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Abstract—Co-saliency detection aims to discover common
and salient objects in an image group containing more than
two relevant images. Moreover, depth information has been
demonstrated to be effective for many computer vision tasks.
In this paper, we propose a novel co-saliency detection method
for RGBD images based on hierarchical sparsity reconstruction
and energy function refinement. With the assistance of the intra
saliency map, the inter-image correspondence is formulated as
a hierarchical sparsity reconstruction framework. The global
sparsity reconstruction model with a ranking scheme focuses
on capturing the global characteristics among the whole image
group through a common foreground dictionary. The pairwise
sparsity reconstruction model aims to explore the corresponding
relationship between pairwise images through a set of pairwise
dictionaries. In order to improve the intra-image smoothness and
inter-image consistency, an energy function refinement model is
proposed, which includes the unary data term, spatial smooth
term, and holistic consistency term. Experiments on two RGBD
co-saliency detection benchmarks demonstrate that the proposed
method outperforms the state-of-the-art algorithms both quali-
tatively and quantitatively.

Index Terms—Co-saliency detection, RGBD images, global
sparsity reconstruction, pairwise sparsity reconstruction, energy
function refinement.

I. INTRODUCTION

ISUAL attention mechanism enables people to quickly

locate the most interesting parts or salient objects from
a complex scene. As a branch of computer vision, saliency
detection is devoted to enabling a computer to discover these
salient regions automatically. This process has been applied
in a large number of visual tasks, such as segmentation [1]—
[3]], retargeting [4], enhancement [5]], foreground annotation
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[6], and blur detection [[7]. The last decade has witnessed the
vigorous development and qualitative leap in performance of
image saliency detection [_8]-[26].

With the recent explosive growth of data volume, people
need to process multiple relevant images collaboratively. As an
extension of traditional image saliency detection, co-saliency
detection aims to discover common and salient objects in
an image group containing multiple relevant images [27].
This has been successfully applied in co-segmentation [28]—
[30], co-localization [31]], and image matching [32]. Different
from image saliency detection, the co-saliency detection model
needs to consider the common attributes of salient objects in
an image group through the inter-image constraint. In other
words, the co-salient objects should not only be prominent
with respect to the backgrounds in each individual image, but
also should recur throughout the whole image group.

In addition to color appearance, humans can perceive the
distance mapping of a scene, which is known as depth
information. With the development of imaging devices and
technologies, capturing the depth representation information
becomes increasingly convenient. Moreover, depth information
has been proven to be useful for many computer vision tasks,
such as segmentation [33]], enhancement [34], and saliency de-
tection [35]-[42]. However, most of the existing methods focus
on handling the RGBD images rather than the RGBD image
group. In this paper, the depth feature is not only served as
a constraint in the inter-image correspondence modelling, but
also used as a color information supplement in the refinement
component.

The corresponding relationship among multiple images
plays an important role in co-saliency detection. In other
words, in addition to the saliency attribute in an individual
image, the repetitiveness constraint across the whole image
group is also crucial to suppress the background and non-
common salient regions. In existing methods, the inter-image
correspondence is simulated as a matching process [43]-[48]],
clustering process [49]-[51]], low-rank problem [52], [53],
propagation process [54]-[56], or learning process [57]-[61].
However, the matching- and propagation-based methods are
often time consuming, while the clustering based methods
are sensitive to the noise. To overcome these problems, the
sparsity-based technique is a good choice and has demon-
strated the potential to improve the performance of many
tasks, including saliency detection [62]]-[65]. For the sparsity-
based saliency detection methods, the background or fore-
ground dictionary is used to reconstruct each processing unit,
and the saliency is measured by the reconstruction error. In
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addition to describing the saliency of an individual image,
sparsity representation can be used to constrain the inter-
image correspondence capturing and to achieve inter saliency
detection. In this paper, a hierarchical sparsity reconstruction
model is innovatively proposed to capture a more compre-
hensive inter-image relationship by considering the global
and local inter-image information. The hierarchical sparsity
property includes two complementary aspects, i.e., (1) The
co-salient objects in the whole image group should belong to
the same category and have similar appearance. Therefore,
a global foreground dictionary with a ranking scheme is
built to reconstruct each image and to capture the global
inter-image correspondence, which is called global sparsity
reconstruction. (2) The relationship among multiple images
can be decomposed into a combination of multiple pairwise
correspondences. Therefore, a set of foreground dictionaries
constructed by other images are utilized to reconstruct the
current image and obtain multiple pairwise inter saliency maps
from the local perspective.

The co-salient objects in different images of the same group
should be similar and consistent in appearance. Thus, a supe-
rior co-saliency detection model should guarantee the local
smoothness in each individual image and global consistency
in the whole image group. In this paper, we propose an energy
function refinement model to attain a more consistent and
accurate co-saliency result, which includes the unary data
term, spatial smooth term, and holistic consistency term. The
data term constrains the updating degree of the refinement
algorithm, and the smooth term favors that all the spatially
adjacent regions with similar appearance should be assigned to
consistent saliency scores. In addition to these two traditional
terms, a holistic consistency term is specifically designed for
the co-saliency detection task, which imposes the appearances
of co-salient objects to be consistent in the whole image group.

