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Abstract—Human Action Recognition (HAR) for CCTV-
oriented applications is still a challenging problem. Real-world
scenarios HAR implementations is difficult because of the gap
between Deep Learning data requirements and what the CCTV-
based frameworks can offer in terms of data recording equip-
ments. We propose to reduce this gap by exploiting human poses
provided by the OpenPose, which has been already proven to be
an effective detector in CCTV-like recordings for tracking appli-
cations. Therefore, in this work, we first propose ActionXPose: a
novel 2D pose-based approach for pose-level HAR. ActionXPose
extracts low- and high-level features from body poses which are
provided to a Long Short-Term Memory Neural Network and
a 1D Convolutional Neural Network for the classification. We
also provide a new dataset, named ISLD, for realistic pose-level
HAR in a CCTV-like environment, recorded in the Intelligent
Sensing Lab. ActionXPose is extensively tested on ISLD under
multiple experimental settings, e.g. Dataset Augmentation and
Cross-Dataset setting, as well as revising other existing datasets
for HAR. ActionXPose achieves state-of-the-art performance in
terms of accuracy, very high robustness to occlusions and missing
data, and promising results for practical implementation in real-
world applications.

Index Terms—Pose, LSTM, CNN, ISLD, CCTV

I. INTRODUCTION

HUMAN Action Recognition (HAR) is one of the most
challenging problems for Artificial Intelligence (AI) [1].

It consists of training an AI model to recognise a class of
human actions. Depending on the applications, input data can
be very different, such as RGB videos, infrared data, time-of-
flight-based or structured-light-based data (depth data) [2].

HAR is a crucial task in many applications, such as cyber-
netics, human-machine interaction, automated assisted living
systems, surveillance, autonomous vehicles, gaming and sports
analysis. In this work, the focus is on surveillance and CCTV-
like data. We chose to focus on this area because artificial
intelligence for surveillance-related HAR is yet to make an
impact on practical applications. Therefore, this work presents
ActionXPose, a real-time body pose-based method for HAR,
which is robust to occlusions and multi-viewpoint changes. In
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Fig. 1. The human pose is a set of 2D landmarks J , which represents a non-
redundant description of the target posture. (Right) Examples of a human pose.
(Left) Proposed pose nomenclature, for pose landmarks J = {1, . . . , 14},
link vectors vj1,j2 , for j1, j2 ∈ J , and considered landmark subsets, i.e.
Ja, Jb, Jc and Jd.

Fig. 1, an example of human 2D poses provided by OpenPose
[3] is shown.

This work is based on the detection framework shown
in Fig. 2, which we have already explored for tracking-
related problems [4]–[8]. When multi-target behaviour analysis
based on CCTV-like recordings is required, the first step,
generally, consists of the detection of human targets by using
RGB data. This step requires significant computational effort.
Subsequently, tracking is needed to retrieve targets identities.
The tracking processing relies primarily on detected bounding
boxes or body landmarks coordinates rather than on the
RGB data. Thus, this step can be performed quite efficiently.
Ultimately, each tracked target data can be further processed
for HAR. However, this step can be computationally expensive
if bounding boxes RGB data is considered. As opposite,
only considering bounding boxes coordinates could be very
computationally efficient. However, in this case, each target
data is reduced to a centroid point, and no posture-related
HAR can be performed with such limited data. Therefore, the
aim of this work is to find a trade-off between computational
cost and informativeness by using the OpenPose detector for
HAR already exploited for the tracking phase. Therefore, RGB
data is intentionally neglected from the HAR processing to
compensate for the computational effort already spent during
the detection phase. This strategy enables to focus on each
targets postures and movements, preserving and exploiting the
tracking results, to reduce the computational cost. However,
pose detectors are prone to false landmarks detections due
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Fig. 2. Overall HAR framework. CCTV-like videos are pre-processed with a
human pose detector, such as OpenPose, to estimate the positions of the targets
(bounding box) and their body limb positions (landmarks). Subsequently,
tracking algorithms provide targets identities, allowing consistent grouping
of detected targets data for HAR. Finally, for each detected target, the action
label is estimated by using the tracked data.

to occlusions or cluttered RGB data. This problem has been
already explored and documented in our recent work for
tracking applications [8]. Thus, this work focuses on propos-
ing strategies for pose-based HAR which can be robust to
occlusions and missing data, for CCTV-based applications.

We considered CCTV-like recordings, such that:
1) The camera viewpoint is far enough to capture most of

the target bodies in absence of occlusions;
2) The frame resolution and compression allow reasonable

OpenPose detection.
Moreover, this work proposes a new dataset, namely the
Intelligent Sensing Lab Dataset (ISLD), which is specifically
designed for pose-based HAR in a CCTV-like recording envi-
ronment. To further extend the learning abilities of ActionX-
Pose, additional existing datasets are also explored. To evaluate
ActionXPose performance, we performed single-dataset and
cross-dataset testing, dataset augmentation testing, ablation
study, occlusions study and video quality study. Results show
that ActionXPose outperforms existing methods in most of the
tests and shows greater robustness to occlusions and missing
data.

In conclusion, our main contribution is threefold:
1) A new, real-time algorithm for posed-based HAR, robust

to occlusions and missing data;
2) An extensive exploration on dataset augmentation using

existing datasets to improve the proposed model is pro-
posed;

3) A new dataset, named ISLD, for pose-based HAR.
The rest of this paper is organised as follows: in Section

II, related works are presented. Section III includes techni-
cal details about ActionXPose, regarding low-level features
extraction, high-level features computation and occlusion-
handling strategies definition. In Section IV, several experi-
ments are presented to extensively evaluate the performance
of ActionXPose. Finally, in Section V, conclusions are drawn
and future work is proposed.

II. RELATED WORK

The state-of-the-art HAR algorithms can be divided into
three main categories [1]:

1) Hand-crafted features based approaches: in this cate-
gory, human insights are strongly used to solve HAR prob-
lems, while machine abilities are not fully exploited and are
often limited to conventional machine learning tasks. For

example, notable approaches rely on background subtraction
methods [9], 3D Histogram of Oriented Gradients (3D-HOG)
[10] and Local Binary Patterns (LPB) [2], [11].

2) Deep-learning based approaches: in this category, Con-
volutional Neural Networks (CNNs), generative models, 3D-
CNNs and Recurrent Neural Networks (RNNs) [12] are used
to explore data without any or with very limited human
insights.

3) Hybrid approaches: the algorithms in this category
attempt to combine the most promising results from both
the above mentioned hand-crafted and deep learning based
approaches, providing a useful trade-off between them [1].

According to the above taxonomy, the method presented in
this work, ActionXPose, is a fully-fledged hybrid approach
for pose-level HAR. Indeed, ActionXPose is based on hu-
man poses extracted by a deep learning based detector, i.e.
OpenPose. Then, poses are processed to extract low and high-
level features represented as time-sequences. This process
is supported by Self-Organizing Map (SOM) networks [13]
and commonly used tools such as the Principal Component
Analysis (PCA). Produced time-sequences are further pro-
cessed by the MLSTM-FCN network [14]. This state-of-the-art
network combines a Long Short-Term Memory (LSTM) [15]
block with a squeeze and excitation block, to better consider
both time dependencies and mutual relationships between
sequences.

