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SwapGAN: A Multistage Generative Approach for
Person-to-Person Fashion Style Transfer

Yu Liu, Wei Chen, Li Liu and Michael S. Lew*

Abstract—Fashion style transfer has attracted significant at-
tention because it both has interesting scientific challenges and it
is also important to the fashion industry. This paper focuses
on addressing a practical problem in fashion style transfer,
person-to-person clothing swapping, which aims to visualize what
the person would look like with the target clothes worn on
another person instead of dressing them physically. This problem
remains challenging due to varying pose deformations between
different person images. In contrast to traditional nonparametric
methods that blend or warp the target clothes for the reference
person, in this paper we propose a multistage deep generative
approach named SwapGAN that exploits three generators and
one discriminator in a unified framework to fulfill the task end-
to-end. The first and second generators are conditioned on a
human pose map and a segmentation map, respectively, so that
we can simultaneously transfer the pose style and the clothes
style. In addition, the third generator is used to preserve the
human body shape during the image synthesis process. The
discriminator needs to distinguish two fake image pairs from
the real image pair. The entire SwapGAN is trained by inte-
grating the adversarial loss and the mask-consistency loss. The
experimental results on the DeepFashion dataset demonstrate
the improvements of SwapGAN over other existing approaches
through both quantitative and qualitative evaluations. Moreover,
we conduct ablation studies on SwapGAN and provide a detailed
analysis about its effectiveness.

I. INTRODUCTION

URRENTLY, online shopping is an indispensable expe-
rience in humans’ daily life. Consequently, the extensive
market of fashion clothing shopping motivates an increase in
fashion relevant research, such as fashion clothing retrieval [1],
[2], fashion recommendation [3], [4], fashion parsing [5], [6]
and fashion aesthetics [7], [8]. In this work, we deal with
the problem of fashion clothing swapping, which aims to
visualize how a person would look with the target clothes.
From a practicality perspective, fashion clothing swapping is
a useful experience for online consumers who need to try on
different clothes virtually instead of trying them on physically.
From a research perspective, fashion clothing swapping can be
viewed as a specific task belonging to fashion style transfer.
The challenge in this task is transforming the target clothes fit
for the wearers while preserving their pose and body shape.
Traditionally, nonparametric methods [9]-[12] are exploited
to address this problem. These methods need to segment the
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Fig. 1: Examples of clothing and person images. The first row
shows stand-alone and flat clothing images. In the second row,
the individuals wear the corresponding clothes in the first row.
The reference person images (i.e. the target wearers) are shown
in the third row. For the clothing-to-person swapping, the
conditional clothing images in the first row are used to redress
the reference person images in the third row. In contrast,
the person-to-person clothing swapping we focus on needs
to transfer the target clothes worn on the conditional person
images in the second row to the reference person images.

target clothes from the conditional image and then employ
2D image warping algorithms or 3D graphics methods to
model the deformations between the clothes and the refer-
ence person’s body. However, these traditional methods rely
on extra information (e.g. 3D measurements and geometric
constraints) and complicated optimization algorithms (e.g. dy-
namic programming and dynamic time warping). In addition,
nonparametric methods are not general, which means they
need to estimate individual deformations for different image
pairs. Additionally, it is nontractable to match humans’ key
points due to nonrigid pose deformations.

In contrast to nonparametric methods that rely on blending
or warping the target clothes, recent research [13], [14] recasts
the clothing swapping as a 2D image synthesis problem. It is
mainly driven by the rapid developments of deep generative
networks in the field. For example, generative adversarial
networks (GANs) [15] have succeeded in many tasks involving
synthesizing plausible images [16]-[19]. Deep generative net-
works can synthesize new images without requiring matching
key points. Prior work [13], [14] is conditioned on stand-
alone and flat clothing images (the first row of Fig. 1) to
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redress reference images (the third row of Fig. 1). However,
in practical scenarios, the target clothes are typically worn
on another person (the second row of Fig. 1), as opposed to
showing only the clothes. In our context, we need to transfer
the clothes from one person to another person. It remains
challenging due to the varying deformations among different
human poses.

To address the challenge, in this paper, we propose a mul-
tistage deep generative framework named SwapGAN, which
is composed of three generators and one discriminator in a
unified framework to fulfill the task end-to-end. In the first
generation stage, we interpret this problem as a pose-based
person image synthesis process. We, therefore, exploit a pose-
conditioned generative network (i.e. Generator I), which can
manipulate the person in the conditional image to match the
pose and body shape of the person in the reference image.
Consequently, the new synthesized image can be viewed as
the desired target image where the reference person wears
the target clothes while preserving the original pose and body
shape. For the second generation stage, we further exploit a
segmentation-conditioned generative network (i.e. Generator
IT) built on Generator I. The pose map in Generator I may
mistake the clothing style (e.g. changing long sleeves to
short sleeves); however, the segmentation in Generator II is
used to retain the style due to its rich semantic information.
Specifically, we input the segmentation map of the conditional
image to Generator II, to ensure that the synthesized image is
consistent with the original conditional image. Our hypothesis
is that if a person image can be well transformed based on
an arbitrary pose, then it should be reconstructed based on
its original segmentation map. In addition, we perform the
third generation stage by using a mask generative network (i.e.
Generator III). Generator III is used to explicitly constrain the
body shape of the synthesized person images from both Gen-
erator I and Generator II. Moreover, the discriminator needs to
distinguish the two fake image pairs from the real pair. During
the training procedure, we train the entire SwapGAN end-to-
end by integrating the adversarial loss from Generator I and
Generator II and the mask-consistency loss from Generator
III. Thus, SwapGAN can transfer the pose style and clothes
style simultaneously, as well as preserve the human body shape
during the image synthesis process.