In this paper, we provide an effective and efficient co-
saliency detection method for RGBD images based on hierar-
chical sparsity reconstruction and energy function refinement.
The main contributions are summarized as follows:

(1) A co-saliency detection method for RGBD images is pro-
posed that integrates the intra saliency detection, hierarchi-
cal inter saliency detection based on global and pairwise
sparsity reconstructions, and energy function refinement.
The hierarchical sparsity representation is firstly used
to capture the inter-image correspondence in co-saliency
detection.

(2) The global sparsity reconstruction is utilized to capture
the global characteristic among the whole image group
through a common foreground dictionary. Moreover, a
ranking scheme is designed to guide the foreground seed
selection and optimize the common foreground dictionary.

(3) The inter-image relationship is simulated as a combina-
tion of multiple pairwise correspondences. The pairwise
sparsity reconstruction model utilizes a set of foreground
dictionaries produced by other images to explore local
inter-image information.

(4) To improve the intra-image smoothness and inter-image
consistency, an energy function refinement model is pro-
posed. A holistic consistency term is specifically designed

for the co-saliency detection task, which constrains the
appearances of co-salient objects to be consistent in the
whole image group.

The rest of the paper is organized as follows. Section II
reviews related works. Section III presents the details of the
proposed RGBD co-saliency detection method. The experi-
mental comparisons and discussions are presented in Section
IV. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

In this section, we briefly review the related works of image
saliency detection and co-saliency detection.

A. Image Saliency Detection

The last decade has witnessed the considerable development
of saliency detection for RGB image, and a large number of
methods have been presented [8]—[26]. Li e al. [9] used the
reconstruction error to measure the saliency of a region, where
the salient region corresponds to a larger reconstruction error.
Zhu et al. [11] proposed a principled optimization framework
integrating multiple low-level cues to achieve saliency detec-
tion with the help of a robust background measure. Peng et
al. |15]] proposed a structured matrix decomposition based
saliency detection method guided by high-level priors and
obtained competitive performance. Recently, deep learning has
been demonstrated the power in saliency detection. Li and
Yu [[I7] proposed an end-to-end deep contrast network for
saliency detection, which integrates the multi-scale fully con-
volutional stream and the segment-wise spatial pooling stream.
Hou et al. [19] introduced short connections into the skip-
layer structures within the holisitcally-nested edge detector
architecture to achieve image saliency detection. Zhang et al.
[20] utilized an encoder Fully Convolutional Network (FCN)
and a corresponding decoder FCN to detect the salient object,
in which the reformulated dropout and hybrid up-sampling are
designed. In addition, some new measurements for saliency
evaluation are proposed, such as Structure-measure [25]] and
Enhanced-alignment measure [26].

In addition, the introduction of depth information makes
RGBD images more in accordance with the human vision
system, which could improve the performance of saliency
detection [35]-[42]. To achieve RGBD saliency detection,
some depth features and measures are utilized. Ju et al. [30]
proposed an Anisotropic Center-Surround Difference (ACSD)
measure to calculate the depth-aware saliency map. Consid-
ering the quality of depth map, Cong et al. [38|] proposed
an RGBD saliency detection method via depth confidence
analysis and multiple cues fusion, where the depth confidence
measure works as a controller to constrain the introduction
of depth information in the saliency model. In [39], depth
information is used as a regional feature for low-level contrast-
based saliency computation, and also worked as a weighting
term for mid-level saliency evaluation. Qu et al. [40] designed
a convolutional neural network to automatically learn the
interaction between low-level cues and saliency result for
RGBD saliency detection.
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Fig. 1. The flowchart of the proposed RGBD co-saliency detection method.

B. Co-saliency Detection

In order to achieve co-saliency detection, the inter-image
correspondence can be captured by different techniques, such
as similarity matching [43]-[48]], clustering [49]-[51], low-
rank decomposition [52], [53]], propagation [54]-[56], and
learning [S7]-[61]. Liu et al. [46] proposed a novel co-
saliency detection model integrating the global similarity on
the fine segmentation level with the object prior on the coarse
segmentation level, where the inter-image correspondence is
formulated as global similarity of each region. Li et al
[47] proposed a two-stage saliency model guided co-saliency
detection method, in which the first stage recovers the co-
salient parts through the efficient manifold ranking, and the
second stage captures the inter-image correspondence via a
ranking scheme. In [49]], an efficient cluster-based co-saliency
detection algorithm for multiple images is proposed, which
takes the cluster as the basic unit to represent the multi-
image relationship by integrating the contrast, spatial, and
corresponding cues. Cao et al. [52] proposed a saliency
fusion framework for co-saliency detection based on the rank
constraint, which is valid for multiple images and also works
well on single image saliency detection. In [54], co-saliency
detection is formulated as a two-stage saliency propagation
problem, including the intra-saliency propagation stage and
the inter-saliency propagation stage. With the training pro-
cess, the learning based methods always achieve competi-
tive performance. Zhang et al. [57] proposed a co-saliency
detection model under the Bayesian framework with some
higher-level features extracted by the convolutional neural
network. Wei et al. [58|] proposed an end-to-end group-wise
deep co-saliency detection model, where the semantic block is
utilized to obtain the basic feature representation, the group-
wise and single feature representation blocks are used to
capture the group-wise interaction information and individual

