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Abstract—The recent advances in instance-level detection tasks
lay strong foundation for genuine comprehension of the visual
scenes. However, the ability to fully comprehend a social scene is
still in its preliminary stage. In this work, we focus on detecting
human-object interactions (HOIs) in social scene images, which
is demanding in terms of research and increasingly useful for
practical applications. To undertake social tasks interacting with
objects, humans direct their attention and move their body based
on their intention. Based on this observation, we provide a
unique computational perspective to explore human intention
in HOI detection. Specifically, the proposed human intention-
driven HOI detection (iHOI) framework models human pose with
the relative distances from body joints to the object instances.
It also utilizes human gaze to guide the attended contextual
regions in a weakly-supervised setting. In addition, we propose a
hard negative sampling strategy to address the problem of mis-
grouping. We perform extensive experiments on two benchmark
datasets, namely V-COCO and HICO-DET. The efficacy of each
proposed component has also been validated.

Index Terms—Human-Object Interactions (HOIs), Intention-
Driven Analysis, Visual Relationships

I. INTRODUCTION

In recent years, computer vision models have made tremen-
dous improvements, especially in the instance-level tasks
such as image classification and object detection [1I], [2],
[3]. The advances in these fundamental tasks bear great
potential for many fields, including security, medical care
and robotics [4], [3]], [6]. Enabling such applications requires
deeper understanding of the scene semantics beyond instance-
level understanding. Existing efforts on the high-level semantic
understanding include visual relationships inference [7], [8],
scene graphs generation [9]], and visual reasoning [10]. In this
work, we focus on an important task that is human-centric,
namely human-object interaction (HOI) detection, stepping
towards higher level scene understanding.

The task of HOI understanding [111, [12]], [13], [14], is
formulated as identifying the (human, action, object) triplets. It
is a facet of visual relationships critically driven by humans. In
contrast to general visual relationships involving verbs, prepo-
sitional, spatial, and comparative phrases, HOI understanding
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Fig. 1: An example where the actor’s intention is informative
of the HOI (person, hold, cup). The intention is represented
using the attended regions and body pose. Specifically, he is
fixating at the regions around the cup that he is interacting
with, and his posture implicitly conveys his intention.

focuses on direct interactions (actions) performed on objects
(e.g. a person is holding a cup in Figure[I). Precise detection
and inference of HOIs are increasingly needed in practical
applications, such as development of collaborative robotics,
activity mining in social networks, and event detection in
surveillance [6], [16], [4]. Nevertheless, it still remains a
challenging research problem due to the fine granularity of ac-
tions and objects in social scenes. Earlier approaches for HOI
detection mainly focus on the representation of visual data,
such as joint modeling of body poses, spatial configuration and
functional compatibility in images [111], [17]], [18]. In recent
years, several large-scale datasets with diverse interaction
classes have enabled fine-grained exploration of HOIs [14]],
[13], [19]], [20]. Motivated by advances in deep learning,
especially the success of Convolutional Neural Network in
object detection and classification, recent works utilize those
datasets to learn deep visual representations of human and
object for HOI detection [13]], [14], [13], [21]. However,
those works do not take special consideration that a human
often exhibits purposeful behaviors with intention in mind to
complete tasks. For example, in Figure [T} the person is lifting
the kettle and holding the cup, gazing around the target cup —
intended to pour water into the cup.

In cognitive studies, human intention is reported to com-
monly unveil complementary cues to explain the behaviors
of individuals attempting to accomplish certain tasks [22],
driving the coordination of eye and body movements [23]]. For
example, when interacting with a specific object, human tends
to exhibit corresponding intention by adjusting position, pose
and shifting attention (see Figure [I). By perceiving the latent
goal, we can facilitate the inference of the interactions. In this
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work, we provide a novel computational perspective to exploit
two forms of human intention that is visually observable: 1)
human gaze, which explicitly conveys intention; 2) human
body posture, which implicitly conveys the intention. The
work most related to ours is the one characterizing human
intention with attention and body skeleton [24]. Nevertheless,
human intention has yet been investigated in the context
of HOI detection in an integrative manner. Also, we offer
more robustness to inaccurate gaze localization by exploring
multiple contextual regions driven by gaze.

We utilize gaze to guide the model in exploring informative
object instances in a scene. The scene information has exhib-
ited positive influence in various recognition tasks [8], [21],
[25], [26]. One direction to utilize this information is directly
extracting the visual representations from Scene-CNN [21],
[25]. However, it is inefficient in some tasks due to the lack
of explicit instance-level information. Another direction is to
leverage the visual cues from surrounding objects [8]], [26].
Such cues could be informative as a semantic scene constraint.
To leverage the informative scene instances, the existing
approaches learn from corresponding tasks using large scale
visual samples [8], [26], [27]. In contrast to their approaches,
we propose to learn with multiple contextual regions guided
by intention of human by utilizing the actors gaze cue. With
this, the framework is able to capture the dynamics of various
HOIs with limited contextual region candidates.

In this work, we aim to tackle the challenge of accurately
detecting and recognizing HOIs in social scene images. We
propose a human intention-driven HOI detection (i(HOI) frame-
work, consisting of an object detection module and three
branches. The first branch exploits individual features, the
second models differential human-object feature embeddings,
and the third leverages multiple gazed context regions in a
weakly-supervised setting. Human pose information has been
incorporated into the feature spaces using the relative distances
from body joints to the instances. The contributions of this
work are summarized as follows:

1) We have explored how to detect and recognize what
humans are doing in social scenes by inferring what
they intended to do. Specifically, we provide a unique
computational perspective to exploit human intention,
commonly explored in cognitive studies, and propose a
joint framework to effectively model gaze and body pose
information to assist HOI detection.