The contributions of this work are as follows:

« We propose a novel multistage generative framework
named SwapGAN for addressing the task of person-
to-person clothing swapping. In contrast to traditional
nonparametric methods, our approach can synthesize new
fashion person images, rather than blending or warping
existing images. To the best of our knowledge, this is
the first attempt to address this task by exploiting a
generative adversarial approach. The GAN approach can
enrich the application of deep generative approaches to
solving practical problems.

o In addition, SwapGAN integrates three generators and
one discriminator in a unified framework. In contrast
to existing approaches, our generators are conditioned
on different priors such as a human pose map and a
segmentation map. The generated images from the first

and second generators are both used to make the discrim-
inator difficult to distinguish from the real image. During
training, the entire SwapGAN can be trained end-to-end
by combining the adversarial loss and mask-consistency
loss.

o Furthermore, experiments on the DeepFashion dataset
verify the advantage of SwapGAN over other existing
approaches, in terms of both qualitative and quantitative
evaluations. In addition, our ablation study demonstrates
the benefit of integrating multiple generators based on dif-
ferent conditions. This multistage generative framework
can motivate addressing other problems regarding image
generation.

The rest of this paper is structured as follows. Section II
introduces the related work. In Section III, we describe the
proposed multistage generative framework. The network ar-
chitecture is detailed in Section IV. In Section V, we report
and discuss the qualitative and quantitative results. Finally,
Section VI concludes the paper and discusses future work.

II. RELATED WORK

In this section, we introduce previous work on fashion
clothing swapping, stacked image generation and person image
generation.

A. Fashion Clothing Swapping

The prevalence of online shopping has significantly driven
fashion relevant research in recent years [20]-[23]. In partic-
ular, fashion clothing swapping has become a popular virtual
try-on application for online shopping. This application allows
consumers to see how they would look when wearing different
clothes, without the effort of dressing physically. Thus, the
consumers can easily decide whether they like the clothes.
In the literature, this problem has been studied in the fields
of multimedia and computer graphics [9], [11], [24], [25].
For example, the work in [26] used an image-based visual
hull rendering approach to transfer the appearance of a target
garment to another person image. The ClothCap approach [10]
captured the 3D deformations of the clothing and estimated the
minimally clothed body shape and pose under the clothing.
Zheng et al. [12] designed an image-based clothes changing
system based on body factor extraction and content-aware
image warping. Generally, these nonparametric solutions in-
volve using extra information to model the deformations, such
as motion capture, 3D measurement and depth sensor [25],
[27], [28]. During the test stage, online image warping or
registration algorithms, which are time-consuming for real-
time applications, are still required by these methods.

In recent years, GANs [15] have shown generalization
ability for a wide range of image synthesis tasks, includ-
ing image-to-image translation [30], style transfer [31] and
domain adaptation [32]. Primarily, GANs learn to force the
synthesized samples to be indistinguishable from the real
data. Additionally, a variety of conditional GANs (cGANs)
have been designed to guide image synthesis conditioned on
class labels [33], attributes [34], images [16] or texts [18].
Essentially, fashion clothing swapping can be interpreted as
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Fig. 2: Three fashion clothing swapping tasks conditioned
on (a) textual description [29], (b) clothing image [13] and
(c) person image, respectively. Each of the three cases aims
to dress the woman in the reference image with a long-
sleeved sweater while preserving her original pose and body
shape. (c) shows the synthesized image based on our proposed
SwapGAN.

a problem of style transfer that aims to synthesize a new
person image wearing the target clothes. Specifically, recent
approaches address this problem based on different condi-
tions. First, FashionGAN [29] employed a textual description
as a condition for performing clothing swapping (Fig.2(a)).
Second, the methods in [13], [14] used a stand-alone flat
clothing image to redress a reference person (Fig. 2(b)). In
contrast, our work considers the person-to-person case, where
a conditional person image is used to specify the synthesis
process (Fig.2(c)). Figure 2 shows the three tasks visibly and
clearly. By comparison, our task is more challenging due to
varying pose deformations. Although this task has been studied
based on traditional nonparametric methods, this work is the
first to exploit a deep generative approach to address it.

B. Stacked Image Generation

Image synthesis tasks benefit from the continual progress
of diverse deep generative models, especially generative ad-
versarial networks (GANs) [15] that can force synthesized
samples to be indistinguishable from real data. To improve
the synthesized results, a key approach is to introduce more
generators to fulfil the synthesis process in a multistage
fashion. To achieve this, LAPGAN [35] cascaded multiple
generators in a Laplacian pyramid framework. SGAN [36]
constructed a top-down stack of GANSs, each learning to
generate lower-level representations conditioned on higher-
level representations. Recently, StackGAN [37] addressed the
problem of text-to-image synthesis with two generators: one
for producing shape and color information and another for
synthesizing details of the object. Notably, FashionGAN [29]
and VITON [13] decomposed fashion clothing swapping into
two stages; however, they could not be trained end-to-end. In
contrast, both Generator I and Generator II in our SwapGAN
generated a fake image, and the first generated image was
taken as an input of Generator II. Then, we fed both generated
images into a discriminator to simultaneously optimize the

two generators. In addition to the adversarial loss, we exploit
Generator III with a mask-consistency loss to improve the
supervision.