image information, and the collaborative learning structure
with convolution-deconvolution model aims to output the co-
saliency map. Han et al. [61] introduced the metric learning
into co-saliency detection to jointly learn the discriminative
feature representation and co-salient object detector, which can
handle the wide variation in image scene and achieve superior
performance.

Furthermore, a few methods are proposed to achieve RGBD
co-saliency detection by introducing the depth cue as an
effective privileged information. Song er al. [66] utilized
the bagging-based clustering method to detect the co-salient
objects from RGBD images group, where the average depth
value, depth range, and Histogram of Oriented Gradient
(HOG) on depth map are extracted to represent the depth
attributes. Cong et al. [67] proposed a co-saliency detection
method for RGBD images by using the multi-constraint feature
matching and cross label propagation, where the inter-image
relationship is explored at the superpixel and image levels. In
[68]], an iterative co-saliency detection framework for RGBD
images is proposed, which integrates the addition scheme,
deletion scheme, and iterative scheme. The addition scheme
aims at generating the RGBD saliency map by introducing the
depth shape prior into the existing saliency detection model,
the deletion scheme focuses on capturing the inter-image
correspondence via a common probability function, and the
iterative scheme is served as an optimization process through
a refinement-cycle.

Compared to the traditional saliency detection, there are
three challenges for RGBD co-saliency detection, i.e., (1) how
to utilize the depth information to enhance the identification
of salient objects, (2) how to capture the corresponding re-
lationship among multiple images, and (3) how to guaran-
tee the consistency and smoothness of the final co-saliency
map. To address these challenges, we propose a hierarchical
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sparsity based co-saliency detection method for RGBD im-
ages. The depth feature is used as an additional constraint
and supplement cue in the inter-image correspondence and
refinement components. In addition, an effective inter saliency
model is designed to capture the inter-image correspondence,
which integrates the global sparsity reconstruction and pair-
wise sparsity reconstruction. Moreover, we also formulate an
energy function refinement to achieve a superior and globally
consistent co-saliency map.

III. PROPOSED METHOD
A. Framework

The flowchart of the proposed hierarchical sparsity based
co-saliency detection method for RGBD images is shown in
Fig. [T} which includes intra saliency calculation, hierarchical
inter saliency detection based on global and pairwise sparsity
reconstructions, and energy function refinement.

According to the definition of co-saliency detection, the co-
salient objects should be prominent in an individual image.
Therefore, the intra saliency map is firstly calculated for each
individual image. We denote the input RGB images in a group
as {I'}Y,, and the corresponding depth maps as {D*} |
where N is the number of images in the group. For com-
putational efficiency and structural representation, each RGB
image I° is abstracted into some superpixels R* = {72 1N
through the SLIC algorithm [69], where N represents the
number of superpixels in image I°. In light of the effectiveness
and robustness of the DCMC method [38ﬂ we chose it as the
basic method for intra saliency detection, and the intra saliency
value of superpixel ¢, is denoted as S, (r%,).

The background of each image may be diverse within the
same image group, while the co-salient objects tend to have a
similar appearance in all images. Therefore, the co-salient re-
gions can be reconstructed better than the background regions
through a sparsity framework with the foreground dictionary.
In this paper, the corresponding relationship among multiple
images is simulated as a hierarchical sparsity framework
considering the global and pairwise sparsity reconstructions.
The global inter saliency reconstruction model describes the
inter-image correspondence from the perspective of the whole
image group via a common reconstruction dictionary, while
the pairwise inter saliency reconstruction model utilizes a set
of foreground dictionaries produced by other images to capture
local inter-image information.

Finally, an energy function refinement model, including the
unary data term, spatial smooth term, and holistic consistency
term, is proposed to improve the intra-image smoothness and
inter-image consistency and to generate the final co-saliency
map. The spatial smooth term is used to optimize the intra-
image smoothness, and the holistic consistency term is specif-
ically designed for co-saliency detection task to update the
inter-image consistency. Hierarchical inter saliency detection
based on global and pairwise sparsity reconstructions, as well
as the energy function refinement, are detailed in the following
sections.