While human poses consist of 2D data, the human skele-
tons provided by the popular structured-infrared-light Kinect
camera consist of 3D data. Skeleton-based approaches are
strongly related to the proposed method. However, despite
the significant advantages provided by the 3D data [16], for
example in terms of viewpoints generalization, Kinect presents
numerous limitations. For example, it does not work well in
outdoor environments and has a minimal working range (up
to 5-6 meters), which limits its ability to be implemented in
surveillance scenarios [17]. Nevertheless, the skeleton based
literature can still provide several cues on how to process the
2D poses. However, it is worth emphasizing that, for example,
the 2D poses do not allow any rotation in the 3D space.
Thus, many skeleton-based algorithms, which are explicitly
or implicitly based on the advantageous properties of the 3D
space, are limited in the 2D case. Furthermore, no depth
data, i.e. Kinect points cloud, is available in the 2D case.
Despite these problems, the basic body landmarks processing
can still be borrowed from the 3D skeleton approaches.
For example, landmarks normalization is commonly used to
remove target size and location dependency. At a feature-
level, it is common to consider the mutual Euclidean distance
between landmarks. In fact, in [18], authors proposed to extract
Local Occupancy Pattern (LOP) features from depth data
and Invariant Features from skeleton data, where landmarks
normalization was mainly used. Similarly, in [19], authors
suggested to implement Hidden Markov Models (HMMs) to
process skeleton data where normalization was performed as
a pre-processing step.

Motivated by the limitations of Kinect, researchers started
developing new techniques that can provide similar output data
using a simple RGB camera. Therefore, highly promising body
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pose detectors have been published in the last few years, such
as DeeperCut [20] and OpenPose [3]. In particular, OpenPose
achieves the best performance, and opens a new research
direction for HAR. For example, in [21], Yan et al. have
implemented graph convolutional networks to process pose
data provided by OpenPose, which achieves promising re-
sults. This approach considers temporal information alongside
spatial information. However, this method requires a fixed
number of frames for each action sample in order to build the
action graph, which may affect system flexibility. In contrast,
our work focuses on exploiting LSTM based networks. Thus,
our work is specifically designed to deal with multivariate
temporal sequences, with no restrictions on the number of time
steps, allowing full flexibility with respect to space and time.

Regarding the classification step, RNN and LSTM have also
been exploited in many recent papers. In [22], the authors
focused on the 3D skeleton-based action recognition using
LSTM networks. Their major focus was on implementing
trusting gates on the LSTM architecture to allow better action
representation. In [23], a hierarchical RNN approach was
implemented to focus on several 3D skeleton subparts, in
order to better discriminate which body sub-part is related
to the performed action. In [24], authors focused on new gate
strategies for LSTM, in order to emphasize salient motion from
learning data. In [25], a new regularization term for LSTM was
used in order to learn co-occurrences within skeleton data.

Most of the above mentioned studies focused on modifying
the network architectures to process the raw 3D skeleton data
more effectively. In contrast, our proposed work aims to extract
more meaningful and robust input features based on the 2D
body landmark coordinates, to be provided as input for a pre-
defined LSTM architecture.

Other approaches relevant to this work for performance
comparison are [10], [26]–[34]. In these works, the learning
sources are mainly RGB raw data, motion history videos and
body silhouettes. Compared with human poses, these data are
generally heavier, redundant and cluttered. Data abundance
can provide more effectiveness for HAR, at the cost of more
processing time. Moreover, in those works, no explicit link
with human tracking was provided. In contrast, the proposed
approach has a low processing cost, and it is specifically
designed for tracking-based frameworks.

III. METHODOLOGY

A. Problem’s Statement and Notations

Let D = {si, li, wi}Ni=1 be the action dataset containing N
samples. si represents the i-th subject video sample. li ∈ L
represents the i-th action label, where L is the set of target
actions and wi ∈ W represents the i-th viewpoint label, where
W is the set of considered viewpoints. Let T ⊂ D be the
chosen training subset and T∗ = D\T be the testing subset.

The pose detector provides a root-centred graph in the form
of 2D coordinates, such that

pi(t) = {(xj(t), yj(t))i}j∈J t ∈ {1, . . . , Ti} (1)

where Ti represents the time length of the i-th video sample
and J is the landmarks set defined by the pose detector

mapping. In this work, J = {1, . . . , 14}. Let vj1,j2 be the
link vector between body landmarks j1, j2 ∈ J , as defined in
Fig. 1.

ActionXPose aims to exploit pi(t), as well as generate
additional and more robust time sequences, to train a recurrent
neural network using T and to predict action labels in T∗.

B. Baseline Methods

In this section, three baseline methods are defined, which
borrow techniques from the 3D skeleton-based HAR field.

Sequence pi(t) provided by OpenPose are location and body
size dependent [19]. Thus, translation and scaling are required
in order to normalize data across different samples. Specif-
ically, the location dependency problem can be addressed
by transforming pi(t) from the absolute to the root-centred
coordinate reference system. The transformed pose coordinates
are defined as:

(x̄j , ȳj)i = (xj , yj)i − (x2, y2)i ∀j ∈ J, (2)

where the (̄.) operator denotes the centring transformation and
where the dependence of t has been conveniently omitted.
Thus,

p̄i = {(x̄j , ȳj)i}j∈J , (3)

is the set of root-centred coordinates defined by (2).
Furthermore, we denote the scaling with the (̄̄.) operator as

follows:
¯̄pi = {(¯̄xj , ¯̄yj)i}j∈J (4)

where ¯̄pi is obtained by scaling p̄i(t) coordinates by using the
following constraint

¯̄vj1,j2 =
v̄j1,j2
||v̄2,9||2

∀j1, j2 ∈ J (5)

where v̄2,9 is the vector link between the root and the right
hip landmarks. Due to (2) and (5), the target position and the
size information are discarded.

According to the proposed definition for pi(t), these se-
quences mostly contain spatial information about the motion.
To obtain temporal information, p′i(t) = pi(t+ 1)− pi(t) can
be defined. For the rest of the paper, we will use pi(t) to
denote the transformed poses in (4). Therefore, inspired by
existing literature, we have selected three baseline methods,
which are closely related the proposed problem.

1) [19] + [14]: this consists of a simple learning step
based on normalized OpenPose coordinates sequences pi(t)
and p′(t). A Multivariate LSTM-FCN architecture with a
time-based attention mechanism (MLSTM-FCN) [14] is used
for the classification step. This algorithm takes as input the
coordinate sequences obtained from training data T, including
action labels li, to train a supervised classification model to
be tested on T∗.

2) [18] + [14]: this consists of computing mutual Open-
Pose landmarks distances [18]. In this case, the classification
step is also performed by using the MLSMT-FCN architecture.
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3) [18] + [19] + [14]: this consists of a hybrid approach
merging the previous two methods. Thus, pi(t), p′(t) and
mutual distances between landmarks are considered. The clas-
sification step is again performed by using the MLSMT-FCN
architecture.