2) We propose an effective hard negative sample mining
strategy to address commonly observed mis-grouping
problem in HOI detection, i.e. wrong object instance is
assigned to the actor though with correct HOI category
prediction.

3) We perform extensive experiments on two benchmark
datasets with ablation studies, and show that iHOI out-
performs the existing approaches.

The rest of the paper is as follows. Section [[I] reviews
the related work. Section [[II delineates the details of the
proposed method. Section elaborates on the experiments
and discusses the results. Section [V] concludes the paper.

II. RELATED WORK

Visual Relationship Detection. The inference of general
visual relationships [7], [28]], [29], [9] has attracted increasing
research interests. The types of visual relationships include
verbs, preposition, spatial or comparative phrase. Works have
been attempted to refine visual relationships from vocabu-
lary [7]], embed object class probabilities to highlight se-
mantics constraints [28]], disambiguate between entities of
the same category with attention shifting conditioned on one
another [29]]. Visual relationships were also formalized as part
of a graph representation for images called scene graphs [9].
Our focus is related, but different. We aim to explore direct
interactions (actions) performed on objects, where human is
the crucial indicator of the interactions.

HOI Understanding. Different from visual relationships de-
tection task, which focuses on two arbitrary objects in the
images, HOI recognition is a human-centric problem with
fine-grained action categories. Earlier studies [11], [L7], [18]]
mainly focus on recognizing the interactions, by joint model-
ing of body poses, spatial configuration, and functional com-
patibility in the images. In recent years, several human-centric
image datasets have been developed to enable fine-grained
exploration of HOI detection, including V-COCO (Verbs-
COCO) [14], HICO-DET (Humans Interacting with Common
Objects-DET) [15)], and HCVRD (Human-Centered Visual
Relationship Detection) [20]. In these datasets, the bounding
boxes of each human actor and the interacting object are
annotated, together with the corresponding interactions. Moti-
vated by the success of deep learning, especially Convolutional
Neural Network for object detection and recognition, several
recent works have taken advantage of the detailed annotated
datasets to improve HOI detection. Works have been done
for learning to detect HOIs with constraints from interacting
object locations [[13]], [14], pairwise spatial configuration [15]]
to scene context of instances [21], [30]. Another stream of
work addresses the long-tail HOI problem with compositional
learning [31], [32]] and extra data supervision [20]].

In contrast to previous works treating humans and objects

similarly, with no consideration that human behaviors are
purposeful, we argue that human intention drives interactions.
Therefore, in this work, we exploit the cues in an image that
reflect an actor’s intention, and leverage such information for
more effective HOI detection.
Gaze in HOIs. Humans are the core element in HOIs.
Generally, an actor intends to leverage essential information
in the scene to help performing the interaction. One important
facet of intention is reflected by gaze, which explicitly shows
the task-driven attention [33]]. Cognitive studies have reported
that human often attends to the regions that provide significant
information during an interaction [34]]. Though this might not
be true in some cases such as lifting a familiar object with-
out specific attention, in general the fixated regions provide
informative cues.

Inspired by the cognitive study findings, works have ex-
plored human gaze from computational perspectives. Gaze lo-
cations have been predicted from first person view videos [35],
human head pose in multimodal videos [36], and daily life



A SUBMISSION TO IEEE TRANSACTIONS ON MULTIMEDIA

Object Detection

Humanv ]
b,s “ '
[ ;
bosy || N FCs V!
,,,,,,,,,,,,,,,,,,,,,,,,,,,, N <person, hit, sports ball>
, H-O Pairwise Branch®, s <person, look, sports ball>
! 1 “a
i
i Object X, !
Body o 1 ° v hit 0.92
ody Joints ! o— 1 ®—» look0:89
! i hold 0.20
i
i
i Human X, J s
X, FCs ®p0!
__ Pose \ h i
Network = [ | | | = Crrmreememmeeeoeeemoeooos -
Gaze Map | Gaze-Driven Context-Aware Branc\h\
| Attended X, fcs O a
e gaze |
Gaze : M ] <h,a,o0>'=argmax(s, s, s,)
Network 3 i
! i
J L J 1 R o J L |
Input Feature Extraction Intention-Driven Interaction Prediction Output

Fig. 2: The proposed iHOI takes an image as input for feature extraction and human intention-driven interaction prediction, and
outputs the detected triplets. Human intention is modelled as follows: 1) the pose information is incorporated with the distances
from body joints to the instance center; 2) human gaze guides the attended context regions in a weakly-supervised setting.
The feature spaces of xj, , and x, consist of: class probabilities v., visual appearance v, relative locations v;, and human
pose information v,,. Operations ©, @ and ® denote element-wise subtraction, summation and multiplication, respectively.

images [37]. Prediction of human gaze direction has benefited
saliency prediction [38]], and inspired prediction of shared
attention in the crowds [39]]. Despite the efforts made in
various tasks, the existing methods have yet to explore actor’s
gaze in the context of HOI detection. In this study, we explore
the role of actor’s gaze in guiding informative scene regions
for HOISs.

III. PROPOSED METHOD

This section presents the human intention-driven HOI de-
tection (iHOI) framework, as shown in Figure Q The task
is formulated as follows: given a 2D image I as the in-
put, it aims to detect and recognize triplets of the form
(human, action, object). We will first describe our model ar-
chitecture, followed by the details of training that deals with
mis-grouping problem (i.e. the class of a HOI is correctly
predicted, but a wrong object instance is assigned to the actor),
and inference.