! lhttps://rmcong.github.io/proj_RGBD_sal.html

B. Global Inter Saliency Reconstruction

The co-salient objects in a whole image group should belong
to the same category and have a similar appearance. Therefore,
a global foreground dictionary is built to reconstruct each
image and capture the global inter-image correspondence.
First, some initial foreground seeds are selected based on all
the intra saliency maps in the image group. Then, a ranking
filter is designed to eliminate the interference seeds and to
determine the optimal foreground seeds. Next, the feature
vectors of foreground seeds are extracted to construct the
global foreground dictionary. Finally, the reconstruction error
produced by the sparsity framework is utilized to measure the
global inter saliency.

1) Initial foreground seeds selection: The intra saliency
map provides effective single image saliency description. We
assume that most of the co-salient objects can be included
in these saliency maps. Thus, the top K superpixels in
image I' with larger intra saliency values are selected as
the foreground seeds. Then, all these seeds from different
images are combined into an initial foreground seed set
Dinit = Pl U D75 U ... )y, where ®F;, denotes the
foreground seed set of image I*, and N is the number of
images.

2) Ranking based seeds filtering: Since the intra saliency
result is not completely accurate, some disturbances may be
wrongly included in the initial foreground seed set, such
as the backgrounds and non-common salient regions, which
may degenerate the reconstruction accuracy. Therefore, we
designed a ranking scheme to filter the interferences and refine
the foreground seeds.

In general, the co-salient objects satisfy three constraints,
i.e., (a) the category should be same, (b) the color appearance
should be similar, and (c) the depth distribution should be ap-
proximate. Combining these three constraints, a novel measure
is designed to evaluate the local consistency of superpixels
belonging to the initial foreground seed set. First, all the initial
seed superpixels are grouped into five clusters by using the K-
means++ clustering [[70], and each superpixel is assigned to a
corresponding cluster center {c;}- ¥ respectively. Then, in-
troducing the clustering, color, depth, and saliency constraints,
the consistency measure is defined as follows:

N-K
me(rm) = [Z (L= llem = enll2) - wmn] - Sa(rm) (1)
n=1
n#m
and
XQ(hTmhn) + )\mzn : |dm - dn‘

o2

) @

where 7,,,, 7, € Pinit; € 1S the cluster center of superpixel
Tm3 Wmn represents the feature similarity between superpixel
rm and superpixel 7,,; S, (r,,) is the intra saliency value of
superpixel r,,; N - K is the total number of initial foreground
seeds; || - ||2 is the lo-norm function; and o2 is a parameter
to control strength of the similarity, which is set to 0.1 in all
experiments following [38]. k,, denotes the color histogram
of superpixel 7, in the Lab color space; x?(-) represents
the Chi-square distance; and d,, is the mean depth value of

Wmn = eXp(_
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Fig. 2. Some examples of ranking scheme for foreground seeds selection.
The first second rows are the RGB images and depth maps, the third row
shows the initial foreground seeds marked in red, and last row presents the
final foreground seeds marked in yellow after ranking scheme.

superpixel 7,,. Apmin = min(A,, A,) denotes the minimum
depth confidence measure of two input depth maps, where
Am = exp((1 —my,) - CVy, - Hp,) — 1 is the depth confidence
measure of the input depth map D™; m,, denotes the mean
value of the whole depth image; CV,,, represents the coef-
ficient of variation; and H,, is the depth frequency entropy.
More details can be found in [38]. A larger mc corresponds to
higher consistency with respect to other foreground seeds. In
other words, the larger the consistency measure is, the higher
the probability of the superpixel being the foreground seed.
Finally, the top 80% of initial seeds with larger consistency
measure values are reserved as the final foreground seeds,
which is denoted as @ ;.

Some illustrations of the foreground seeds are shown in
Fig. |2 where the third row presents the visualization of the
initial foreground seeds marked in red, and the final foreground
seeds marked in yellow after ranking scheme are shown in the
last row. As can be seen, some backgrounds (e.g., the lawns
located by the blue arrows) in the second and third images are
wrongly selected as the foregrounds in the initial seeds set.
With the ranking scheme, the correct foreground seeds (i.e.,
the dark bird) are successfully reserved, while the backgrounds
are effectively eliminated.

3) Sparsity-based global reconstruction: Four types of low-
level features, including color components, depth attribute,
spatial location, and texture distribution, are utilized to de-
scribe each superpixel % as f. = [I' d, pi ¢ 17, where I
is the 9-dimensional color components in the RGB, Lab, and
HSV color spaces; d denotes the depth value; p corresponds to
the 2-dimensional spatial coordinates; and ¢ represents the 15-
dimensional texton histogram [[71]]. The feature representations
of the stacking superpixels in the final foreground seeds set

®y;, are constructed as the global foreground dictionary,
which is denoted as Dgp.