Formally, pi(t) and p′i(t) represent low-level features, which
can be provided to the MLSTM-FCN for classification. In
particular, by using pi(t) and p′i(t), the MLSTM-FCN per-
forms landmark-based attention due to its architecture. How-
ever, such levels of detail can be confusing in some cases,
due to high intra-class similarities or within-class variations.
Moreover, when some landmarks are persistently missing due
to occlusions, the corresponding sequences will be completely
lost, compromising the robustness against unexpected occlu-
sions. For example, for the baseline methods in III-B2 and
III-B3, one single persistent missing landmark (xj , yj)i not
only neglects two xj and yj sequences, but also compromises
the calculation of mutual distances. Therefore, the next sec-
tions provide novel high-level features, that are designed to
be robust to missing data, and additional occlusion-handling
methods, providing an effective solution to this problem.

C. Defining Poses Libraries

The main goal of this section is to exploit training data T to
learn general poses that best represent each action, from each
viewpoint. In other words, the output of this step is a pose
library.

Since root coordinates in pi(t) were set to zero in the previ-
ous section, let ui(t) = (x1, y1, x3, y3, . . . , xJ , yJ) ∈ R2J−2

be the vector obtained by unrolling pi(t) and skipping the
root coordinates (x2, y2)i. The unsupervised clustering method
Self-Organizing Map (SOM) [13] is used in a semi-supervised
fashion, to explore natural clusters in R2J−2. Since the SOM
algorithm expects no missing data, in this stage, we exploited
body left/right symmetry for dealing with possible persistent
occlusions occurred in training data, mostly due to target self-
occlusions. In particular, we estimated the persistently missing
landmarks by mirroring available data. For example, if the
left-shoulder was missing, data was filled with the transformed
right-shoulder obtained by mirroring it with respect to the root
landmark.

Additionally, SOM requires a cluster topology to be defined.
Since prior-information about the distribution of pose data is
not provided, the homogeneous topology, [q, . . . , q] ∈ Rm, is
set for a given integer q and a given space dimension m. This
choice forces the SOM architecture to have qm neurons linked
each other with a homogenous rectangular topology, defining
qm clusters. Since the SOM computational time is affected by
either the number of considered vectors ui(t), the q topology
parameter and the space dimension 2J−2, a trade-off between
these parameters is required.

To solve this problem, let ũi(t) be the vector containing the
first m principal components of ui(t) obtained through the
PCA, i.e. ũi(t) ∈ Rm. Our simulations suggest that the best
values for m and q are m = 3 and q = 4, which balance the
SOM computational cost while producing a reasonable number
of prototypes. In Fig. 3, comparisons of SOM computational
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Fig. 3. SOM time computation comparison. Different values for m and
q have been set for the SOM computation. Reported times refer to entire
library creation process for the MPOSE dataset. In the graph, qm values are
also reported. As shown, qm = 43 = 64 is chosen as trade-off between
computation time and number of prototypes in the libraries.

times are provided. Therefore, the whole process can be
summarised as follows

R2J−2 PCA−−→ Rm SOM−−−→ qm clusters (6)

Thus, for a fixed action label l and a fixed point of view w,
the SOM is trained over

{ũi(t) | li = l, wi = w} ⊂ T. (7)

This provides an additional cluster label ki for each training
pose ũi(t), as follows:

{ũi(t) | li = l, wi = w} SOM−−−→ {ũi(t) | li = l, wi = w, ki = k}
∀ l ∈ L, ∀ w ∈ W, k ∈ {1, . . . , qm}. (8)

Thus, qm pose prototypes are defined by averaging cluster
labels ki as follows:

Ul,w,k =
1

nk

∑
i,t

{ui(t) | li = l, wi = w, ki = k}

∀ l ∈ L, ∀ w ∈ W, k ∈ {1, . . . , qm}, (9)

where nk represents the number of poses within cluster k. In
conclusion of this step, the libraries of prototypes are collected
from training data as follows:

Vl =
{
{Ul,1,k}q

m

k=1, . . . , {Ul,|W|,k}
qm

k=1

}
∀ l ∈ L. (10)

Thus, Vl contains pose prototypes in the form of points in
a multidimensional space R2J−2, which are able to cover all
variation of considered viewpoints. For a visual example of
the Vl set, see Fig. 4.

Libraries for the temporal information can be similarly
defined as follows:

Sl =
{
{U ′l,1,k}

qm

k=1, . . . , {U
′
l,W,k}

qm

k=1

}
∀ l ∈ L, (11)

where U ′l,w,k represents prototypes obtained by clustering
temporal vectors u′i(t).
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Fig. 5. Proposed training and testing ActionXPose pipelines. The occlusions-
handling steps are depicted in blue.

D. Strategies for Occlusion-Handling

Occlusions, self-occlusions or ambiguous RGB data can
affect OpenPose performance, resulting in persistent or short-
time missing data. In this section, we propose four comple-
mentary strategies to deal with these problems.

1) High-level Features: In this section, we address the
problem of persistent occlusions. A persistent occlusion occur
when one or more landmarks are missing for the entire
sequence. To address this problem, the idea is to exploit the
Spatio-temporal libraries Vl and Sl for l ∈ L defined in the
previous section, to generate high-level features in the form
of time sequences. Inspired by [23], since different body parts
carry different information, the idea is to exploit full-body and
local-limb attention.

Given J = {1, . . . , 14}, let Ja, Jb, Jc, Jd be the landmark
subsets as defined in Fig. 1; namely,

Ja = {3, 4, 5} ⊂ J Jb = {6, 7, 8} ⊂ J
Jc = {9, 10, 11} ⊂ J Jd = {12, 13, 14} ⊂ J. (12)

Let dJ∗(pi(t), v) be the average distance between the
generic pose pi(t) and the generic prototypes v ∈ Vl, com-

Fig. 6. Examples from the proposed ISLD dataset. Human actions of 10
subjects are recorded using a static camera, from different viewpoints.

puted for landmarks J∗, where J∗ represents either Ja, Jb, Jc,
Jd or J , and it is defined as follows:

dJ∗(pi(t), v) =
1

|J̄∗|
∑
j∈J̄∗

‖(xj , yj)i − (xj , yj)v‖2 , (13)

where (xj , yj)v are the j-th landmark coordinates of v and J̄∗
represents either Ja, Jb, Jc, Jd or J , where missing coordi-
nates are excluded. Therefore, given a library of prototypes Vl
for action l, we can define the embedding sequence as follows:

DVl,J∗(t) = min
v∈Vl

dJ∗(pi(t), v), (14)

where it is clearly shown that DVl,J∗ depends on time.
Given a set of actions L and the set of landmarks in (12),

the meaningful sequences that can be extracted from pi(t) are
defined as follows:

Seqi(Vl) = {DVl,J(t), DVl,Ja(t), . . .

. . . , DVl,Jb(t), DVl,Jc(t), DVl,Jd(t)} ∀l ∈ L, (15)

Similarly, sequences for temporal information can be em-
bedded as follows:

Seqi(Sl) = {DSl,J(t), DSl,Ja(t), . . .

. . . , DSl,Jb(t), DSl,Jc(t), DSl,Jd(t)} ∀l ∈ L (16)

where we simply replace the term Vl in (15) with Sl. This
leads to two sets of sequences, Seqi(Vl) and Seqi(Sl), for all
l ∈ L.

