
1

Deep Reinforcement Learning for Image Hashing
Yuxin Peng, Jian Zhang and Zhaoda Ye

Abstract—Deep hashing methods have received much attention
recently, which achieve promising results by taking advantage
of the strong representation power of deep networks. However,
most existing deep hashing methods learn a whole set of hashing
functions independently, while ignore the correlations between
different hashing functions that can promote the retrieval accu-
racy greatly. Inspired by the sequential decision ability of deep
reinforcement learning, we propose a new Deep Reinforcement
Learning approach for Image Hashing (DRLIH). Our proposed
DRLIH approach models the hashing learning problem as a
sequential decision process, which learns each hashing function
by correcting the errors imposed by previous ones and promotes
retrieval accuracy. To the best of our knowledge, this is the
first work to address hashing problem from deep reinforcement
learning perspective. The main contributions of our proposed
DRLIH approach can be summarized as follows: (1) We propose
a deep reinforcement learning hashing network. In the proposed
network, we utilize recurrent neural network (RNN) as agents
to model the hashing functions, which take actions of projecting
images into binary codes sequentially, so that the current hashing
function learning can take previous hashing functions’ error into
account. (2) We propose a sequential learning strategy based
on proposed DRLIH. We define the state as a tuple of internal
features of RNN’s hidden layers and image features, which can
reflect history decisions made by the agents. We also propose an
action group method to enhance the correlation of hash functions
in the same group. Experiments on three widely-used datasets
demonstrate the effectiveness of our proposed DRLIH approach.

Index Terms—Deep reinforcement learning, image hashing,
image retrieval.

I. INTRODUCTION

W ITH rapid growth of images on the web, the large
scale image retrieval has attracted much attention.

Many hashing methods have been proposed for the fast image
retrieval [1]–[13]. Generally speaking, the goal of hashing
methods is to learn several mapping functions, so that the sim-
ilar images are mapped into similar binary codes. Traditional
hashing methods use hand-crafted features (e.g. GIST [14],
Bag-of-Visual-Words [15]) as image representations, which
can not well represent the image content and limit the per-
formance of image retrieval. Inspired by the recent success
of deep networks on many computer vision tasks such as
image classification and object detection [16], deep hashing
methods [3], [17]–[24] have been proposed to take advantage
of feature representation power of deep neural networks.

Existing deep hashing methods [3], [17], [25], [26] have
achieved promising results on image retrieval. However, they
learn the whole set of hashing functions independently, which

This work was supported by National Natural Science Foundation of China
under Grant 61771025 and Grant 61532005.

The authors are with the Institute of Computer Science and Technology,
Peking University, Beijing 100871, China. Corresponding author: Yuxin Peng
(e-mail: pengyuxin@pku.edu.cn).

ignore the correlations between different hashing functions that
can promote the retrieval accuracy greatly. There exist several
traditional hashing methods [4], [27] that learn the hash code
sequentially, but these methods require complicated optimiza-
tion that cannot be directly adopted into deep networks.

Recently, deep reinforcement learning has achieved some
breakthroughs. For example, deep reinforcement learning
achieves human-level performance in Atari games and
GO [28], [29]. A standard reinforcement learning model
includes an agent and an environment. The agent receives the
information from the environment and chooses the actions to
maximize the sum of a reward function. It is noted that the
hashing problem has native relationship to the reinforcement
learning, which is the motivation of this paper. 1) In the
hashing problem, hashing functions can be regarded as agents,
which take actions to project images into binary hash codes.
2) The agents in the reinforcement learning framework choose
actions to maximize the sum of reward in a task, where the
decisions should not be made independently. This property
enlightens us that if we regard the hash code generation as
a sequential task, it is possible to learn hashing functions
dependently within reinforcement learning framework.

Based on the above analysis, in this paper, we propose a
Deep Reinforcement Learning approach for Image Hashing
(DRLIH). Instead of learning a whole set of hashing functions
independently, our proposed DRLIH approach models the
hashing learning process as a sequential decision making
process by the designed deep reinforcement learning network.
The main contributions of our proposed approach can be
summarized as follows:
• A Deep reinforcement learning hashing network is

proposed to learn hashing functions sequentially and
progressively. The proposed network consists of a feature
representation network and a policy network. The policy
network is composed by a RNN network, and it serves
as the agent to sequentially project images into binary
codes. We design the policy network to generate the
probability of projecting images into hash code 1, and
calculate the probability of hash code 0. We also propose
two hierarchical reward functions to drive the training of
our proposed DRLIH network.

• A sequential learning strategy is proposed to capture
the ranking errors caused by previous generated hash
codes. We define the states as tuples of the image
features and internal features of RNN, which reflect the
history decisions, thus the agent can obtain the history
information and capture the previous ranking errors to
make next decision. We also propose the action group as
the minimal step of the agent to enhance the relevance
of hash functions in the same group and promote the
retrieval accuracy.

ar
X

iv
:1

80
2.

02
90

4v
2 

 [
cs

.C
V

] 
 2

4 
Fe

b 
20

19



2

Experiments on three widely-used datasets demonstrate the
effectiveness of the proposed DRLIH approach. The rest of
this paper is organized as follows. Section II reviews some
representative related works. Section III presents our proposed
deep reinforcement learning approach for image hashing,
section IV shows the experiments on three widely-used image
datasets, and section V concludes this paper.