A. Model Architecture

First, given an input image I, we adopt Faster R-CNN [2]
from Detectron [40] to detect all humans and objects, generat-
ing a set of detected bounding boxes b = (b!, ..., b™) where m
denotes the total number of detected instances. The detected
bounding boxes for a person and an object are denoted as
by, and b, respectively. The corresponding confidence scores
are denoted as sp and s,, respectively. Human body joints
locations and gaze direction are obtained through transfer
learning from other social-activity datasets [41]], [37], since
our aim is to effectively model intention rather than extract
features, and both experimental datasets lack the ground-truth.

Second, we predict the action prediction score s, for each
candidate action a € a where a is with dimension A as
the amount of all action classes, given each human-object

bounding box pair (b, and b,). s, depends on: (1) the
action prediction confidence based on individual appearance
of the person sy and the object s2, (2) the action prediction
confidence based on the human-object pairwise feature rep-
resentations SZ,O’ and (3) the score prediction based on the
gaze-driven contextual representations sg, .. Formally, given
by, and b, with the respective s, and s,, the action prediction
score to maximize is as follows:

_ o0 a a a
Sa = Sh,o ’ 'Sgaze ’ (Sh + So) (1)

Multiplication in obtaining the final score aims to enlarge
the contribution of each component (i.e. HO, context, H+O).
Sigmoid activation is used for multi-label action classification
such that the predicted action classes do not compete. The
training objective is to minimize the binary cross entropy loss
between the ground-truth action labels y and the predicted
action scores s;; € s with the following loss function:

Mo A
1
L(s,y)=—7; D0 lyijlog (sij) + (1 = yij) log (1 — s45)]
j=1i=1
2)
Liotat = L8}, 0, Y)+L(Sggze,Y)+L(SK y)+L(s5,y) (3)

where L is averaged on a batch of M samples. For the j-th
prediction, y;; denotes the binary ground-truth action class for
the i-th action, and s;; denotes the prediction score for the i-th
action after sigmoid activation. sp . sg, ... S,, and sg are
the prediction confidence scores from the respective branch.
During training, we train each branch independently because
we want to maximize each branch’s individual performance.
During inference, we apply fusion from all branches so that
we can obtain the optimal overall score. An overview of the
proposed model is shown in Figure [2]
Next, We describe each component of the architecture.
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1) Human-Object Pairwise Branch: Humans and objects
are paired according to the ground-truth during training. Given
the detected by, and b,, we aim to learn a pairwise feature
embedding that can preserve their semantic interactions. For
example, the interaction of a person riding a bike can almost
be described by the visual appearance of the pair, person on
top of the object, and the estimated bike label.

Similar to the recent VTransE [28] for general visual
relationships among objects, the feature space x for each
by, and b, contains visual appearance, relative spatial layout,
and object semantic likelihood, referred as v., v; and v,
respectively. v, is a 2048-d vector, extracted from fc7 layer
in the object detector to capture the appearance of each b,.
v; is a 4-d vector consisted of {ls,ly,lw,ln}. {lz,1y} specifies
the bounding box coordinates distances, and {l.,,l,} specifies
the log-space height/width shift, all relative to a counterpart
as parameterized in Faster R-CNN. v, is a 81-d vector of
object classification scores over MS-COCO object categories,
generated by the object detectors.

In contrast to the general visual relationships, we extend
the feature space with human pose information since our
task is intrinsically human-centric. Human pose bridges the
human body with the interacting object. For example, the up-
stretching arms, jumping posture and the relative distances
to the ball possibly reveal that the person is hifting a sports
ball. Since body pose ground-truth is not available, we use
the pose estimation network in [41] to extract body joints
locations for each human. The output of the pose estimation
network is the locations of 18 body joints. We consider eight
representative body joint that are more frequently detected,
which cover the head, upper and lower body. For each joint
i € 1,...,8, we calculate its distance from the center of by
and b, to get two distance vectors {d.,,d.;,} and {d.,,d},},
where d,;,, denotes its distance from by, center along x-axis, and
di, denotes the distance from b, center along y-axis. Since
human-object pairs have different scales, we normalize the
distances w.r.t. the width of b;,. We concatenate the normalized
distance vectors for all eight joints to get two 16-d vectors
vy = {di,,dipli = 1,...,8} and v) = {d.,,di,]i = 1,..,8}
that encode the pose information. In cases where not all eight
joints are detected, we set v, to be zeros. An alternative way of
implementing the pose information have been experimented,
as shown in Section

The above-mentioned features are concatenated to form the
feature spaces for human x, = {v! vk, v}',v"} and object
x, = {ve, v, v7,vy}. Following [28], [42], we calculate the
pairwise feature embedding as

Lpair = LTh O T, (4)

The differential embedding tries to represent the pairwise
relation as a translation in the embedding space [42]: human+
interaction = object. Pairwise feature summation has also
been experimented but shown less effectiveness. The pairwise
embedding is passed through a fully-connected layer to pro-
duce the pairwise action scores s .

"nose, neck, left and right shoulder, left and right elbow, left and right hip

2) Individual Human and Object Branch: Individual clas-
sification based on visual appearance of human and object has
been commonly used and approved to be effective [[15], [21].
For example, the shape and size of an elephant can help to
infer action as “riding” rather than “holding”. We leverage
a human stream and an object stream to predict interactions
individually. Within each stream, two fully connected layers
(FCs), each followed by a dropout layer, are adopted. The
inputs are the visual appearance v, extracted for b;, and b,,
respectively. Following the late fusion strategy, each stream
performs action prediction first, then two predicted scores
based on appearance from human s}, and object s$ are fused
by element-wise summation with equal proportion.