It is worth mentioning that (13) allows the embedding to run
and provide numerical results, even in presence of persistent
missing data, due to the presence of J̄∗. In other words,
when missing data occurs, the sequences provided by (15)
and (16) are lost only when all landmarks in the selected
landmarks set are missing. In all other cases, i.e. at least
one landmark is available for the selected landmarks set,
the distance computation is successfully performed and the
corresponding sequence is obtained.

We will prove in Section IV-F that this approach not only
preserves the classification integrity in case of occlusions, but
also improves baseline performance.

2) Landmark Borrowing: in this section, we provide a
strategy to improve low-level features in case of persistent
occlusions. Equation (13) is based on J̄∗, which only contains
non missing landmarks. Thus, the resulting sequences in
equation (15) and (16) are well-defined even in presence of
missing landmarks. However, low-level sequences pi(t) and
p′(t) might still show missing values when an occlusion occur.
To solve this problem, we propose to further exploit equations
(13) and (14) to fill the missing values in pi(t) by using the
knowledge contained in the pose libraries. Therefore, for a
given time step t,

v†(t) = arg min
v∈Vl,l∈L

dJ(pi(t), v), (17)

is the closest prototype to the pose pi(t). Thus, we can exploit
v†(t) to borrow the coordinates of the missing landmarks in
pi(t). Subsequently, p′(t) is computed according to the usual
definition. This strategy ensures to fill missing data in the low-
level sequences. Moreover, no extra cost is required to perform
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equation (17), since the calculation can be embedded within
the one required by equation (14).

3) Short-time Interpolation: in this section, we address the
problem of short-time occlusion. This problem occur when,
within the considered sequence, landmarks coordinates are
missing for only few frames. This case is much easier than the
one considered in Section III-D1, where persistent occlusions
where addressed instead. Although Kalman filter [35] can
be applied to the detected landmarks, further processing is
required to ensure that the Gaussian property holds for the
considered data. Thus, our strategy to deal with short-time
missing data consists of interpolating available data, exploiting
temporal consistency. In our formulations, we define x(t) and
y(t) as the landmark coordinate with respect to time t, where
some entries are occasionally missing (short-time), such that:

x : A −→ R, y : A −→ R, A ⊂ {1, . . . , T}, (18)

where A represents the set of frames when the landmark is
detected. Then, we define missing values for t∗ ∈ {1, . . . , T}\
A as the nearest-neighbour:

x(t∗) = x
(
t̂
)
, y(t∗) = y

(
t̂
)
, s.t. t̂ = arg min

t∈A
‖t∗− t‖2.

(19)
Given the simplicity of this solutions, we implemented it at
all stages of our work, including for the baseline methods, as
a simple and reasonable quick solution for short-time missing
data.

4) Occlusions Augmentation: as a final strategy for
occlusion-handling, synthetically occluded sequences are
added in the training phase. Specifically, training sample
can be persistently occluded by randomly removing some
landmarks according to a binary Bernoulli distribution B(p)
where p = 0.5. This strategy has been implemented right after
landmark detection. To preserve the integrity of the system,
landmarks 2 and 9 have been not occluded to allow equation
(5) to be well defined. This strategy aims to train resulting
network with data that present random occlusions, enabling
the network to learn a more general representation. This
strategy can provides additional robustness. In fact, despite
the presence of the other strategies, it is crucial to effectively
learn how the low and high-level features might change when
different occlusions occur.

E. Classification Step

For fair comparisons with the proposed baseline methods,
MSTLM-FCN is again used for the classification step. De-
pending on the input features, the classification step can focus
on different motion aspects. Specifically, in this work, we
define three sets of sequences, by using the proposed low-
level and high-level features, as follows:

1) Spatial-attention sequences: these are formed by com-
bining pi(t), p′i(t) and Seqi(Vl).

2) Temporal-attention sequences: these are formed by com-
bining pi(t), p′i(t) and Seqi(Sl).

3) Spatio-temporal-attention sequences: these are formed
by combining pi(t), p′i(t), Seqi(Vl) and Seqi(Sl).

For an overview of the ActionXPose processing, in Fig. 5
the general pipeline of the proposed algorithm is provided.

IV. EXPERIMENTS

A. ISLD Dataset

In this work, we propose a new, realistic dataset for the
pose-based HAR, named ISLD. This dataset was recorded
within our Intelligent Sensing Lab. Single-target CCTV-like
clips, according to 18 predefined posture-related action classes,
were collected. Participants were free to perform the actions
according to their understanding of the class labels and no
example clips were provided. Recording viewpoints were
predefined, to ensure that enough viewpoints were covered.
Specifically, samples were recorded from up to 5 different
viewpoints, namely front, front-left, front-right, left and right.
The 18 proposed actions, performed multiple times by 10
actors, were recorded with a static RGB camera. Overall,
ISLD contains 907 different time windows. For each time
window, only one target is visible, performing a single action.
10 examples from the ISLD dataset are shown in Fig. 6.

For the purpose of this work, we pre-processed ISLD
samples with OpenPose to extract human poses. To increase
the number of samples for the classification requirements, data
augmentation was performed. In fact, deep learning methods
usually require a great amount of data to perform well. In
fields such as image recognition, cropping or rotating images
are common practice to augment dataset samples in order
to meet deep learning algorithms conditions [36]. In speech
recognition, it is also common to add noise to training samples
for the same purpose [37]. In this work, two methods for
augmenting training data were used.

The first method is named pose-flipping, which consists
of flipping poses along the vertical axis passing through the
root landmark. This causes that the performed action looks
mirrored, exploiting the left/right body symmetry. In Fig. 7,
viewpoint composition rates for the ISLD dataset are provided,
showing that pose-flipping balances the left/right viewpoint
rates.

The second method for data augmentation is named pose-
noising, which consists of adding Gaussian noise to the land-
mark coordinates, i.e. N (0, σ2) with 0 mean and σ standard
deviation. In this work, σ = 0.2 is empirically chosen for
all experiments unless otherwise specified. Specifically, let z
be the number of times that training data are used to create
additional noisy samples. Thus, if z = 0, no noisy samples
were created. If z = 1, all training samples were used once to
create noisy samples.

In conclusion, after applying the proposed data augmen-
tation, the ISLD dataset consists of up to 5598 samples,
as shown in Table I. Fig. 7 shows that pose-flipping not
only doubles the available data, but also balances left/right
viewpoint rates.

B. Experimental Settings

1) Traditional Setting: this setting is fully based on the
ISLD dataset. ActionXPose was trained on actors [1, 2, 3, 4],
validated on actors [5, 6, 7] and tested on actors [8, 9, 10]. Re-
garding hyper-parameters, σ = 0.2 and z = 1 for augmenting
training data.
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Fig. 7. ISLD viewpoints composition rates in the cases of no pose-flipping
and pose-flipping data augmentation. Pose-flipping is useful for doubling the
number of samples and balancing viewpoints composition.

TABLE I
ISLD ACTION COMPOSITION. THE NUMBER OF SAMPLES FOR EACH

ACTION ARE PROVIDED IN THE DEFAULT CASE (NO DATA AUGMENTATION)
AND AFTER APPLYING POSE-FLIPPING AND POSE-NOISING.