C. Person Image Generation

Rendering images of persons has become important research
for human-centric applications such as person re-identification,
video action synthesis and fashion style transfer. It aims to
synthesize novel images where the person can be manipulated
in arbitrary poses. Ma et al. [19] proposed a pose guided
person generation network (PG2) to transfer a person from
one pose to another. After that, they [38] designed a two-
stage reconstruction pipeline that can disentangle and encode
three modes of variation in the person images, namely, fore-
ground, background and pose. Siarohin et al. [39] exploited
deformable skip connections to deal with deformable persons
with different poses and computed nearest-neighbor loss to
alleviate misalignments between the generated image and the
ground-truth image. Recently, Dong et al. [40] designed a
Soft-Gated Warping-GAN for addressing geometric variability
and spatial displacements during the process of pose-guided
person image synthesis. CP-VTON [41] proposed to integrate
a geometric matching module and a try-on module to perform
characteristic-preserving image generation. In addition to the
pose map, our SwapGAN utilized a human segmentation map
as well to synthesize another novel image. Compared with
the pose map, the segmentation map can explicitly provide
semantic features about the clothes style and helps to further
guide the fashion clothing swapping.

III. METHODOLOGY

To render clothes from a person image on to another person,
we propose an image synthesis framework (SwapGAN) based
on conditional generative adversarial networks. Figure 4 illus-
trates an overview of SwapGAN, which has three different
generators for pose-conditioned generation (Section III-C),
segmentation-conditioned generation (Section III-D) and mask
generation (Section III-E).

A. Problem Definition

We define the problem of person-to-person clothing swap-
ping as a conditional person image generation process. Its goal
is to manipulate the person in the conditional image to have
the same pose and body shape as the person in the reference
image. Additionally, we paste the head of the reference per-
son onto the new synthesized image, to preserve the person
identity. Thus, the reference person in the synthesized image
can wear the target clothes in the conditional image, while
retaining the original pose and body shape.

Given a conditional person image and a reference person
image, it may be infeasible to find the ground-truth target
image in the dataset to supervise the synthesized image.
Instead, we consider training the synthesis process using two
images of the same person. To be specific, we have a training
dataset of N image pairs, each of which is composed of
two images of the same person with the same clothes, but
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Fig. 3: Representations for a pair of person images that have
the same clothes but show different poses. We extract four
feature representations based on the person images, namely,
the pose map, segmentation map, mask map and head map.

with different poses (Fig. 3). We randomly select one of
the two images as a reference image, and the other one as a
conditional image. The reference and conditional images are
denoted with XT(Z‘)' and Xéi), 1 =1,...,N. Taking Xc(i) and
the pose map Xr(l) as input, our generator learns to create
a fake X,@ during the training procedure. The discriminator
needs to distinguish the fake Xﬁl) from the real image. Ideally,
when the discriminator cannot identify the differences between
the real and fake images, the generators should be able to
generate high-quality images.

B. Person Representation

To specify the synthesis process, we need to extract a couple
of person representations based on the person images. As
shown in Fig. 3, we utilize four feature maps described as
follows:

1) Pose map: We employ one of the state-of-the-art pose esti-
mators, OpenPose [42], to capture the person pose information.
For each person image, the pose estimator can localize 18 key-
points in a pose map. In addition, the key-points are connected
by color lines that can present the orientation of limbs. The
pose map is used in Generator I.

2) Segmentation map: An off-the-shelf human semantic
parser [43] is adopted to extract a person segmentation map.
The original map can predict 20 fine classes for semantic
segmentation. We further regroup the fine classes into five
coarse classes, including head, arms, legs, upper-body clothes
and lower-body clothes. We employ this segmentation map in
Generator II.

3) Mask map: Based on the above segmentation map, obtain-
ing the binary mask of the person by merging all segmented
regions is straightforward. In contrast to the segmentation
map, this mask map is used to retain the body shape without
involving the semantic clues about the person. The mask maps
of both the reference and the conditional person images are
used for Generator III.

4) Head map: During the synthesis process, the details of the
human face are hard to preserve due to its small size. However,
the face is necessary to restore the identity of the reference
person after swapping the clothes. Thus, we capture the head
region (face and hair) based on the segmentation map and

paste it onto the new synthesized person image. This similar
post-processing step is also used in FashionGAN [29].

For a pair of images Xr(i) ‘and ‘Xéi),‘ we denote
their four feature maps as {PT(Z), Sﬁ’),Mﬁl),Hﬁl)} and
{Pc(i), Séi), Méi), H(EZ)} Subsequently, we omit the superscript
¢ for notational simplicity. We should mention that these
person representations are simple and efficient to extract
without extra manual tuning. Note that our representations are
semantically richer than previous works [13], [14], [29].

C. Pose-conditioned Generation

We introduce the first generative stage conditioned on
the pose map. As illustrated in Fig. 4, we concatenate the
conditional image X. and the reference pose map P, , and
take them as input into the pose-based generative network,
i.e. Generator I. We can express the synthesized image with

X, = Gi(Xe, Pr). )

We should mention that the pose map can not only localize
the human key-points but also constrain the body shape of
the synthesized person image to be the same as the reference
person.