3) Gaze-Driven Context-Aware Branch: We observe that
the regions where an actor is fixating often contain useful
information for the interactions. For example, when the person
intends to pour water to a cup, he normally fixates around
the cup while holding it. Therefore, we exploit the fixated
contextual information to help recognizing the actor’s action.
In particular, we use human gaze as a guidance to leverage
the fixated scene regions. The gazed location is predicted
with a pretrained two-pathway model proposed in [37]. The
prediction is reasonable only if the visualized region lies in the
line defined by the persons eye location and head orientation.
Since there is no gaze ground-truth, we did manual qualitative
check. Among 100 random gaze predictions, there were 64
correct predictions, 24 false predictions and 12 predictions
that cannot be decided where the actors eyes are invisible
in images, or the actor faces to the frontal direction to the
camera. The gaze prediction model takes the image I and
the central human eye position (calculated from the pose
estimation network) as input, and outputs a probability density
map G for the fixation location.

For each human in the image, we select five regions from the
candidates b = (b',...,b™) generated by the object detectors,
which have higher likelihood of being fixated on. Specifically,
for each candidate region b € b, we assign a gaze weight g,
to it, where g is obtained by summing up the values of G in
b and then normalized by the area of b:

Dyt G

z,y€b — T,Y

Sy 7T G p
areay

9b = 4)

Then we select the top-5 regions r = (r!,..,7%) that
have the largest g,. We have experimented with different
numbers of candidate regions from one to all of the detected
objects. Using top-5 candidate regions guided by gaze achieves
plateau performance, which suggests that five candidates are
sufficient to capture informative cues. With the same definition
of feature representations for human and object instances, for
each selected region r € r, we first get its corresponding
feature vector x, = {v;, vy, v],v,}. We then pass it through
a FC layer to acquire the action scores s for each of the
regions r. We compute the prediction score for this branch as
follows:

a

_ a
Sgaze = Max(sy),r €r (6)

max(+) is used because generally there is only one region an
actor can fixate on. The most informative region among the
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gazed candidates can be discovered in a weakly-supervised
manner. Note that if the gaze of the actor cannot be predicted
(i.e. the eyes are invisible in images, or the actor faces to the
frontal direction to the camera), we set x, = 0.

In contrast to a recent work [24] directly leveraging the
fixated patch, learning with multiple gazed regions makes
it robust to the inaccurate gaze predictions and dynamic to
different HOIs with the same gaze direction, i.e. it can find
the most informative region among a reasonable amount of
guided candidate regions for the corresponding HOL

B. Hard Negative Triplet Mining

We observe that mis-grouping is a common category of
false positive HOI detection [14]. Mis-grouping refers to cases
where the class of a HOI is correctly predicted, but a wrong
object instance is assigned to the actor (e.g. a person is cutting
another person’s cake). We argue that such negative HOI
triplets are more difficult for a model to reject in the tasks
requiring pairing proposals, due to less discriminative patterns,
compared with other negative triplets of inaccurate localization
and false classification in [15].

We propose a simple yet effective method to mine for those
hard negative triplets. For each image, we deliberately mis-
group non-interacting human-object pairs from the annotation,
and set their action labels as negative, i.e. all zeros. These
human-object pairs together with negative labels form the neg-
ative triplets. We adopt the image-centric training strategy [43]],
where each mini-batch of HOI triplets arises one image.

C. Inference

During inference, we aim to calculate the HOI score sy,
for a triplet (human, action, object). Given the detection score
for human s, object s, (generated from the object detection
module directly), and the largest action confidence s, among
the scores for all actions s, (Eq. , Sh,0,a 1S obtained by
Sn - So - Sq. For some of the action classes that do not involve
any objects (e.g. run, walk, smile), we use the HOI score sy, o
based on only the human information: s, 4,4 = sp, - sgaze - Sh.

To predict HOIs in an image, we must compute the scores
for all detected triplets. However, scoring every potential triplet
is almost intractable in practice, calling for high-recall human-
object proposals. To solve this, we leverage the predefined
relevant object categories ¢ € C' for each action [I14] as a
prior knowledge, which is extracted from the HOI ground-
truth in the corresponding dataset. For instance, sports ball is
relevant to the action kick but book is not relevant. Unlike
pairing human and objects according to the ground-truth
during training, we filter out the detected objects irrelevant to
the action for each human-action pair during inference/testing.
We then select the object that maximizes the triplet score sj,4,4
within each relevant category to form the triplet. Note that for
HICO-DET, there exist many samples of human interacting
with multiple objects of the same category (e.g. a person is
herding multiple cows), therefore we retain at most 10 objects
sorting by sy, ., for each human-action pair.

With objects selected for each human and action, we have
triplets of (human, action, object). The bounding boxes of the
human-object pairs, along with their respective HOI triplet
SCOre Sp_ 0,4, are the final outputs of our model.

IV. EXPERIMENTS

In this section, we first introduce the datasets and evaluation
metrics, then describe the implementation details. Next, we
compare our proposed iHOI framework to the state-of-the-art
methods quantitatively. Finally, we conduct ablation studies
to examine the effect of each proposed component, and
qualitatively evaluate the results.

A. Datasets and Evaluation Metrics

We adopt two HOI detection datasets V-COCO [14]] and
HICO-DET [[15]. The other datasets [[19], [20] either is not in
the context of detection task or contains general human-object
predicates that are out of our exploration range.

V-COCO Dataset [14] is a subset of MS-COCO [44]], with
5,400 images in the trainval (training plus validation) set and
4,946 images in the test set. It is annotated with 26 common
action classes (five of them have no interacting objects), and
the bounding boxes for human and interacting objects. In
particular, three actions (i.e. cut, hit, eat) are annotated with
two types of targets (i.e. instrument and direct object).
HICO-DET Dataset [15] contains 38,118 images in the
training set and 9,658 in the test set. It is annotated with 600
types of interactions: 80 object categories as in MS-COCO
and 117 verbs.