D. Aug. D. Aug.
Label No Yes Label No Yes
bend 40 240 jump 40 240
box 80 480 kick 42 252

check-watch 40 240 jump-in-place 48 288
cross-arms 40 240 point 40 240

get-up 40 240 run 40 240
hand-clap 40 240 head-scratch 40 240

one-hand-wave 40 240 sit-down 40 240
two-hands-wave 40 240 stand 350 1050

jog 36 216 walk 72 432

2) Dataset Augmentation Setting: in this setting, ISLD
training data were considered alongside additional datasets to
better leverage the deep learning generalization ability. Since
the stand action is already well covered by ISLD, no further
data augmentation was required for this action. However, other
classes are not so well represented and additional data can be
helpful. Because data collection for HAR is often expensive
and time-consuming, we revised already available datasets,
starting with the popular UCF101 [38] and HDMB51 [39]
datasets. For these two datasets, most of the video samples
were collected from YouTube and movies. The camera was
often too close to the target, capturing only the target’s face
or hands. Moreover, most samples in these datasets show
low-resolution, unlabelled, multiple-target frames where the
subjects perform different actions. Furthermore, most of the
actions are strongly related to the context rather than to the
human posture. Last but not least, as shown in Fig. 8-(Top),
if OpenPose is used to pre-process these datasets, the overall
performance is too low to be a reliable source for the proposed
2D pose-based HAR. Fig. 8-(Bottom), shows the OpenPose
detection rate for UCF101 and HDMB51, supporting these
conclusions.

In contrast to UCF101 and HDMB51, CCTV-like recordings
often show full-body targets, where OpenPose works well.
Fig. 8-(b) also shows the performance on a famous dataset for
tracking in public environments, i.e. MOT16 [40], and other
traditional datasets, i.e. KTH [41], IXMAS [42], Weizmann
[43] and i3DPost [44]. We found that OpenPose performs
considerably better on these traditional datasets. Moreover,
these datasets include fully-labelled single-target clips, which

HMDB51

UCF101

Fig. 8. (Top) Screenshots from HMDB51 and UCF101 datasets processed
by OpenPose. The pictures show false negatives, missing landmarks, false
positives and very limited views of the target body. (Bottom) OpenPose per-
formance on different datasets. Non-detection frames measures the percentage
of frames in which detections do no occur. False positive targets measures
the percentage of the root landmark confidence below the threshold 0.5.
Considering those targets with the root landmark confidence higher than 0.5,
Non-detected landmarks + false positive landmarks considers the percentage
of non detected landmarks (confidence = 0), plus false positive landmarks (0
< confidence < 0.5).

simplifies our work removing the requirement of the tracking
pre-processing step. Motivated by these considerations, we
collected additional training data from the Weizmann, i3DPost,
KTH and IXMAS datasets, defining the four-in-one MPOSE
dataset by merging them all together. Moreover, the MPOSE
class labels were selected to be consistent with the ISLD’s
labels. Overall, MPOSE contains 4160 single-target video
clips, distributed over 17 action classes (the stand action
is excluded) and performed by 53 human actors. Table II
reports the MPOSE action composition for the default case
(no data augmentation) and the pose-flipping/pose-nosing case.
Pose-noising has the potential to indefinitely raise the total
number of samples. However, for the MPOSE dataset, we
experimentally found that z = 2 is the best pose-noising
parameter. It is worth noticing that, when data augmentation
is applied, MPOSE contains a significantly higher number of
samples than UCF101 and HMDB51, which contain 13320
and 6766 samples, respectively. In terms of viewpoints, Fig.
9 shows the viewpoint composition and the effect of pose-
flipping in balancing left/right viewpoints rate.

3) Cross-Dataset Setting: in this setting, the MPOSE
dataset was used for training and validation, while the whole
ISLD dataset was used for testing. Therefore, the purpose of
this test was to measure ActionXPose cross-dataset perfor-
mance. We remark that, in this setting, since MPOSE does
not contain data for the action stand, we neglected this action
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TABLE II
MPOSE ACTION COMPOSITION. THE NUMBER OF SAMPLES FOR EACH

ACTION ARE PROVIDED IN THE DEFAULT CASE (NO DATA AUGMENTATION)
AND AFTER APPLYING POSE-FLIPPING AND POSE-NOISING.

D. Aug. D. Aug.
Label No Yes Label No Yes
bend 193 1158 jump 73 438
box 517 3102 kick 120 720

check-watch 120 720 jump-in-place 73 438
cross-arms 120 720 point 120 720

get-up 120 720 run 474 2844
hand-clap 396 2376 head-scratch 120 720

one-hand-wave 193 1158 sit-down 120 720
two-hands-wave 407 2442 stand 0 0

jog 400 2400 walk 594 3564

No Pose-flipping Pose-flipping

Right 
8.3%

Left  
26%

Front 
28.8%

Rear 
1.1%Rear-Right 

1.4%
Rear-Left 
2.4%

Front-Left 
20.9%

Front-Right 
11.6%

Right 
17.2%

Left  
17.2%

Rear 
1.15%Rear-Right 

1.87%
Rear-Left 
1.87%

Front-Left 
15.9%

Front-Right 
15.9%

Front 
28.8%

Fig. 9. MPOSE viewpoint composition in both cases of no pose-flipping and
pose-flipping.

in ISLD as well.

C. Implementation

Simulations were conducted on Ubuntu 16.04 running on a
Dell Inspiron 15 5000 with four core Intel i7, and mounting
an embedded Nvidia GeForce GTX 1050. Hyperparameters,
such as number of epochs and batch size, were chosen by
applying the early-stopping method to the validation sets. For
the detection phase, OpenPose model is based on COCO [45],
and is designed to provide up to 25 body landmarks, 70 face
landmarks, 42 hands landmarks and 6 feet landmarks for each
target. However, for the purpose of this work, only 14 body
landmarks were exploited. Specifically, since 5 out of 25 body
landmarks represent nose, left eye, right eye and left and right
ears, we defined a head landmark averaging these landmarks.
Thus, in our implementation, the set of body landmarks is
J = {1, . . . , 14}, as described in Figure 1. Finally, regarding
ActionXPose coding, feature computations were conducted in
MATLAB, while the classification was performed using the
Keras implementation of MLSTM-FCN, provided by [14].

D. Results

In this section, we provide results for ActionXPose per-
formance on the three set of features defined in Section
III-E, i.e. Spatial-attention, Temporal-attention and Spatio-
temporal-attention. Simulations were conducted for the three
experimental settings defined in Section IV-B. Obtained results
are provided in Table III and compared with the state-of-the-
art baselines methods. Regarding the Traditional experimental
setting, the action classes are unbalanced due to the presence

TABLE III
ACCURACY RESULTS (%) FOR THREE EXPERIMENTAL SETTINGS, I.E.
TRADITIONAL (TRAD.), DATASET AUGMENTATION (D. AUGM.) AND

CROSS-DATASET (CROSS-D.). |L| REPRESENTS THE NUMBER OF
CONSIDERED ACTIONS.