Under the same reconstruction dictionary, the reconstruction
error between foreground and background regions should
be different. Thus, the image saliency can be measured by
the reconstruction error [9). We compute the reconstruction
error by the sparsity representation with a global foreground
dictionary, and each superpixel 7 is encoded by:

ap = argmin [f;, —Dgr-ap 3 +&- lag, /i 3)

i
Xy

where a* is the optimal sparse coefficient for superpixel
7y [DaF]Lx|a;,,| denotes the global foreground dictionary;
|® rin| represents the number of final foreground seeds; L =
27 is the feature dimension of each superpixel in our work;
f: is the feature representation of superpixel 7% ; || - || is the
l1-norm function; and £ is set to 0.01 as suggested in [9].

The foreground dictionary is used to achieve global recon-
struction, thus, the superpixel with the smaller reconstruction
error should be assigned to a greater saliency value and vice
versa. The global inter saliency of superpixel ¢, is defined
as:

Sgr (1) = exp(—¢,,,/0?) = exp(=|lf,,, = Dar - opl3/0?)

‘ A “)
where Sg,-(r7,,) is the inter saliency of superpixel 77, through
the global reconstruction; afn denotes the reconstruction error
of superpixel ¢ ; and o2 is a weighted constant.

C. Fairwise Inter Saliency Reconstruction

The global reconstruction aims to describe the inter-image
correspondence from the perspective of the whole image
group. In fact, the relationship among multiple images can
be decomposed into a combination of multiple pairwise cor-
respondences, which benefits capturing the local inter-image
information. In order to deeply explore a more comprehensive
inter-image corresponding relationship, a sparsity-based pair-
wise reconstruction method is proposed to calculate the pair-
wise inter saliency. First, we construct a foreground dictionary
for each image based on the corresponding intra saliency map,
respectively. In this way, the IV foreground dictionaries in an
image group are obtained, where N denotes the number of
images in the group. Then, each image is reconstructed by
the NV — 1 foreground dictionaries derived from other images
in the group, respectively. Finally, these N — 1 reconstructed
results are fused to generate the pairwise inter saliency map.

For each image I*, the top K superpixels with larger intra
saliency values are selected as the foreground seeds. Similar
to the sparsity-based global reconstruction, a 27-dimensional
feature vector is used to represent each superpixel. Then, the
feature representations of the stacking foreground superpixels
in each image are constructed as the pairwise foreground
dictionary, which is denoted as D’,% - As mentioned earlier,
the foreground pairwise dictionaries generated by other images
can be utilized to reconstruct the current image and capture the
local inter-image relationship. Using the pairwise foreground
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dictionary D’fp 7 produced by the image %, the image I’ can
be constructed and the saliency is measured as:
Sk (i) = exp(—eki/0%) = exp(~[Ifl, ~ D - aky*[[3/0%)

&)
where SE.(ri) is the inter saliency through the pairwise
reconstruction using the dictionary [D’fD rloxx: € denotes
the reconstruction error of superpixel ¢ ; a¥:** is the optimal
sparse coefficient of superpixel r’,; k € [1,2,...,N], k # i
represents the index of pairwise foreground dictionary; and o2
is a weighted parameter. Therefore, we obtain N — 1 saliency
maps for each image through different pairwise dictionaries.
At last, all these maps are fused to generate the final pairwise
inter saliency map by:

N

) 1 )
Spr(rvln) = m : ZSST(T:R) (6)

k=1
ki
The global inter saliency map describes the global inter-
image correspondence from the whole image group, while
the pairwise inter saliency map captures the local relationship
from the pairwise images. Finally, these two inter saliency
maps are combined as the hierarchical sparsity based inter
saliency:

) (SgT(rfn) + Spr(rfn)) (7N

where S, (r!,) denotes the hierarchical sparsity based inter
saliency of superpixel 77, .

D. Energy Function Refinement

In order to achieve a superior and globally consistent
saliency map, a refinement model with an energy function is
designed in our work. Three terms are included in the energy
function: the unary data term 7, constrains the similarity
between the final saliency map and initial saliency map; the
spatial smooth term 75 favors that all the similar and spatially
adjacent superpixels in an individual image should be assigned
to consistent saliency scores; and the holistic consistency term
Ty, enforces that the appearance of the salient objects should
be consistent within the whole image group. Therefore, the
energy function is defined as:

E=T,+Te+Th=> (5m— 5m)’

+ Z Wmn * (gm - g77.)2 + ng : ggn (8)

(m,n)eQ

where 5, denotes the refined saliency value of superpixel r,,;
Sm = Sa(Tm)-Sr () is the initial saliency value of superpixel
rm by combining the intra and inter saliencies; € represents
the spatially adjacent set in an individual image; w,,, denotes
the similarity between two superpixels, which is defined in
the same way as Eq. (2); and g, = x*(hm,hy) is the color
difference between the superpixel r,, and global foreground
model via the chi-square distance of Lab color histograms. The
top 20 superpixels with larger initial saliency value in each
image are regarded as the foreground samples to represent the
global foreground distribution.