Evaluation Metrics. We evaluate mean Average Preci-
sion (mAP) for both datasets. Formally, a triplet of
(human, action, object) is considered as a true positive if: 1)
both the predicted human and object bounding boxes have
IoUs > 0.5 with the ground-truth, and 2) the predicted
and ground-truth HOI classes match. The definition of true
positive is identical except that HICO-DET considers the spe-
cific object categories, while V-COCO considers rough object
types, namely instrument and direct object, as in the standard
evaluation metric. For V-COCO, we evaluate mAP, ;. follow-
ing [13]]. For HICO-DET, we follow the evaluation setting [[15]]
with objects unknown in advance: Full (600 HOIs), Rare (138
HOIs), and Non-Rare (462 HOISs).

B. Implementation Details

Our implementation is based on Faster R-CNN [2] with
a Feature Pyramid Network (FPN) [3] backbone built on
ResNet-50 [, from Detectron [40]. The weights are pre-
trained on MS-COCO dataset. Following the same thresh-
olds [21]], human and object bounding boxes with detection
scores above 0.8 and 0.4 are kept, respectively. The object
detection backbone is kept frozen during training. We follow
the image-centric training strategy with mini-batch size set to
32. We adopt Stochastic gradient descent (SGD) to train the
model for 20 epochs with a learning rate of 0.001, a weight
decay of 0.0005, and a momentum of 0.9.

The aim of this work is to effectively model human intention
into HOI detection framework rather than extract features.
Therefore, human gaze and pose information are transferred
from other social-activity datasets [41], [37]. Our framework
could be further trained in an end-to-end manner if the human
gaze and body pose annotations are available.



A SUBMISSION TO IEEE TRANSACTIONS ON MULTIMEDIA

80
70
60
504
40+

30

Average Precision (AP) (%)

204

10

0

\
00"
e g
@ 50O y 0“,L° \\Q.o“
wot¥ 1o\

W iCAN
M VTransg-HO
iHOI

PR SN L ST | SRS | P { ) SR SO | SRS o WY L SET L L SN+ W WS ) SRS o) ) SRS o) SEPOR" L SROR= | S OO et e 20
A0 . \“g.\r\‘«‘ ““'\“203("'\“5 « de.\ns Q¥ Ov“‘e(,\“s-\\lmp—\“" weo 5\(\.«\5“0 “B,\n‘«' ca“-“o x® oo o \OO\LO ey oy O “o\¢° o A m.\n‘«‘ é\‘.\r\S (aadod‘m\k"“s ea‘,m‘a e
) N8

Fig. 3: Per-action mAP (%) of the triplets (mAP,,;.) on V-COCO test set. We show two main baselines and our framework
for each of the actions with interacting objects. There are 26 actions defined in [14], and five of them are defined without
objects. We list the detailed results for 21 actions with all possible types of interacting object.

TABLE I: Comparisons with the state-of-the-art methods and
variants of iHOI on V-COCO dataset. mAP (%) equals to
mAP,,. as in the standard evaluation metric.

Methods | mAP (%)
VSRL [14] 31.80
InteractNet 40.00
GPNN [30] 44.00
iCAN [21]] 45.30
VTransE-HO 38.09
(a) w/ pose locations 38.62
(b) w/ P (pose distances) 38.89
(c) w/ sorted r 40.85
(d) w/ G (gazed r) 41.62
(e) w/ P+G 42.37
(f) w/ P+G-+an alternative mining [13] 44.61
iHOI \ 45.79

C. Comparing with Existing Methods

We compare our proposed iHOI with existing methods
for HOI detection. Specifically, we compare with four meth-
ods [13], [14], [30], [21] on V-COCO, and five methods [13]],
(151, 1210, [30], [32] on HICO-DET.

In general, Table[[|and Table[IT| show that iHOI outperforms
other methods. HICO-DET is generally observed with lower
mAP because it contains more fine-grained HOI categories
with severe long-tail problem, and is evaluated with specific
object categories rather than the two rough types of objects in
V-COCO. Our iHOI outperforms the best performing methods
(i.e. iCAN and GPNN, respectively) with improvements of
+0.49 on V-COCO and +0.28 on HICO-DET full test set.
Existing methods mainly rely on the representations of human-
object appearance and spatial relationships through ConvNets
or Graph Neural Networks. However, some complicated in-
teractions are very fine-grained, which make it hard to dis-
tinguish only by appearance and relative locations. On the
other hand, the proposed iHOI jointly takes advantages of
the gazed scene context and subtle differences of the body
movements. A discriminative pattern between the positive and
hard negative samples is also learnt. Thus it achieves better
overall performance.

To study the effectiveness on various interaction classes,
we analyze the mAP for each action-target type defined

TABLE II: Comparisons with the state-of-the-art methods and
variants of iHOI on HICO-DET dataset. Results are reported
with mean Average Precision (mAP) (%).

Methods | Full Rare Non-Rare
Shen et al. [32] 6.46 4.24 7.12
HO-RCNN 7.81 5.37 8.54
InteractNet 9.94 7.16 10.77
GPNN 13.11 9.34 14.23
iCAN 12.80 8.53 14.07
VTransE-HO 10.98 8.15 11.82
(a) w/ pose locations 11.21 8.17 12.12
(b) w/ P (pose distances) 11.51 8.21 12.49
(c) w/ sorted r 11.89 8.73 12.83
(d) w/ G (gazed r) 12.03 8.89 12.97
(e) w/ P+G 12.40 8.92 13.44
(f) w/ P+G+an alternative mining [15] 12.96 9.27 14.06
iHOI ‘ 13.39 9.51 14.55