Settings Trad. D. Augm. Cross-D.
|L| 18 / 17 18 / 17 17

[19] + [14] 92.44 / 88.88 93.77 / 91.07 93.77
[18] + [14] 81.77 / 73.70 79.55 / 75.00 79.55

[18] + [19] + [14] 91.99 / 87.96 84.00 / 80.73 84.00
Spatial-attention 91.55 / 86.24 96.00 / 96.33 96.00

Temporal-attention 94.22 / 91.74 92.88 / 89.29 92.88
Spatio-temporal attention 95.11 / 92.73 96.44 / 95.58 96.44
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Fig. 10. Confusion matrix obtained for the Spatial-attention method in the
Cross-Dataset Setting.

of the stand action. Thus, results for this setting were normal-
ized using the total number of clips per action.

Overall, ActionXPose features outperform the baselines
in almost all tests. Moreover, in the Dataset Augmentation
experimental setting, additional training data improves the
results obtained in the Traditional experimental setting. This
is mainly due to the higher generalization degree obtained by
providing additional MPOSE data during the training phase. In
the Cross-Dataset setting, obtained results shows that MPOSE
does not contain enough data variability to fully meet the
ISLD requirements. However, it surprisingly covers most of
the actions, confirming to be a good pre-training source of
data. In Fig. 10, the confusion matrix obtained in the Cross-
Dataset setting is provided.

E. Ablation Study

In this section, different combinations of low and high-level
features are considered. This ablation study was conducted on
the MPOSE dataset. We adopted the cross-validation setting
used in many different works [46]–[53]. Specifically, ActionX-
Pose methods were tested by using an action-based cross-
validation setting with 10 foldings. This approach stabilizes the
number of samples per action across different foldings. Pose-
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TABLE IV
ACTIONXPOSE ABLATION STUDY BASED ON MPOSE DATASET. (LEFT) PERFORMANCE OF DIFFERENT METHODS IS PROVIDED ON AVERAGE (AVG) FOR

10 CROSS-VALIDATION FOLDINGS, REPORTING OBTAINED STANDARD DEVIATIONS (STD). THE Feat COLUMN REPORTS THE ACTUAL NUMBER OF
FEATURES AVAILABLE FOR EACH METHOD. REGARDING HYPER-PARAMETERS, DEFAULT AND σ = 2, z = 2 CASES ARE REPORTED. (RIGHT) PAIRED
T-TEST P-VALUES WITH α = 0.05 ARE REPORTED. P-VALUES WHERE SIGNIFICANT DIFFERENCES BETWEEN METHODS ARE NOT SUPPORTED BY THE

CONDUCTED TESTS (P-VALUE > α) ARE HIGHLIGHTED IN BOLD.

Default σ = 0.2, z = 2 Significance for σ = 0.2, z = 2
Method Feat AVG (%) STD AVG (%) STD B C D ABCD F G ABFG all

A 28 91.47 1.68 93.87 1.26 A .025 .009 .000 .000 .000 .000 .003 .009
B 28 91.72 1.20 92.64 1.43 B - .139 .211 .000 .000 .000 .000 .001
C 17 88.90 1.50 91.88 1.68 C - - .690 .000 .000 .000 .000 .000
D 68 91.31 2.03 92.11 1.44 D - - - .000 .000 .000 .000 .000

ABCD 141 92.95 0.89 95.48 1.34 ABCD - - - - .000 .000 .919 .030
F 17 77.53 3.29 78.47 5.77 F - - - - - .001 .000 .000
G 68 84.28 2.36 86.60 2.05 G - - - - - - .000 .000

ABFG 141 93.69 1.61 95.43 1.14 ABFG - - - - - - - .001
all 226 92.54 1.87 94.44 0.81

flipping and pose-noising were applied to training samples,
while validation and testing samples were not augmented.

The following ablated methods were considered:

A p(t)

B p′(t)

C DVl,J(t), ∀l ∈ L
D [DVl,Ja(t), . . . , DVl,Jd(t)], ∀l ∈ L
ABCD [p(t), p′(t), Seq(Vl)], ∀l ∈ L
F DSl,J(t), ∀l ∈ L
G [DSl,Ja(t), . . . , DSl,Jd(t)], ∀l ∈ L
ABFG [p(t), p′(t), Seq(Sl)], ∀l ∈ L
all [p(t), p′(t), Seq(Vl), Seq(Sl)], ∀l ∈ L

(20)

where the i-subscript has been omitted for convenience. We
remark that ABCD and ABFG correspond to the Spatial-
attention and Temporal-attention methods, respectively, de-
fined in Section III-E. Similarly, all corresponds to the method
Spatio-temporal-attention method. This new nomenclature bet-
ter highlights the method compositions in terms of features.

Averaged results for these methods are shown in Table IV,
including standard deviations, for the Default and σ = 0.2, z =
2 cases. It turns out that the latter case the performance
is superior due to the data augmentation provided by pose-
flipping and pose-noising.

In order to measure the significance of the obtained per-
formance, paired t-tests with α = 0.05 were conducted
for the σ = 0.2, z = 2 case. Since we expect that the
more features involved in the learning process, the higher
the averaged accuracy, a one-tail paired t-test was chosen
whenever possible. In all other cases, i.e. when the number
of features were the same for both compared methods, a two-
tail paired t-test was chosen. We report p-values for all paired
methods in Table IV.

Overall, this ablation study highlights that the ActionXPose
high-level features always bring benefits to the learning pro-
cess when considered alongside low-level features, i.e. p(t)
and p′(t). Moreover, the all method is not the best for MPOSE.
This shows that, when too many features are involved, it is
difficult for the network to effectively extract useful informa-
tion. Therefore, trade-off methods are more effective. Indeed,

ABCD and ABFG are significantly the best methods. This
could be possibly due to the curse of dimensionality which
occur when the number of features is too high with respect
the number of available training samples [54]. Therefore, this
study also highlights the importance of data augmentation,
which considerably improves the Default case performance.

Overall, as expected, this test shows the importance of the
low-level features for carrying most of the action knowledge.
In fact, methods A and B achieve very good performance. On
the other hand, as we saw in Section IV-F, these methods are
strongly affected by occlusions. Therefore, high-level based
methods provide the required robustness, along with clear
advantages in terms of accuracy.

F. Occlusions Study

In this section, the robustness of ActionXPose features to
occlusions and missing data is evaluated. In particular, the
strategies proposed in sections III-D1, III-D2, and III-D4 for
occlusion-handling will be compared. The short-time occlu-
sions strategy in Section III-D3 is always applied. Moreover,
in all experiments, pose-flipping and pose-noising were always
applied to training data, with σ = 0.2 and z = 1. The
experiment is based on MPOSE dataset. Since MPOSE data
contains only self-occlusions, we simulated more challenging
occlusions by explicitly removing landmarks from the testing
data. This strategy is fast and effective, does not require any
time-consuming video editing, and provides similar results as
assumed the occlusions are in the video data. Inspired by
landmark subsets in (12), we removed 6 different groups of
landmarks, i.e.