Let s = [Sm]nx1, and § = [S]ux1, where R = Zf;lNi
is the total number of superpixels in the whole image group.
Then, the energy function is rewritten in the matrix forms as:

E=G-5)"-5—s)+5 - (D-W)-5+5 -G-5 (9)

where W = [wnn] S s the spatial color similarity
matrix; D = diag(dy,ds, .. .,dx) represents the degree ma-
trix; d; = Ej:L(i,j)eQwij; and G = dzag(ghg%---ag}t)

is the difference matrix between the superpixels and global
foreground model.

The minimization of the above energy function can be
solved by setting the derivative with respect to 5 to be 0, which
is represented as:

JE

§:2(§—s)+2(D—W)~§+2G~§:O (10)
Combining the like terms, the solution is given by:
§=[I+D-W)+G] ' s (11)

where I is an identity matrix with the size of N x N.

IV. EXPERIMENTS

In this section, we evaluate the proposed RGBD co-saliency
detection method on the RGBD CoSall50 dataset and RGBD
CoSegl83 dataset. The qualitative and quantitative compar-
isons with some state-of-the-art methods are presented, and
some discussions and analyses are conducted.

A. Experimental Settings

In experiments, two public RGBD co-saliency detec-
tion datasets, named RGBD CoSall150 datasetE] and RGBD
CoSegl83 dataseﬂ are used to evaluate the effectiveness
of the proposed method. The RGBD CoSall50 dataset [67]]
consists of 150 RGBD images that are distributed in 21
indoor and outdoor scenes, and the pixel-level ground truth
for each image is provided. The RGBD CoSegl83 dataset
[28] is a challenging dataset due to the cluttered backgrounds,
complex foreground patterns, and multiple objects, containing
183 RGBD images with pixel-level ground truth that are
distributed in 16 indoor scenes. In our work, the number of
superpixels for each image is set to 400, and the number of
initial foreground seeds is set to K = 40. The project is
available on our websitel']

For quantitative evaluation, three criteria including the
Precision-Recall (PR) curve, F-measure, and Mean Absolute
Error (MAE) are introduced. The precision and recall scores
are computed by comparing the binary saliency map against
the ground truth, where the precision score represents the
percentage of salient pixels which are allocated correctly in
the obtained saliency map, and the recall value corresponds to
the ratio of detected salient pixels with respect to the salient
pixels in the ground truth. Thus, the PR curve can be drawn
using the pairwise precision and recall scores. F-measure [72],

2 |https://rmcong.github.io/proj_RGBD_cosal html
3 http://hzfu.github.io/proj_rgbdseg. html
4 https://rmcong.github.io/proj_RGBD_cosal_HSCS_tmm.html
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Fig. 3. Some visual examples of different methods.

[73] is an overall performance measurement, which is defined
as the weighted mean of precision and recall:

(1 + B?)Precision x Recall
B2 x Precision + Recall

Fy = (12)
where 2 is set to 0.3 for emphasizing the precision as
suggested in [74].

Mean Absolute Error (MAE) is calculated as the average
pixel-wise difference between the obtained saliency map S
and ground truth G [75]], [76]:

1
MAE = ~Glig)  (3)
w — <
i=1 j=1
where W and H are the width and height of the image,
respectively.

B. Comparison with State-of-the-art Methods

We compared the proposed HSCS method with 17 state-of-
the-art methods, including DSR [9]], BSCA [10], DCLC [12],
HDCT [14], SMD [15]], DCL [17], DSS [19], R3Net [22],
ACSD [36], DF [40], CTMF [41], PCEN [42], SCS [47]], CCS
[49]], LRMF [53]], ICS [67]], and MCLP [68]], where DCL, DSS,
R3Net, DF, CTMF, and PCEFN are the deep learning based
methods. The visual comparisons are shown in Fig. 3] and the
quantitative evaluations are reported in Fig. [4] and Table [I}

In Fig. [3] four image groups, including the green cartoon
in the virtual scene, sculpture in the outdoor scene, and the
red and yellow flashlights in the indoor scene, are illustrated

for visual comparison. Due to the lack of a high-level feature
description and inter-image constraints, the unsupervised sin-
gle image saliency detection methods (e.g., DSR [9], HDCT
[14]) only roughly highlight the salient regions , while the
background regions cannot be suppressed effectively (such
as the street in the green cartoon group and the trees in the
sculpture group). Benefitting from the strong learning ability
of deep learning, the DCL [[17] method achieves better per-
formance with more consistent salient regions. However, there
are still some wrongly detected backgrounds, such as the white
object in the second image of the last group. Combining the
depth cue and deep learning, the DF [40] method suppresses
the background effectively, but it ignores the completeness of
salient objects, such as the third image in the green cartoon
group. For the RGB co-saliency detection methods (CCS [49]]
and SCS [47]]), some foregrounds (such as the third image in
the green cartoon group) are wrongly suppressed by the CCS
method, and some backgrounds (such as the white board in
the red flashlight group) are also inaccurately highlighted by
the SCS method. Compared with the above methods, RGBD
co-saliency detection methods (ICS [67] and MCLP [68])
achieve relatively superior performance with tangible salient
objects. However, they still fail to suppress some common
backgrounds, such as the ground in the sculpture group and the
white board in the red flashlight group. By contrast, benefitting
from the hierarchical reconstruction and global refinement, the
proposed method can consistently highlight the salient objects
and effectively suppress the backgrounds.