Next, X, and X, are integrated to fake the discriminator
D. Compared with the real pair of X, and X, Gy learns to
produce more realistic-looking images similar to X,.. Follow-
ing the original GANs [15], we use the negative log likelihood
to compute the adversarial loss w.r.t. Gy

£G1 = ]EXCdiatGr(XC)1PT~pdat(l(P"‘) [log(D(XGI’ XC))]’ 2)

where pgaiq(-) indicates the empirical distributions of the
training data. As suggested in LSGAN [44], the least square
loss is efficient for improving both the stability of training and
the quality of generated images. Driven by this, we use the
least-square adversarial loss to represent Lq;:

1%, 3)

The objective for Generator I is to minimize Lg,;. In the
experiments, we show the improvements of the least-square
adversarial loss over the original one.

‘CGI = EXchdata(Xc)yp‘r"\‘pdata,(P'r) [(D(XGI ) XC) -

D. Segmentation-conditioned Generation

Given two arbitrary person images, Generator I can syn-
thesize new images by exchanging the clothes and its results,
therefore, can meet the goal of this task. However, the key-
points in the pose map are mainly used to measure the
localization information of the body parts, but hardly considers
the style of the target clothes in the conditional image. To
address this limitation, we propose leveraging the person
segmentation map, which can take into consideration semantic
information about the clothes.

Empirically, if X, derived the target clothes from X, it
should be possible to return the clothes to the conditional
person. Thus, the fashion style of the clothes can be recon-
structed well during the synthesis process. This idea motivates
the second generative stage that aims at synthesizing another
new image as similar as the conditional image X.. In more
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Fig. 4: Overview architecture of the multistage generative framework in the proposed SwapGAN. Generator I can synthesize
a new image X, by manipulating the conditional person image X. based on the reference pose P,.. Then, Generator II
takes as input X, to produce a reconstructed X, based on the segmentation map S.. Moreover, Generator III is used to

explicitly constrain the body shape during the synthesis process.

The details about the generator networks are in Section IV.
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Section III formulates the synthesis process of each generator.
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Fig. 5: Overview architecture of the discriminator D in SwapGAN. It aims to distinguish two fake image pairs and one real
pair. Following four consecutive convolutional layers, the last layer produces a 1-dimension feature map to classify the image

patches as real or fake.

detail, we build a segmentation-based generative network (i.e.
Generator II in Fig. 4), on top of the output of Generator I.
Generator II takes as input the concatenation of the synthesized
image X, and the conditional segmentation map S.. As a
result, we obtain a new synthesized image from the output of
Generator II:

Xay, = Gu(Xay, Se) = Gu(Gi(Xe, Pr), Se). (4
Ideally, X¢,, should be as similar as the original input X..
From X, to Xg,,, the integration of the first and second
generative stages actually construct an auto-encoder paradigm,
which can help improve the quality and semantics of the
generated image X,. For instance, Generator I may mistake
the fashion style by transferring long sleeves as short sleeves.
However, Generator II is capable of correcting the mistake,
because the segmentation map includes the lost information
about the long sleeves.

Next, we incorporate X, and X¢, into the same discrimi-
nator D and obtain the generative loss function below

[’GII = ]EX'V'diata(X'r')ysu’\‘pdata(sc) [(D(XW XGII) - 1)2]'
&)

Minimizing this loss can jointly optimize Generator II and
Generator 1.

E. Mask Generation

Although the pose map and segmentation map provide some
information about the body shape, a new generative network
should be learned to explicitly constrain the synthesized shape.
As shown in Fig. 4, we employ a shared Generator III to
perform the mask generation for both X, and X, . Different
from Generator I and Generator II, Generator III takes only
one image as input without specifying other conditions. The
two generated masks, denoted as M, (x,) and Mg, (xq, )
should consistently match the reference mask M, and the
conditional mask M., respectively. We define the mask-
consistency loss based on the L; norm:

‘CGHI :]EMTdiata(Mr)[HMGIII(XGI) - MTH1]
(6)

Both Gt and Gy can benefit from the loss Lg,;, to update
the synthesis process. Note that, L, will not update the
parameters of discriminator DD because the generated masks
are unnecessary to the discriminator. In Fig. 4, it can be

+]EMchdata(Mc) [l |MGIII(XGH) - MCHI} *
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Fig. 6: Network architecture of both Generators I and II. is the generators are composed of three parts: an encoder, residual
blocks and a decoder. We use additional skip connections to couple the feature maps in the encoder and decoder. In the decoder,
we perform the upsampling with an interpolation manner instead of the traditional deconvolution manner.

(a) Deconvolution upsampling (b) Interpolation upsampling

Fig. 7: Comparison using two different upsampling manners
in the generator. The deconvolution manner results in more
checkerboard artifacts that decrease the generation quality. To
alleviate this issue, we use the interpolation manner to generate
smooth images to observe more details when zoomed-in.

seen that the generated masks result in closely matching the
reference and conditional mask maps.

In terms of the mask loss, SwapGAN has differences
from PG? [19]. First, PG? uses off-the-shelf morphological
operations to extract the masks for both real and generated
images and then computes the L loss between the two masks.
Their masks cannot be trained jointly with the generators.
In contrast, SwapGAN employs a generator Gyyp to learn to
generate a mask instead of using an off-the-shelf algorithm.
Thus, the mask generation can be simultaneously trained with
other generators. Second, both G1 and G2 in PG? aim to
synthesize the same real image, and G2 is used to refine the
coarse result of G1. Thereby, PG? uses the same ground-
truth mask (i.e. Mp) to compute the mask loss in both stage-I
and stage-II. In SwapGAN, G and Gyp learn to synthesize
different images, and they thus produce two different masks
that are compared with the reference mask and the conditional
mask, separately.