in V-COCO. Figure [3| shows the detailed results of iCAN,
the base framework VTransE-HO, and our proposed iHOI.
VTransE-HO consists of action predictions from individual
human and object appearance, as well as the pairwise feature
embeddings of {v.,va,v;} [28]]. We observe consistent actions
with leading mAP, such as skateboard, surf. Our proposed
framework improves the performance on all action-target
categories compared to VTransE-HO. The actions with the
largest improvement are those closely related with human
intention such as read, work-on-computer, those requiring the
contextual information such as drink, and those likely to be
mis-grouped such as kick, snowboard. Unlike modeling the
visual scene context with convolutional kernel in iCAN [21]],
our work attempts to extract informative scene regions with
human-centric cues. Comparing the proposed iHOI with the
best performing iCAN shows that iHOI can achieve overall
better performance on most action-target categories, whereas
showing slight worse performance on a small proportion of
the categories such as hit-instr;, talk-on-phone-instr, cut-instr.
We observe that iHOI performs worse mostly on actions with
small objects, possibly due to inaccurate object detection.

D. Ablation Studies

In this section, we examine the impact of each proposed
component with the following iHOI variants upon the base
framework VTransE-HO, shown in Table [| and Table
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0.51 ->0.02
( person, kick, sports ball )

0.23 -> 0.003

0.42 -> 0.83
( person, look, laptop )

) n 4

0.21 -> 0.61
{ person, hold, suitcase )

0.01 ->0.27

Fig. 4: The effect of human intention on both datasets. HOI predictions together with the triplet scores (with gray headings) are
shown. After leveraging intention (VIransE-HO w/ P+G vs. VTransE-HO), we show the change in triplet scores. Using intention
suppresses the false prediction scores (i.e. column 1-2 with red headings), whereas improves the correct ones (i.e. column 3-5
with blue headings). The corresponding gaze density heatmaps intuitively demonstrate that fixated regions are informative of

HOIs. The pose information is not plotted.

(a) w/ pose locations: The relative locations of body joints
w.r.t the image size are used to compute an additional set
of action scores.

(b) w/ P (pose distances): The relative distances from body
joints to the instance are concatenated into the respective
human and object feature spaces, as in iHOL.

(c) w/ sorted r: An additional context-aware branch is
implemented, and the top-5 scene regions are selected
by detection scores (w/o pose).

(d) w/ G (gazed r): An additional gaze-driven context-aware
branch is implemented (w/o pose).

(e) w/ P+G: Body joints distances and gaze information are
incorporated into the two-branch model, equivalent to the
proposed iHOI without hard negative triplet mining.

(f) w/ P+G+an alternative mining [15]: A general mining
method [13] is used in addition to (e), to compare with
our proposed mining strategy.

The reimplemented base framework VTransE-HO achieves
solid performance on both datasets, based on individual ap-
pearance and pairwise differential feature embedding [28]]. To
gain insight into the learned pairwise embedding, we explore
whether the embedding space has captured certain clustering
properties in Figure [5] with t-SNE visualization [45]. By
inspecting the semantic affinities of the embeddings, we can
observe that the learned embedding space yields a semantically
reasonable projection of data, shown with different colors. Our
iHOI achieves gains in mAP of +7.70 on V-COCO and +2.41
on HICO-DET, which are relative improvements of 20.22%
and 21.95% over VTransE-HO. We analyze the effect of each
component as follows.

1) Gazed Context: Human gaze explicitly conveys his/her
intention, which drives the attended scene regions in the
intention-driven branch, forming a key component of our
framework. The ablation results are colored with blue. (c)
leverages the scene regions sorted by detection scores without
gaze guidance, which improves upon the base framework
VTransE-HO with +2.76 and +0.91 on V-COCO and HICO-
DET, respectively. The improvements indicate that scene re-
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Fig. 5: Visualization of the 117 action model parameters of the
human-object pairwise feature embedding using t-SNE [43]).

gions are informative for HOI detection. By utilizing the
actor’s fixated regions guided by gaze, (d) further achieves
improvements of +0.77 and +0.14 compared to (c). This
demonstrates that the actor’s fixated regions can reasonably
provide information in detecting HOIs even with some am-
biguous gaze predictions. The effectiveness of using the gazed
context is also demonstrated by (e) vs. (b).

The optimal value for the hyper-parameter (i.e. number
of candidate) depends on the image context and the gaze
prediction accuracy. Using fewer candidates makes the model
more sensitive to gaze prediction whereas using more candi-
dates increases its robustness to gaze prediction at the cost of
introducing noisy context. In our work, we empirically find
that using the top-5 regions achieve the best performance.

2) Human Pose: Human pose implicitly conveys his/her
intention, which bridges the action with the interacting object.
Comparing (b) to VTransE-HO, incorporating joints distance
information achieves +0.80 and +0.53 in mAP on the two
datasets. Comparing method (e) to (d), the improvements are
+0.75 and +0.37, respectively. It shows that HOI recognition is
likely to be benefited from capturing the subtle differences of
body movements. Yet the performance improvement is slight,
possibly because the pose prediction could be inaccurate due
to scale variation, crowding, occlusion.
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Fig. 6: Samples of human-object interactions detected by our proposed method. Each image displays top-1 (human, action, object)
triplet. The first two rows present correct detections, and the last row presents false positives.

( person, eat, cake ) { person, eat, cake )

B &mm

Fig. 7: Detections with triplet score larger than 0.7 are
displayed. Without the proposed negative triplet mining, the
model gives all four predictions, in which three of them
(i.e. with red headings) are mis-grouped. Model with negative
triplet mining reduces the prediction to only the correct triplet
(i.e. the bottom right with blue heading).

An alternative implementation of human pose information
has also been conducted, which directly incorporating the
body joints coordinates, shown in (a) with yellow color. The
advantage of (b) over (a) demonstrates the efficacy of the
proposed implementation of pose information. In particular,
iHOI can capture the spatial differences of movements relative
to the human and object.