J∗a = {4, 5} (Right Arm)
J∗b = {7, 8} (Left Arm)
J∗c = {10, 11} (Right Leg)
J∗d = {13, 14} (Left Leg)
J∗a,b = {4, 5, 7, 8} (Both Arms)

J∗c,d = {10, 11, 13, 14} (Both Legs) (21)

It is worth emphasizing that the baseline methods are
strongly numerically affected by the proposed occlusions. In
other words, such occlusions create persistent missing data,
and thus persistent missing features. On the other hand, the
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ActionXPose high-level features are more numerically robust,
due to the definition of the embedding distance in (13).
Specifically, when such occlusions occur, the proposed high-
level features only slightly change their values, rather than
being completely lost.

The first experiment (Fig. 11-Top) consists of occluding
testing data, without performing neither occlusions augmen-
tation nor landmarks borrowing techniques. Thus, the trained
networks were not prepared to face such occlusions. As
expected, the baseline methods are strongly less robust than
ActionXPose features. In contrast, all methods that include
high-level features achieve much better performance due to the
robustness provided by equations (13) and (14). In particular,
the proposed Spatio-temporal attention method remarkably
outperforms the baselines in all the occlusion cases.

In the second experiment (Fig. 11-Middle), we enabled oc-
clusions augmentation only and repeated the same experiment
mentioned above. In this case, since the training data include
synthetically occluded data, the resulting networks are much
more robust to occlusions. In this case, baseline methods are
also expected to be more robust since the trained network is
prepared to deal with the missing features carried by low-level
sequences. However, again, high-level features outperform the
baselines in all cases.

In the third and last experiment (Fig. 11-Bottom), we en-
abled both occlusions augmentation and landmarks borrowing.
The borrowing landmark technique is able to fill the gaps due
to occlusions in the baseline features. To perform this experi-
ment, training and validation data were firstly occluded by the
occlusions augmentation technique, while testing data were
occluded with the proposed equation (21). Then, all low-level
and high-level features for training, validation and testing data
were computed considering the borrowing landmarks tech-
nique. The first effect of this processing is that performance
and robustness globally further increase. However, again, the
proposed ActionXPose features outperform the baselines in all
occlusion cases.

G. Performance on Traditional Datasets
In this section, ActionXPose results on the KTH and

i3DPost datasets are provided. These tests were conducted to
allow comparisons between the proposed method and other
state-of-the-art methods. Since KTH and i3DPost include
specific challenges, such as multiple viewpoints, zooming
in/out, moving cameras, and variable target-camera proximity,
this test can also show ActionXPose robustness against these
challenges.

Tests are performed on the KTH dataset under two exper-
imental settings. The first is the Split setting, where training,
validation and testing samples are predefined by the origi-
nal author in [41]. The second is the Leave-One-Actor-Out
(LOAO) setting, where multiple tests are conducted by using
each actor as testing actor and averaging obtained results.
Table V shows the results for both these experimental settings.
Data augmentation parameters were empirically chosen and
fixed for all tests as z = 0 and σ = 0.2.

The ActionXPose high-level features outperform the base-
line methods in all settings. Moreover, in the Split setting,
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Fig. 11. Occlusion Study results, provided on average over 10 cross-validation
foldings. AVG represents the averaged results over the six occlusion cases.
(Top) Performance with no data-augmentation nor borrowing landmarks.
(Middle) Performance with data-augmentation but no borrowing landmarks.
(Bottom) Performance with data-augmentation and borrowing landmarks.

ActionXPose performance is among the state-of-the-art. In
the case of the LOAO setting, ActionXPose outperforms other
state-of-the-art methods.

Regarding i3DPost, this dataset is usually tested under the
LOAO setting. i3DPost is specifically designed to cover multi-
viewpoints HAR. In fact, it includes video clips recorded
from 8 different viewpoints. The results are given in the most
difficult case where the task was to recognize the target action
by using data from one single camera in a multi-viewpoint
mode. ActionXPose results are summarized in Table V and
compared with the state-of-the-art. As in the previous test,
ActionXPose outperforms the baseline methods, achieving
state-of-the-art performance.

In conclusion, these tests are particularly suitable for high-
lighting the effectiveness of pose-based HAR in comparison
with the traditional methods. In fact, such excellent results
were obtained by using 2D human poses only, while the
other state-of-the-art methods exploited RGB data or other
sophisticated data sources such as human silhouette. In this
work, we showed that 2D pose-based HAR can achieve
similar, and sometimes superior, performance than traditional
RGB based methods.

H. Computational Speed Evaluation

In this section, we provide computational speed evaluations
for each of the most important step required by ActionXPose.
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TABLE V
ACCURACY RESULTS (%) FOR KTH AND I3DPOST. FOR KTH DATASET,

TWO SETTINGS ARE REPORTED, NAMELY SPLIT AND LOAO. FOR
I3DPOST DATASET, LOAO RESULTS ARE OBTAINED FOR |W| = 8 AND
|W| = 2 (*), WHERE |W| REPRESENTS THE NUMBER OF CONSIDERED

VIEWPOINTS.

KTH i3DPost
Method Split LOAO LOAO

Spatial-attention 90.50 99.04 98.95
Temporal-attention 90.15 98.03 98.95

Spatio-temporal attention 89.80 98.26 99.47
[19] + [14] 88.06 98.91 97.39
[18] + [14] 83.19 96.29 95.30

[19] + [18] + [14] 86.44 96.67 99.47
Kovashka et al. [26] 94.50 - -

Zhang et al. [27] 94.10 - -
Ji et al. [28] 90.20 - -

Almeida et al. [29] - 98.00 -
Vrigkas et al. [30] - 98.30 -

Liu et al. [31] - 93.80 -
Raptis and Soatto [32] - 94.50 -

Jiang et al. [33] - 95.77 -
Gilbert et al. [34] - 95.70 -

Angelini et. al. [10] - - 99.73
Castro et al. [46] - - 99.00(*)

Iosifidis et al. [47] - - 98.16
Azary et al. [48] - - 92.97

Hilsenbeck et al. [49] - - 92.42

We anticipate that, our simulations showed that the body pose
detector is the bottleneck for the entire processing. However,
it is claimed to be a real-time detector [3] when hardware
requirements are fully satisfied. This statement is supported
by our experiments.

This computational speed evaluation considerers training
and testing phases separately.

1) Training phase: in the training phase, the most intense
step (excluding the body pose detection) is the library creation
step, where the SOM clustering method is performed. The
SOM computational complexity can be estimated asO(N2C2)
[55], where N is the number of considered samples and C is
the vector input dimensionality. This result shows the impor-
tance of considering the PCA as a dimensionality reduction
technique before running the SOM. Another important step is
sequence embedding step, which has a complexity of O(n),
where n is the number of prototypes in the considered library
[10]. Thus, for a small n, such as in our case, the embedding
process is remarkably fast. Our simulations showed that the
embedding step can process a single frame in ≈ 9 ∗ 10−5

seconds, which corresponds to around 104 frame per second.
Even considering that ActionXPose needs to run two embed-
ding processes (for the spatial and temporal libraries), the
embedding process is still very fast.

2) Testing phase: in the testing phase, the most computa-
tionally intense step (excluding the body pose detection) is the
sequence embedding. For the all method, each clip sequence
requires on average 4.1∗10−2 seconds to be processed. Since
in our tests each clip contains on average 72 frames, ActionX-
Pose can elaborate its prediction with a speed of ≈ 5.7∗10−4

seconds per frame. Thus, once hardware requirements for the
OpenPose detector are satisfied, ActionXPose can run with
real-time performance.