F. Full Objective

As suggested in [16], [33], conditional GANs can achieve
more stable and better results by using additional priors.
SwapGAN is a conditional GAN framework which is con-
ditioned on priors including human pose and segmentation
maps. The SwapGAN model including three generators and

one discriminator can be trained end-to-end. This end-to-end
training procedure is helpful for improving the adversarial
learning, rather than making it unstable.

The total generation loss combines the adversarial loss (i.e.
Lq, and Lg,,) and the mask-consistency loss (i.e. Lg,;;)

Lg= 'CGI + ﬁGII + >\‘CGIII7 N

where A adjusts the weight of L ;.

Figure 5 shows the structure of the discriminator D. Com-
pared to prior work [19] classifying one real pair and one
fake pair, our discriminator can distinguish one real pair from
two fake pairs. Formally, the discrimination loss in D can be
defined with

)[(D(XTvX ) - 1)2]
+Ex, -~Pdata(Xe),Pr~pdata(Pr )[D(XGU ) ]
+Ex r~Pdata(Xr);Se~Pdata (Se )[D(XT7XGH) ] ®)

During the training procedure, it is a common practice to
iteratively update the parameters of the generators and the
discriminator. The full objective in the model is to minimize
both L and Lp. The generators attempt to generate more
realistic-looking fake images to fool the discriminator. Once
the discriminator cannot distinguish the fake images from the
real images, then the generators are supposed to properly
accomplish the synthesis process.

In the testing phase, a conditional person image and the
pose map of a reference person image are used as input.
Generator I can synthesize a new image X¢,, which is used
as the desired target image. Similar to FashionGAN [29], we
paste the reference head map H, onto X, to retain the person
identity.

LD =ExX, mpiara(X,), Xempaara(Xe

IV. NETWORK ARCHITECTURE

This section introduces the details about the network ar-
chitecture of the generators and the discriminator in the
SwapGAN.

Generators I and II. By integrating several existing tech-
niques, we design a newly generative network for Gp and
Gr1. As shown in Fig. 6, it consists of an encoder, several
residual blocks and a decoder. (1) In the encoder, we use four
consecutive convolutional layers to represent the input data.
(2) There are a total of six residual blocks, each of which
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has two 3x3 convolutional layers and a residual connection
between them [45], [46]. (3) For the decoder, we employ a
nearest neighbor interpolation manner to upsample the feature
maps and then transfer the resized feature maps with a 1x1
convolutional layer. Compared with the deconvolution manner
based on stride-% convolutions, the interpolation manner is
simple and efficient for alleviating the checkerboard artifacts,
which often occur in generated images [47]. Figure 7 visibly
compares the generated images by using the two upsampling
manners.

In addition, we add skip connections to link the feature
maps in the encoder and decoder. As suggested in U-Net [48],
the skip connections allow bridging the downsampled feature
maps directly with the upsampled feature maps. They can
help retain the spatial correspondences between the input
pose/segmentation map and the synthesized images.

Generator III. Since the mask generation is less com-
plicated than the pose-conditioned generation and the
segmentation-condition generation, we can make use of a
simple U-Net [48] to build Gyy;. In detail, Generator III
learns eight convolutional layers in the encoder and eight
deconvolutional layers in the decoder. Similarly, the symmetric
skip connections are added between the encoder and the
decoder. The residual blocks are not used in Gy Notably,
G can be built as well with the same generative network as
G1 and Gyr; however, we find that it cannot further improve
the generated masks.

Discriminator. We build the discriminator D based on the
Markovian network from PatchGANs [16], which preserves
local high-frequency features. As shown in Fig. 5, D uses
four consecutive layers to convolve the concatenated real or
fake image pairs. Lastly, an additional convolutional layer can
output a 1-dimensional feature map to classify the patches on
the input images as real or fake.

V. EXPERIMENTS

We conduct the experiments by collecting images from the
DeepFashion dataset. First, we compare our SwapGAN with
other well-known methods in terms of both qualitative and
quantitative evaluations. In particular, we perform a human
subjective study on the results of different methods. Then,
we conduct an ablation study to provide more insights and
analysis into SwapGAN. Furthermore, additional experiments
are performed to evaluate the effects of the parameter A and
the LSGAN loss and the head map and to analyze the cross-
dataset generalization.

A. Dataset Setup

Currently, DeepFashion [6] is one of the largest datasets
for fashion oriented research. We used its In-shop Clothes
Retrieval Benchmark, which has a number of in-shop person
images with various poses and scales. However, many of the
images are inappropriate for the clothing swapping task, due to
some issues such as missing human faces, back-view images
and only upper-body clothes visible. To avoid these issues, we
selected front-view person images where the clothing items are
shown clearly. In the training set, we collected 6,000 person

b 1R 1Ig

Fig. 8: Examples of image pairs used for SwapGAN.

images corresponding to 3,000 image pairs, each of which has
two images of the same person wearing the same clothes but
showing different poses. For example, in Figure 8, one image
in each pair acts as the reference image and the other one
is for the conditional image. The testing set contains 1,372
person images.

