < 0.0001). This indicates that the number of anchor points
plays a significant role in our proposed algorithm. Further, our
proposed method highly benefits from a large number of an-
chor points, yet, too many anchor points may degenerate the
performance.

Now, we show the importance of randomly generated an-
chor points in our introduced GSR framework. We compare
our proposed RGSR relying on random anchor points with
the corresponding GSR methods using training sample anchor
points, which are referred as to TGSR. Linear GSR (i.e., the data

TABLE VIII
UAS OBTAINED BY LINEAR GSR (LGSR; WITHOUT USING ANCHOR POINTS),
TGSR (WITH ANCHOR POINTS FROM TRAINING SAMPLES), AND THE RGSR
(WITH RANDOM ANCHOR POINTS), WITH THE EMBEDDING GRAPHS LDE,
GBFA, AND LPDA. ‘EG’ STANDS FOR THE CORRESPONDING EMBEDDING

GRAPHS ON THE FOUR CORPORA

mapping x→ x) methods, which do not need the help of an-
chor points, are also reported. Table VIII shows the highest UAs
yielded by these various methods. Note that the UAs of RGSRs
correspond to the best performance of RGSR-{LDE, GbFA,
LPDA}, respectively.

As seen in Table VIII, the GSR algorithms using anchor
points (i.e., RGSR and TGSR) outperform the linear GSR.
Furthermore, the proposed RGSR algorithms often achieve the
best performance on the four speech emotion databases, which
demonstrates the importance of random anchor points.

VII. CONCLUSIONS AND OUTLOOK

In this article, we proposed the Generalised Spectral Re-
gression framework that exploits the combination of Extreme
Leaning Machines (ELMs) and subspace learning to overcome
the drawbacks of ELM and Graph Embedding (GE) based spec-
tral regression. The GSR framework consists of three stages,
namely data mapping, graph decomposition, and regression. In
data mapping, samples with original features are mapped into
new spaces by using anchor points. In graph decomposition,
designed embedding graphs reflecting the intrinsic structure of
data are decomposed to obtain virtual coordinates. In regression,
combining the virtual coordinates and data mapping, dimension-
reduced mappings are calculated employing different regression
types.

Using the GSR framework, we designed multiple embedding
graphs to specifically represent the relations between data in the
application of Speech Emotion Recognition (SER). Extensive
experiments on four speech emotional corpora demonstrate the
effectiveness and practicality of the proposed approaches when
compared with related existing methods including ELM and
subspace learning approaches.

Despite the excellent results using our proposed approach,
there are various aspects on which this work could be improved.
In data mapping, optimising the selections of anchor points or
data mapping types is a meaningful research direction, since
there exist significant differences in performance in the exper-
iments. In the graph decomposition phase, it still remains un-
known which type of embedding graphs can be more beneficial
for SER tasks. Exploring more specific embedding graphs may
further improve the system performance. In the regression stage,
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we only considered Least-Square Regression with l2-norm min-
imisation. Other approaches such as deep learning could also be
explored in future work.

APPENDIX A
PROOF OF THEOREM 2

According to Section II-A, we change the zT in both the
left and the right parts of Eq. (15) into ŝl , where the label
l = 1, 2, . . . , c. It can be proved that

G(I ) ŝl = ST (SST )−1(Sŝl) = IN ŝl . (26)

With the left part of Eq. (15) equal to λIN ŝl , λ = 1 can be
drawn. According to the SVD of

W
(I )
F DA = ST (SST )−1S = UΛUT , (27)

where UT U = I , Λ = diag(λ1 , λ2 , . . . , λN ), and λ1 ≥ λ2 ≥
. . . ≥ λN . Accordingly, the c eigenvalues λ1 = λ2 = . . . =
λc = 1, while the others are equal to zero.

Thus, λ = 1 are the c largest eigenvalues, which are corre-
sponding to the maximal values of zG(I )zT . This is equivalent
to solving

max
(

zG(I )zT
)

⇒ min
(

zL(I )zT
)

, (28)

where L(I ) is the Laplacian matrix of ST (SST )−1S.
The transformation for virtual coordinates is then changed

into 2ŝl − e. Therefore, Theorem 2 is proved.
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