PR curves of different methods on two datasets are shown
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Fig. 4. PR curves of different methods on two RGBD co-saliency detection datasets, where “*” denotes the deep learning based methods. (a). RGBD CoSal150

dataset. (b). RGBD CoSeg183 dataset.

TABLE I
QUANTITATIVE COMPARISONS WITH DIFFERENT METHODS ON TWO
DATASETS, WHERE “*” DENOTES THE DEEP LEARNING BASED
METHODS.

RGBD CoSall150 Dataset || RGBD CoSegl83 Dataset
F-measure MAE F-measure MAE
DSR 9] 0.6956 0.1867 0.5496 0.1092
BSCA [10] 0.7318 0.1925 0.5678 0.1877
DCLC [12] 0.7385 0.1728 0.5994 0.1097
HDCT [14] 0.6753 0.2146 0.5447 0.1307
SMD |[15]] 0.7494 0.1774 0.5760 0.1229
DCL* [17] 0.8345 0.1056 0.5531 0.0967
DSS* [19] 0.8540 0.0869 0.5972 0.0782
R3Net* [22] 0.7812 0.1296 0.6190 0.0678
ACSD [36] 0.7788 0.1806 0.4787 0.1940
DF* [40] 0.6844 0.1945 0.4840 0.1077
CTMF* [41] - - 0.5316 0.1259
PCEN* [42] - - 0.6049 0.0782
CCS [49] 0.6311 0.2138 0.5383 0.1210
SCS [47] 0.6724 0.1966 0.5553 0.1616
LRMF [53] 0.6995 0.1813 - -
ICS [67] 0.7915 0.1790 0.6011 0.1544
MCLP [68] 0.8403 0.1370 0.6365 0.0979
HSCS 0.8500 0.1030 0.6466 0.0787

in Fig. [ As can be seen, the proposed HSCS method reaches
a higher precision on the whole PR curves. Moreover, the
proposed method is even superior to some deep learning based
methods (e.g., DCL [17], R3Net [22], DF [40], CTMF [41]],
and PCFN [42]). The quantitative measurements, including

F-measure and MAE score, are reported in Table [ From
the table, we can see that the proposed method achieves
the competitive performance compared with 17 other state-
of-the-art methods. On the RGBD CoSall150 dataset, the F-
measure of the proposed method reaches 0.8500, and the
maximum percentage gain reaches 34.7% compared with other
methods. Especially, the proposed HSCS method also achieves
the percentage gain of 8.8% compared with the deep learning
based method (e.g., R3Net [22]). On the RGBD CoSegl83
dataset, the proposed method achieves the best performance
in terms of F-measure, and the performance gains against
others are more remarkable. The maximum percentage gain
of the proposed method also reaches 35.1% in terms of F-
measure. All these visual examples and quantitative measures
demonstrate the effectiveness of the proposed method.

C. Discussions

In this section, we conduct some discussions, including
the module analysis, depth and ranking scheme evaluation,
parameter discussion, and running time.

1) Module Analysis: The key points of the proposed
hierarchical sparsity-based co-saliency detection method for
RGBD images include a hierarchical sparsity based inter
saliency model and an energy function refinement model. For
hierarchical sparsity based inter saliency generation, the global
and pairwise sparsity reconstructions are used to capture the
inter-image constraints from two aspects. We comprehensively
evaluate each module on the RGBD CoSal150 dataset, and the
F-measures are presented in Table[[l] The global inter saliency
reconstruction captures the global corresponding relationship
throughout the whole image group and achieves the F-measure
of 0.8145. As a supplement, the multiple images relationship is
formulated as pairwise correspondences by using the pairwise
reconstruction model with a set of pairwise dictionaries, and
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TABLE II
F-MEASURE OF THE MAIN MODULES ON THE RGBD C0SAL150
DATASET.
Modules F-measure

intra saliency detection 0.8348

global reconstruction 0.8145

pairwise reconstruction 0.7628

hierarchical inter saliency 0.8198

energy function refinement 0.8500

TABLE III
EVALUATION OF DEPTH AND RANKING SCHEME ON THE RGBD
COSAL150 DATASET, WHERE “W/0” MEANS “WITHOUT” AND “W/”
CORRESPONDS TO “WITH”.