3) Modeling Human Intention: Human intention can be
jointly modeled using both gaze (G) and pose (P). Comparing
(e) to VTransE-HO, considering both gaze and pose achieves
+4.28 and +1.42 in mAP for the two datasets.

Qualitatively, Figure [ shows five HOI predictions with

notable changes in the scores after joint modeling intention
using gaze and pose. The false triplet predictions (i.e. with red
headings) are suppressed by incorporating human intention.
For example, in the first image, it is unlikely that the detected
boy is kicking the sports ball due to the large distances
between his body joints to the target ball, as well as there
is another boy nearer to the ball with a kicking pose. In the
second image, the score of drinking with cup is significantly
decreased when the model learns that the person is looking
at a laptop. Meanwhile, leveraging human intention increases
the confidence of correct HOI predictions, shown by examples
with blue headings. It indicates that human intention can
reasonably help by leveraging the gazed context and the spatial
differences of pose.

4) Hard Negative Triplet Mining: The ablation results for
an alternative negative mining and the proposed one are
colored with green. Without the proposed mining strategy,
shown in (e), mAP is decreased by -3.42 and -0.99 on
the two datasets. This demonstrates that the examined hard
negative samples are essential for the model to learn a more
discriminative pattern. Our method specifically targets the hard
triplets that are likely to be mis-grouped, therefore outperforms
the general negative mining of inaccurate localization and false
classification [13], shown in (f). Our proposed mining method
can be applied to other tasks that require pairing of proposals.

Figure [7] shows the effectiveness of the proposed negative
triplet mining strategy for HOI detection. If no negative
sampling is used, there exists interaction hallucination (i.e. eat
the other person’s cake). Model trained with the proposed
strategy manages to reject the mis-grouped pairs and only
predicts the correct triplet (i.e. the bottom right prediction).

5) Qualitative Examples: Figure [6] shows the examples of
HOI detections generated with the proposed iHOI framework,
including correct predictions and false positives. The incorrect
detections can be caused by confusing actions (e.g. catch and
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throw sports ball), inaccurate object detections (e.g. object
detected on the background, false object classification or
localization), and incomplete HOI annotations.

V. CONCLUSION

In this work, we introduce a human intention-driven frame-
work, namely iHOI, to detect human-object interactions in
social scene images. We provide a unique computational
perspective to explore the role of human intention, i.e. iHOI
jointly models the actor’s attended contextual regions, and
the differences of body movements. In addition, we propose
an effective hard negative triplet mining strategy to address
the mis-grouping problem. We perform extensive experiments
on two benchmark datasets, and validates the efficacy of the
proposed components of iHOI. Specifically, learning with mul-
tiple gaze guided scene regions makes the detection dynamic
to various interactions. For future work, gaze prediction on
small objects could be explored, which the current model is
weak at. Another direction could be studying human intention
for HOI detection in videos, where intention is conveyed
through spatial-temporal data.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770-778.

[2] S.Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in NIPS, 2015, pp.
91-99.

[3] T.Lin, P. Dolldr, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,
“Feature pyramid networks for object detection,” in CVPR, 2017, pp.
936-944.

[4] W. Chu, H. Xue, C. Yao, and D. Cai, “Sparse coding guided spatiotem-
poral feature learning for abnormal event detection in large videos,”
IEEE Trans. Multimedia, vol. 21, no. 1, pp. 246-255, 2019.

[5] S. Wang, M. Jiang, X. M. Duchesne, E. A. Laugeson, D. P. Kennedy,
R. Adolphs, and Q. Zhao, “Atypical visual saliency in autism spectrum
disorder quantified through model-based eye tracking,” Neuron, vol. 88,
no. 3, pp. 604-616, 2015.

[6] B. Hayes and J. A. Shah, “Interpretable models for fast activity recog-
nition and anomaly explanation during collaborative robotics tasks,” in
ICRA, 2017, pp. 6586-6593.

[71 C. Lu, R. Krishna, M. S. Bernstein, and F. Li, “Visual relationship
detection with language priors,” in ECCV, 2016, pp. 852-869.

[8] J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Dual-glance model
for deciphering social relationships,” in /CCV, 2017, pp. 2669-2678.

[9]1 Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang, “Scene graph

generation from objects, phrases and region captions,” in ICCV, 2017,

pp. 1270-1279.

J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, E.-F. Li,

and C. L. Z. R. Girshick, “Inferring and executing programs for visual

reasoning,” in ICCV, 2017, pp. 2989-2998.

A. Gupta, A. Kembhavi, and L. S. Davis, “Observing human-object

interactions: Using spatial and functional compatibility for recogni-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 31, no. 10, pp. 1775-1789, 2009.

L. Wang, X. Zhao, Y. Si, L. Cao, and Y. Liu, “Context-associative hier-

archical memory model for human activity recognition and prediction,”

IEEE Transactions on Multimedia, vol. 19, no. 3, pp. 646-659, 2017.

G. Gkioxari, R. B. Girshick, P. Dollar, and K. He, “Detecting and

recognizing human-object interactions,” in CVPR, 2018, pp. 8359-8367.

S. Gupta and J. Malik, “Visual semantic role labeling,” arXiv preprint

arXiv:1505.04474, 2015.

Y. Chao, Y. Liu, X. Liu, H. Zeng, and J. Deng, “Learning to detect

human-object interactions,” in WACV, 2018, pp. 381-389.

X. Yang, T. Zhang, and C. Xu, “Deep-structured event modeling for

user-generated photos,” IEEE Transactions on Multimedia, vol. 20, no. 8,

2018.