B. Implementation Details

We employed the Adam algorithm [49] to optimize the
entire SwapGAN with 8 = 0.5 and B2 = 0.999. The
initial learning rate for the generators and the discriminator
was 0.0002 and was linearly decayed after 50 epochs. The
entire training procedure was terminated after 100 epochs.
All the images were rescaled to 128x128 pixels. We used
a mini-batch size of 8. We implemented the method on the
TensorFlow library [50].

During the training stage, the entire procedure requires
approximately 11 hours in a NVIDIA TITAN X GPU card
with 12 GB memory. At the test stage, SwapGAN needs
approximately 0.1225 seconds to generate the image X, and
another approximately 0.1225 seconds to generate the image
Xay- X, acts as the desired result, while X¢;, is used to
evaluate more results.

C. Methods for Comparison

We compare the proposed SwapGAN with three methods
described below.

Poisson image blending [29]: is a 2D nonparametric method
that uses the Poisson image blending algorithm to apply
the target clothes in on conditional person image on the
reference image person. This method is used as a baseline
in FashionGAN [29].

TPS warping [13]: this is another nonparametric method. It
first estimates a thin plate spline (TPS) transformation and
then pastes the warped clothes on the reference image. This
is a baseline method in VITON [13].

VITON [13]: in contrast to nonparametric methods, VITON
proposes an encoder-decoder network to generate a new ref-
erence person image wearing the target clothes.

We note that the three compared methods require segment-
ing the target clothes from the conditional person images.
Thus, they can learn the transformations between two different
images.

D. Results and Discussion

Qualitative evaluation. This experiment aims to qualita-
tively show the effectiveness of our method for person-to-
person clothing swapping. Figure 9 shows our synthesized
images. We selected 10 conditional images (i.e. C1-C10) and
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Fig. 9: Qualitative results of our SwapGAN on the test set. Although some synthesized images include some artifacts, SwapGAN

is robust to varying pose deformations among persons.

10 reference images (i.e. R1-R10), which generated 100 new
images by using SwapGAN. In each row, the clothes in the
conditional image are worn on different reference persons.
Additionally, each column indicates that the same reference
person is redressed with different clothes. It can be seen that
all the reference persons can properly wear the target clothes
in the conditional images and retain their original poses and
body shapes as well. Since we paste the reference head map to
ensure the person identity, some generated images, therefore,
seem slightly unnatural. Although some synthesized images
include some artifacts, SwapGAN is robust to a variety of

pose deformations among persons.

Next, we compare our results with those of other methods.
In Fig. 10, we present a reference image and three conditional
images. To assess the robustness to different pose deforma-
tions, the persons in the three conditional images have small,
moderate and large pose deformations, compared to the person
in the reference image. We summarize the results of each
method below:

(1) The Poisson image blending method blends pixels in
the reference person image specified by the body mask with
those pixels in the conditional person image specified by the
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Fig. 10: Qualitative comparison of different methods. When compared with the person in the reference image, the persons in
the three conditional images have small, moderate and large pose deformations, respectively. Our method is robust to different
pose deformations, while the three compared methods have significant weaknesses.

TABLE I: Quantitative comparison of different approaches in
terms of inception scores (higher is better). Our SwapGAN
can outperform the other three compared methods with con-
siderable gains.

Method IS-reference
Poisson image blending | 2.10 4 0.14
TPS warping 245 + 0.12
VITON 2.40 £ 0.05
SwapGAN 2.65 £ 0.09

clothes mask. Since it is a nonparametric method, it fails to
model various pose and body deformations between different
persons.

(2) The thin plate spline (TPS) method estimates a trans-
formation between two images and then pastes the warped
conditional clothes on the reference person. It works effec-
tively when the conditional person (e.g. in the first row) has
a similar pose to the reference person. However, in the case
of moderate and large pose deformations, TPS fails to transfer
the clothes between two persons. For example, in the second
row, the long trousers are warped to a short skirt in the result.
In addition, the black dress in the third row is not successfully
worn on the reference person.

(3) VITON is an encoder-decoder network conditioned on
a stand-alone and flat clothing image to redress the reference
person. Similar to TPS, it is ineffective to model various
deformed clothes in the conditional images.

(4) Compared to the above three methods, SwapGAN is
more robust to varying pose deformations among persons,
even though the synthesized images include some artifacts. In
addition, it can preserve the semantics of the clothes during
the generation process.

Quantitative evaluation. In addition to qualitative results,

we further adopt a common quantitative metric, inception
score (IS) [51], to assess the methods. For the 1,372 images
in the test set, we iteratively make each image the reference
image, and then randomly select another 25 images to be its
corresponding conditional images. As a result, we achieved ap-
proximately 34,000 reference-conditional pairs, each of which
could produce an image to evaluate. Figure 11(a) illustrates the
procedure for evaluating the image generated by SwapGAN.
We extracted the reference pose map and head map from the
reference person image. Then, the conditional person image
and the reference pose map were concatenated into Generator
I, which produces the generated image X¢,. Moreover, we
pasted the reference head map onto X, to preserve the human
identity. Finally, we used the generated image to evaluate the
inception score called IS-reference. Table I reports the results
for the 34,000 images. Overall, SwapGAN achieved a higher
score than the other three methods. Interestingly, the TPS
warping method had a greater score than VITON because
it simply pastes the warped clothes on the reference image,
which can help preserve the color information. However,
TPS cannot generate a new image similar to VITON and
SwapGAN. In [13], they also discussed the limitation of the
TPS warping method.