TABLE VI
VIDEO QUALITY COMPARISON, REPORTING FOR EACH USED DATASET,

COLOUR CHANNELS (CHAN.), FRAME-PER-SECONDS (FPS),
MEGA-BITS-PER-SECOND (MBITS/S), FRAME SIZE AND AVERAGED BODY

SIZE.

Dataset Chan. FPS mbits/s Frame Size Body Size
Weizmann RGB 25 15.55 180x144 65x93

i3DPost RGB 25 5.18 960x540 384x408
IXMAS RGB 19 1.9 390x291 136x73

KTH mono 25 0.89 160x120 82x106
ISLD RGB 25 47.97 1920x1080 403x557

I. Varying Video Quality Study

In this section, we provide additional insights about
the proposed method robustness to different frame resolu-
tions, colour channels, frame-per-second (FPS), mega-bits-per-
second (mbits/s), actual body size and frame quality rate. In
fact, it is reasonable to expect that different video qualities,
in terms of the above-mentioned indicators, might result in
different OpenPose performance, which in turn can affect
ActionXPose performance. In Table VI, the datasets used in
this work are compared in terms of these common video
indicators. The variety of conditions shown in Table VI,
compared with the performance presented in previous sections,
demonstrates that ActionXPose performance is stable across
different conditions.

As an additional study, we conducted further experiments
on ISLD, under the Dataset Augmentation Setting presented
in Section IV-B2. The first goal was to assess the impact of
varying frame sizes and body sizes on ActionXPose perfor-
mance. To this purpose, we repeatedly reduced the original
ISLD frame size by a factor of 5. Each time, the resulting clips
were saved in AVI format with the Motion JPEG 2000 encoder
provided by MATLAB, with a quality threshold of 95%. We
report obtained results in Figure 12-Top. The second goal was
to assess the impact of varying Motion JPEG quality rates on
ActionXPose performance. Therefore, we set the frame size
to a reasonable value, i.e. 192x108 px, and then repeatedly
reduced the quality threshold from 95% to 35%. We report
obtained results in Figure 12-Bottom.

Overall, conducted tests show that body size reduction
is slightly related to a reduction of OpenPose performance.
In contrast, ActionXPose performance remains quite stable.
Surprisingly, ActionXPose performance peak is not achieved
on the best frame size. In fact, the peak of performance
is expected to be in correspondence with the most similar
training condition. Similarly, the quality rate slightly worsens
OpenPose performance. This further false negative increment
seems to have a limited impact on ActionXPose performance.

In conclusion, these results suggest that ActionXPose is
robust to the studied working conditions. However, further
improvements could be performed by introducing a time-
related dropout layer in the network, to impose even more
robustness to sudden false negative detections. However, this
is going to be part of future studies.
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Fig. 12. Frame size, body size and quality rate impact on OpenPose in
terms of False Negative Detection rate (FN), compared with ActionXPose
performance in terms of accuracy. (Top) Impact of the frame size and body
size changes on OpenPose and ActionXPose methods. (Bottom) Impact of
the frame quality changes on OpenPose and ActionXPose methods.

J. Discussions

Overall, as shown in Tables III and V, the proposed fea-
tures outperform the baselines methods in almost all tests.
In particular, in the case of KTH dataset (LOAO), the pro-
posed Spatial-Attention method outperforms the state-of-the-
art. Regarding table V, state-of-the-art methods exploit raw
RGB data, human silhouettes and motion history maps as
main learning sources. These sources contain comprehensive
and redundant information, which are expected to be more
informative than poses only. However, we showed that by
using limited data, i.e. 2D human poses with 14 landmarks and
no other pixel-based information, it is possible to achieve state-
of-the-art performance. The advantages of using poses rather
than pixel-based approaches are threefold. First, it turns out to
be light processing, which can be performed right after target
detection, allowing native integration with existing tracking
systems. Second, it is a self-explaining method: poses can
be visually checked by human operators and compared with
the predicted action labels, for an effective troubleshooting
on-the-site. Third, poses are human-appearance and context
insensitive, which allow straightforward cross-datasets imple-
mentation.

As shown in Section IV-H, the proposed method is remark-
ably fast in terms of computational speed. Thus, ActionXPose
fits into a tracking system without additional, expensive,
computational costs.

Moreover, the major advantage of ActionXPose is in oc-
clusions and missing data challenges. Since OpenPose is rela-
tively prone to false detections, a robust method was required
for pose-based HAR. As shown in Fig. 11, the baseline

methods are not suitable to face body limbs occlusions. In
contrast, the proposed Spatio-temporal attention method shows
greater robustness when body limbs occlusions occur.

Despite the advantages mentioned above, our experiments
also showed OpenPose limitations. In fact, in the case of
UCF101 and HMDB51 datasets, OpenPose’s low performance
was one of the causes that compromised the proposed process-
ing. As shown in Table VI and Figure 12, frame resolution
and frame quality are not a major problem themselves. In
contrast, as the UCF101 and HMDB51 results suggest, the
major issues were due to strong ambiguity between the target
and the background. Moreover, the very small ratio between
the target size and the frame resolution also compromised the
detection.

The above mentioned OpenPose limitations have an impact
on ActionXPose. In fact, when the link vectors v2,9 and v2,12

are both persistently missing, the strategy in Section III-B
is not well-posed. However, this case occurs only when the
body trunk is persistently occluded or undetectable. In this
case, even human eyes might fail in classifying posture-related
actions such as those studied in this work. Such disruptive
cases require ad-hoc studies which are beyond the purpose of
this work.

Another problem occurs when more challenging action
classes are considered for HAR, for example, those provided
by UCF101 and HMDB51 datasets. Since the UCF101 and
HMDB51 are not posture-related datasets, colour contextual
information is crucial, and the poses are not informative
enough to fully describe the performed action. Further studies
can be conducted to consider colors alongside poses, to
combine both approaches in a multimodal system. However,
this solution is beyond the purpose of this work. In fact,
our goal was to provide a posture-related method for HAR
that was able to fit the strict computational requirements of a
security system. Thus, in this work, we showed that exploiting
the OposePose detection, which is already used for tracking,
we can perform robust pose-based HAR without expensive
additional costs.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented the ActionXPose algorithm for
2D pose-based HAR, which achieves state-of-the art per-
formance on selected datasets. Proposed high-level features
improve accuracy and robustness to occlusions and missing
data in comparison with the low-level features based method.
In addition, this work proposed a new dataset for pose-level
HAR in CCTV-like environment, namely ISLD dataset. This
datasets was used to extensively test several variations of
the proposed method, under different experimental conditions,
including the interesting Dataset Augmentation and Cross-
Dataset settings.

Future work will mainly focus on three directions. First,
more generalization ability is required to allow the system to
work in more complex scenarios, without additional training.
Second, RGB based processing could be helpful for consid-
ering target appearance-related information. However, since
privacy issues and computational speed have to be considered
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for security and surveillance applications, tailored solutions
are required. Third, ActionXPose can be effectively made
ready-to-use in surveillance scenarios once an automatic action
detection for online surveillance video sequences will be
integrated. However, such abilities requires ad-hoc solutions
and further studies.
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