F-measure
w/o depth and w/ ranking 0.7839
w/ depth and w/o ranking 0.8439
w/ depth and w/ ranking 0.8500

the F-measure reaches 0.7628. Combining these two aspects,
the hierarchical inter saliency structure can explore a more
comprehensive inter-image relationship, and reaches 0.8198 in
terms of F-measure, which is superior to most of the existing
(co-)saliency detection methods (e.g., DSR [9]], SMD [15]], DF
[40], SCS [47], LRMF [53]], and ICS [67]). Finally, the co-
saliency detection with energy function refinement achieves
the best performance, and the percentage gain reaches 3.7%
compared with the inter saliency models.

2) Depth and ranking scheme evaluation: In this paper,
the depth cue is not only served as a constraint in the inter-
image correspondence modelling, but also used as a supple-
ment of color information in the refinement component. In
order to attain more robust and accurate foreground seeds for
global dictionary construction, a ranking scheme is designed to
filter the interferences and to obtain optimal foreground seeds.
We conduct some experiments on the RGBD CoSal150 dataset
to evaluate the influence of these two constraints, and the F-
measures are reported in Table Compared with the first
and the third rows, introducing the depth cue into the model,
the performance is obviously improved with a percentage gain
of 8.4%. Shown in the second and third rows, the performance
with the ranking scheme is better than the model without
the ranking scheme. In addition, some illustrations are shown
in Fig. @ As can be seen, with the ranking scheme, the
correct foreground seeds are successfully reserved, while the
backgrounds (such as the lawn in the second and third images)
are effectively eliminated. All these data demonstrate the
effectiveness of the depth information and ranking scheme.

3) Parameter discussion: In this section, we mainly dis-
cuss the influence of different numbers of initial foreground
seeds and superpixels. In the experiment, we evaluate one
parameter by fixing the other parameters. The tendency chart
of the F-measure is shown in Fig. 5] From Fig. [5(a), selecting

0.86

RGBD Cosal150
0.8494 L
0.85 0.8482
g
3 0.845
©
@
£
Y o084
0.83
20 30 a0 50
K
(a)
0.855
RGBD Cosal150

g
7 0.85
v
& 0.8496
£
u

0.845

200 300 400 500
Number of superpixel

(b)

Fig. 5. The F-measure of different parameters on RGBD Cosall150 dataset.
(a) The influence of different number of initial foreground seeds. (b) The
influence of different number of superpixels.

TABLE IV
COMPARISONS OF THE AVERAGE RUNNING TIME (SECONDS PER IMAGE)
ON THE RGBD COSAL150 DATASET.

Method ‘ DCLC ‘ SMD ‘ DF ‘ ccs ‘ SCS ‘ MCLP ‘ ICcs ‘ HSCS

Time \ 1.96 \ 7.49 \ 12.95 \ 2.65 \ 2.94 \ 41.03 \ 42.67 \ 8.29

20 initial foreground seeds for each image is not enough
to represent the common saliency attributes completely and
degenerates the inter reconstruction result. As the seed number
increase, the performance improves and reaches the optimum
when K is set to 40. When K reaches 50, the performance
of the algorithm begins to drop. The main reason for the drop
after 50 is that too many seeds contain background regions and
decrease the reconstruction accuracy. As mentioned above, the
performance is not highly sensitive to the parameter K, and
we set it to 40 in all experiments. In addition to the number
of initial foreground seeds, we further discuss the influence of
different numbers of superpixels in the experiments. From the
curve shown in Fig. [5[b), when the number of superpixels
is set to 400, the result achieves the best performance. In
fact, the performance in different numbers of superpixels are
similar, indicating that the proposed algorithm is insensitive
to the number of superpixels.

4) Running time: We compare the running time of the
proposed method with others on a Quad Core 3.7GHz work-
station with 16GB RAM and implemented using MATLAB
2014a. The average running time is listed in Table In
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general, compared with the image saliency detection method,
co-saliency detection algorithm often requires more compu-
tation time, especially for the matching based methods (such
as MCLP [68]], ICS [67]). For the three RGBD co-saliency
detection methods, under the same conditions, the MCLP
method takes 41.03 seconds for one image, the ICS method
takes 42.67 seconds, and the proposed HSCS method takes
an average of 8.29 seconds to process one image. Since the
commonly used superpixel-level matching process is replaced
by the hierarchical sparsity based reconstruction to capture
the inter-image correspondence, the computational efficiency
of the proposed algorithm is clearly improved.

V. CONCLUSION

In this paper, a novel co-saliency detection method for
RGBD images based on hierarchical sparsity reconstruction
and energy function refinement is proposed. The major con-
tribution lies in the hierarchical sparsity based inter saliency
modelling, where the global inter-image model with a ranking
scheme is used to capture the global characteristic among the
whole image group through a common foreground dictionary,
and the pairwise inter-image model is devoted to exploring
the local corresponding relationship through a set of pairwise
foreground dictionaries. In addition, an energy function refine-
ment model is proposed to further improve the intra-image
smoothness and inter-image consistency. The comprehensive
comparisons and discussions on two RGBD co-saliency de-
tection datasets have demonstrated that the proposed method
outperforms other state-of-the-art methods qualitatively and
quantitatively.
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