E. Human Subjective Study

Furthermore, we conducted a human subjective study on the
four methods. We set up a website and offered a voluntary,
anonymous test to the master students in the computer science
department at Leiden University. The students, who were not
involved in the research of this work, were not told which
algorithm was from the researchers. As previously shown in
Fig. 9, we had 100 image pairs by selecting 10 conditional
images and 10 reference images. Consequently, each method
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Fig. 11: The procedure of testing SwapGAN. (a) The test procedure based on the pose-conditioned generation. (b) The test

procedure based on the segmentation-conditioned generation.

could produce 100 new images based on the 100 image pairs.
The participants clicked to select which of the four methods
was more realistic and accurate. Note that, the interface did
not allow the participants to select multiple methods for
one comparison. In the test, 20 participants answered 100
comparisons each, which resulted in 2000 responses in total.
Based on the responses, we counted the percentage of each
method being selected. As reported in Table II, the results
showed that SwapGAN generated better images in most cases
than the other methods.

TABLE II: Human subjective study on the results of the four
methods (higher is better). SwapGAN outperforms the other
three compared methods with remarkable gains. Note that the
four percentage numbers added up to 100%.

Method Percentage
Poisson image blending 7.72%
TPS warping 12.59%
VITON 13.60%
SwapGAN 66.09%

F. Ablation Study

We demonstrated ablation results about SwapGAN and
analyzed the effects of its generators on the performance.
More specifically, we implemented two ablation models, which
are variants of the full SwapGAN model. The first ablation
model was named by Generators I&III and excluded the
segmentation-conditioned generation. The second one, called
Generators 1&I1, kept the first and second generations but
excluded the mask generation. Figure 12 shows two generated
image samples, from which we can observe the following:

(1) Effect of Generator II. Comparing the generated images
in the first row, we found that Generators I1&III mistook the
fashion style of the target clothes because they changed the
short sleeves in the conditional image to long sleeves in the
newly generated image. However, both the Generators 1&II
and the full SwapGAN model avoided this semantic inconsis-
tency due to using the segmentation map in Generator II. The
result verifies the effectiveness of Generator II for maintaining
the clothing style.

Condition Reference Full Model

{..

Generators I&IH: Generators I&II:
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Fig. 12: Ablation study on different variants of our method.
The full model outperformed the other two baseline models
in terms of generation quality and semantics.
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(2) Effect of Generator III. Considering the generated
images from the Generators 1&II model, some parts of the
human body were not preserved well, such as the right arms.
By running the mask generation, the full SwapGAN model
produced a more complete body shape similar to the reference
image. This demonstrates the benefit of Generator III for our
method.

In terms of quantitative results, we exploited another test
procedure in addition to the IS-reference. Despite X, being
the required generated image, the second generation was per-
formed to achieve more evaluations. As shown in Figure 11(b),
we combined X, with the conditional segmentation map
and fed them into Generator II to synthesize another image
Xy, which is similar to the input conditional image X..
Similarly, we pasted the conditional head map onto the X¢,,.
We computed another inception score named IS-condition to
evaluate the generated image. It is feasible to measure the
structure similarity (SSIM) between the generated image and
the original image X, since the generated image is a recon-
structed image of X.. We should note that it is impossible to
compute SSIM for X, because we do not have its ground-
truth image in the dataset.

In Table III, we compared the quantitative results between
the two ablation models and the full SwapGAN model. The
Generators 1&I1T model had no IS-condition and SSIM accu-
racy because it excluded G1;. We can see that the full model
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TABLE III: Quantitative results of our different models.

Method IS-reference | IS-condition | SSIM
Generators I&III | 2.47 £ 0.11 - -
Generators I&II | 2.36 £ 0.14 | 2.66 &= 0.12 | 0.708

Full Model 2.65 £ 0.09 | 2.85 & 0.12 | 0.717

consistently outperformed the other two ablation models by
a considerable margin in terms of both IS-reference and IS-
condition metrics. Additionally, the full model achieved a
higher SSIM accuracy than Generators 1&II. These quantita-
tive results are consistent with our observation achieved from
the qualitative evaluation.

G. Additional Analysis

We conducted additional experiments to provide more anal-
ysis about SwapGAN.

Effect of the parameter \

The parameter A in Eq.(7) was used to balance the impor-
tance between the adversarial loss and the mask-consistency
loss. We aim to analyze its effect on the performance of
generated images. Figure 13 shows the inception scores when
A varied from 1 to 10. Since Generators I&II did not use Gfrir,
we tested the results of Generators I&IIT and the full model.
The full model computed both IS-reference and IS-condition,
but Generators I&IIT had only the IS-reference. It can be
seen that the variation of A will not vary the performance
significantly. By comparison, we set A = 5 in the experiments
due to its relatively superior performance.

-Generator 1&I11: 1S-reference -FuII Model: IS-reference -FuII Model: IS-condition
3

Inception Score
NN
B o ©

N
N

1 2 3 4 5 , 6 7 8 9 10

Fig. 13: Effect of varying the parameter A on the quantitative
performance.

Effect of the LSGAN loss

Recall that we formulated the adversarial learning with the
LSGAN loss instead of the original GAN loss (Section III).
This test was conducted to show the advantage of LSGAN for
our task. In Fig. 14, we illustrate and compare the GAN loss
and LSGAN loss in the training stage. We observe that the
LSGAN loss achieved a more stable training procedure and
had a lower loss cost than the GAN loss. Our observation is
consistent with the results in LSGAN [44].