B. Yao and F. Li, “Recognizing human-object interactions in still images

by modeling the mutual context of objects and human poses,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 34,

no. 9, pp. 1691-1703, 2012.

[10]

(1]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

(35]

[36]

[37]

(38]

(391
[40]
[41]
[42]

[43]
[44]

[45]

J. Hu, W. Zheng, J. Lai, S. Gong, and T. Xiang, “Recognising human-
object interaction via exemplar based modelling,” in ICCV, 2013, pp.
3144-3151.

Y. Chao, Z. Wang, Y. He, J. Wang, and J. Deng, “HICO: A benchmark
for recognizing human-object interactions in images,” in ICCV, 2015,
pp. 1017-1025.

B. Zhuang, Q. Wu, C. Shen, I. Reid, and A. v. d. Hengel, “HCVRD: A
benchmark for large-scale human-centered visual relationship detection,”
in AAAI, 2018.

C. Gao, Y. Zou, and J. Huang, “iCAN: Instance-centric attention network
for human-object interaction detection,” in BMVC, 2018, p. 41.

B. F. Malle and J. Knobe, “The folk concept of intentionality,” Journal
of Experimental Social Psychology, vol. 33, no. 2, pp. 101-121, 1997.
J. Pelz, M. Hayhoe, and R. Loeber, “The coordination of eye, head, and
hand movements in a natural task,” Experimental Brain Research, vol.
139, pp. 266-277, 2001.

P. Wei, Y. Liu, T. Shu, N. Zheng, and S. Zhu, “Where and why are they
looking? jointly inferring human attention and intentions in complex
tasks,” in CVPR, 2018, pp. 6801-6809.

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A
10 million image database for scene recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 6, pp. 1452-1464, 2018.

G. Gkioxari, R. B. Girshick, and J. Malik, “Contextual action recognition
with R*CNN,” in ICCV, 2015, pp. 1080-1088.

K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S.
Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” in ICML, 2015, pp. 2048-2057.

H. Zhang, Z. Kyaw, S. Chang, and T. Chua, “Visual translation embed-
ding network for visual relation detection,” in CVPR, 2017, pp. 3107-
3115.

R. Krishna, I. Chami, M. S. Bernstein, and L. Fei-Fei, “Referring
relationships,” in CVPR, 2018, pp. 6867-6876.

S. Qi, W. Wang, B. Jia, J. Shen, and S. Zhu, “Learning human-object
interactions by graph parsing neural networks,” in ECCV, ser. Lecture
Notes in Computer Science, vol. 11213, 2018, pp. 407-423.

K. Kato, Y. Li, and A. Gupta, “Compositional learning for human object
interaction,” in ECCV, ser. Lecture Notes in Computer Science, vol.
11218, 2018, pp. 247-264.

L. Shen, S. Yeung, J. Hoffman, G. Mori, and F. Li, “Scaling human-
object interaction recognition through zero-shot learning,” in WACV,
2018, pp. 1568-1576.

J. J. Van Boxtel, N. Tsuchiya, and C. Koch, “Consciousness and
attention: on sufficiency and necessity,” Frontiers in Psychology, vol. 1,
p. 217, 2010.

M. F. Land and M. Hayhoe, “In what ways do eye movements contribute
to everyday activities?” Vision Research, vol. 41, no. 25-26, pp. 3559—
3565, 2001.

A. Fathi, Y. Li, and J. M. Rehg, “Learning to recognize daily actions
using gaze,” in ECCV, ser. Lecture Notes in Computer Science, vol.
7572, 2012, pp. 314-327.

S. S. Mukherjee and N. M. Robertson, “Deep head pose: Gaze-direction
estimation in multimodal video,” IEEE Transactions on Multimedia,
vol. 17, no. 11, pp. 2094-2107, 2015.

A. Recasens, A. Khosla, C. Vondrick, and A. Torralba, “Where are they
looking?” in NIPS, 2015, pp. 199-207.

S. Gorji and J. J. Clark, “Attentional push: A deep convolutional network
for augmenting image salience with shared attention modeling in social
scenes,” in CVPR, 2017, pp. 3472-3481.

L. Fan, Y. Chen, P. Wei, W. Wang, and S.-C. Zhu, “Inferring shared
attention in social scene videos,” in CVPR, 2018, pp. 6460-6468.

R. Girshick, I. Radosavovic, G. Gkioxari, P. Dolldr, and K. He, “Detec-
tron,” https://github.com/facebookresearch/detectron, 2018.

Z. Cao, T. Simon, S. Wei, and Y. Sheikh, “Realtime multi-person 2d pose
estimation using part affinity fields,” in CVPR, 2017, pp. 1302-1310.
A. Bordes, N. Usunier, A. Garcia-Durén, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in NIPS,
2013, pp. 2787-2795.

R. B. Girshick, “Fast R-CNN,” in ICCV, 2015, pp. 1440-1448.

T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in ECCV, ser. Lecture Notes in Computer Science, vol. 8693,
2014, pp. 740-755.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of machine learning research, pp. 2579-2605, 2008.


https://github.com/facebookresearch/detectron

	I Introduction
	II Related Work
	III Proposed Method
	III-A Model Architecture
	III-A1 Human-Object Pairwise Branch
	III-A2 Individual Human and Object Branch
	III-A3 Gaze-Driven Context-Aware Branch

	III-B Hard Negative Triplet Mining
	III-C Inference

	IV Experiments
	IV-A Datasets and Evaluation Metrics
	IV-B Implementation Details
	IV-C Comparing with Existing Methods
	IV-D Ablation Studies
	IV-D1 Gazed Context
	IV-D2 Human Pose
	IV-D3 Modeling Human Intention
	IV-D4 Hard Negative Triplet Mining
	IV-D5 Qualitative Examples


	V Conclusion
	References