Additionally, we showed the quantitative results by training
SwapGAN with the GAN loss and LSGAN loss respectively.
In Table IV, we see that the LSGAN loss achieved better

results than the GAN loss, in addition to improving the training
stability. Although the performance improvement is slightly
significant, we should realize that LSGAN is a simple and
efficient approach without requiring an extra computational
cost.

TABLE IV: Quantitative comparison between the original
GAN loss and the LSGAN loss on the performance of
SwapGAN. In addition to improving the stability of training,
LSGAN maintained high-quality generation as well.

Method IS-reference | IS-condition | SSIM
SwapGAN with GAN loss 2.61 £0.13 | 2.80 £ 0.12 | 0.712
SwapGAN with LSGAN loss | 2.65 + 0.09 | 2.85 + 0.12 | 0.717

TABLE V: Ablation study on the effect of the head map on
the performance of SwapGAN.

Method IS-reference | IS-condition | SSIM
Without the head map | 2.61 + 0.11 | 2.80 £ 0.13 | 0.692
With the head map 2.65 £0.09 | 285+ 0.12 | 0.717

Effect of the head map

Pasting the head map onto the generated image is a simple
yet efficient way to preserve the human identity and improve
the qualitative result. In addition, this experiment aims to
study the effect of the head map on the quantitative result
of SwapGAN. In Table V, we compare the quantitative results
with and without the head map. We observed that the head map
had a small effect on IS-reference and IS-condition because the
inception model does not address the face details. However, the
SSIM accuracy decreased considerably when we did not use
the head map because the face details contribute considerably
to computing the structural similarity between the two images.

We should mention that pasting the head map onto the
generated images is a post-processing step, which will not
affect the training procedure. In addition, we tried to employ
another method by concatenating the head map with the input
into the generators, but it still lost some face details.

Analysis of cross-dataset generalization

VITON [13] collected a large number of clothes-person
image pairs from Zalando (www.zalando.de) similar to CA-
GAN [14]. Each pair has a stand-alone&flat clothes and a
person image including clothes. However, this dataset is not
appropriate for our task, i.e. person-person clothing swapping.
Although we cannot train SwapGAN on the Zalando dataset
used in VITON, we can still show some results tested on
the Zalando dataset and analyze the performance of cross-
dataset generalization. As both DeepFashion and Zalando are
fashion oriented datasets, it is reasonable to conduct the cross-
dataset test. Specifically, we train the SwapGAN model on the
DeepFashion dataset and then transfer the trained model to
test the images in Zalando. As shown in Figure 15, we show
three conditional images from the DeepFashion dataset and
three reference images from the Zalando dataset. The reference
persons properly wear the target clothes in the conditional
images, as well as preserve their original poses and body
shapes.
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Fig. 15: Cross-dataset test between the DeepFashion and
Zalando datasets. The conditional images (C1,C2 and C3) are
from DeepFashion, and the reference images (R1, R2 and R3)
are selected from Zalando.

Fig. 16: Failure cases of our method for synthesizing compli-
cated color and texture on the clothes.

H. Limitations and Discussion

Our method achieved promising results in many cases but
still has some limitations. First, human faces become blurred

in the synthesis process because it is hard for the generator to
restore the detailed face of the reference person. To alleviate
this limitation, we employ a post-processing step by pasting
the reference head map onto the synthesized image. One
potential alternative is to build a separate component (e.g.
subgenerator) for face generation, apart from person-level
image generation. Second, our method may fail to capture rich
color and texture information of the clothes, as shown in the
failure cases in Fig. 16. This problem is caused by the limited
capability of the adversarial loss. One potential solution is to
impose other expensive losses such as the perception loss [46];
however, it will increase the memory cost and training time.

Furthermore, we provide an in-depth discussion about our
work from the following angles: (1) Algorithmically, we
present a novel deep generative approach to address the
fashion style transfer problem in contrast to traditional non-
parametric methods that rely on annotating and matching
human key-points. Although our synthesized images include
some artifacts, the synthesized quality is further improved as
increasing attention is focused on this task. (2) Theoretically,
our multistage generative model studies the benefit of inte-
grating multiple conditional GANs based on different priors.
We explained how SwapGAN can be end-to-end trainable,
while we know that optimizing and interpreting the stability of
training GANSs is still an important and challenging problem
that can motivate addressing other research problems involving
deep generative networks. (3) Practically, our work can enrich
the application of deep learning approaches for real-world
problems, i.e. solving a traditional problem with a novel deep
generative approach. Our method can serve as a baseline for
future research on this task.

VI. CONCLUSION

In this paper, we proposed a novel solution to a practical
application problem, i.e. person-to-person clothing swapping.
By integrating three generators in a multistage framework,
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our method, named SwapGAN, can render the clothing style
of the conditional person and preserve the pose and body
shape of the reference person. The entire SwapGAN can
be trained end-to-end with both adversarial loss and mask-
consistency loss. Qualitative and quantitative results in the
experiments demonstrated the effectiveness of our method,
which can perform better than traditional nonparametric meth-
ods and other deep generative methods. In addition, our
ablation study demonstrated the benefit of combining three
generators. Moreover, the cross-dataset evaluation showed the
promising generalization of our method. In the future, we plan
on developing our approach for images in the wild and making
use of the perceptual loss to improve the generation quality.
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