II. RELATED WORK

In this section, we briefly review some related works from
two aspects: image hashing and deep reinforcement learning.

A. Image Hashing

The goal of image hashing methods is to project images
into Hamming space, where similar images are mapped into
similar hash codes to realize efficient image retrieval. Existing
hashing methods can be categorized into two classes: data-
independent and data-dependent. For the data-independent
methods, the most representative one is Locality Sensitive
Hashing (LSH) [2]. LSH uses random projections obtained
from Gaussian distributions to map images into binary codes
while preserving the cosine similarity. However, LSH needs
to generate longer codes and multiple hashing tables to
achieve satisfactory performance. Thus some works extend
LSH framework to tackle this issue. Lv et al. [30] propose
Multi-probe LSH, which uses a multi-probe strategy to avoid
generating multiple hashing tables. Raginsky et al. [31] pro-
pose SIKH to extend LSH into kernel space.

According to the utilization of side information, the data-
dependent methods can be further classified into unsupervised
methods and supervised methods. Unsupervised methods do
not require label information to learn hashing functions. For
example, Weiss et al. [5] propose Spectral Hashing method,
which generates balanced hash codes by solving a spectral
graph partitioning problem. Liu et al. [32] propose Anchor
Graph Hashing (AGH) method, which learns hashing functions
by exploiting the neighborhood structure of data samples
by anchor graph. Gong and Lazebnik [33] present Iterative
Quantization (ITQ) method, which simultaneously maximizes
the variance of each hash code and minimizes the quantization
loss. Zhang et al. [34] propose Topology Preserving Hashing
(TPH) method, which learns hashing functions by preserving
not only the neighborhood relationships but also the neigh-
borhood rankings of data points. Irie et al. [35] propose LLH
method to model the local linearity of manifolds by locality
sensitive sparse coding, which tends to find similar images
located in the same manifold as the query. Supervised hashing
methods further exploit label information to learn hashing
functions for better preserving the semantic similarity of image
data. For example, BRE [36] method is proposed to construct
hashing functions to explicitly preserve the original distance
(e.g. Euclidean distance) when mapping into Hamming space.
Wang et al. [4] propose SSH method, which learns hashing
functions by minimizing the empirical error over labeled data
and the information entropy of both labeled and unlabeled
data. Liu et al. [37] propose KSH method, which utilizes
the equivalence between optimizing the inner products and

the Hamming distances of hash codes, to minimize Hamming
distance between similar pairs of data while maximizing the
Hamming distance between dissimilar pairs. Shen et al. [38]
present SDH method, which expects the generated hash codes
to be optimal for classification. Besides pairwise labeled
information, some methods also exploit ranking information
provided by labels, such as OPH [39] and RPH [40] methods.

The aforementioned learning based methods use hand-
crafted features to represent image contents, which limit
their retrieval performance. Inspired by the successful appli-
cation of deep networks in image classification and object
detection [16], some deep hashing methods [3], [17]–[22]
are proposed. Xia et al. [17] propose a two-stage CNNH
method, which learns approximate hash codes by preserving
the pairwise semantic information in the first hash code
learning stage, and then trains a deep hashing network by
using the learned hash codes as labels. However, the two-stage
scheme causes that the deep networks cannot give feedback
for generating better hash codes in the first stage, which
limits its retrieval performance. Lai et al. [3] propose NINH
method to address this issue. NINH jointly learns the hashing
functions and image feature representations simultaneously
in Network in Network architecture [41]. NINH uses triplet
ranking loss [42]–[44] to model the semantic ranking infor-
mation provided by labels, there are several works follow the
one-stage scheme of NINH. For example, BSDH [19] further
learns weights for each hashing function so that the length of
hash codes can be determined. Zhu et al. [22] propose DHN
method to further consider the quantization errors caused by
hashing layer to promote retrieval accuracy. Yao et al. [18]
propose DSRH to further consider the orthogonal constraints
to make hash codes independent. Zhang et al. [23] propose
SSDH method, which trains the deep hashing network in
a semi-supervised fashion to enhance the retrieval accuracy
and generality of hashing functions. Although deep hashing
methods have achieved promising results, they usually learn
a whole set of hashing functions independently and directly,
which ignore the correlations between different hashing func-
tions that can promote the retrieval accuracy greatly. In this
paper, we intend to address this issue from deep reinforcement
learning perspective.

B. Deep Reinforcement Learning
The reinforcement learning is the problem faced by an agent

that must learn behavior through trial-and-error interactions
with a dynamic environment [45]. In the standard deep re-
inforcement learning model, the agent receives the current
state of the environment as input, and chooses an action
as output. The action changes the state of the environment,
and the environment communicates to the agent through a
scalar reinforcement signal named reward, which reflects the
quality of the taken actions. The goal of the reinforcement
learning is to train the agent to choose actions that maximize
the sum of reward. Recently, deep reinforcement learning
methods have achieved some progresses in many domains.
Mnih et al. [28] utilize deep neural networks to learn an action-
value function to play Atari games, which reaches human-
level performance. Silver et al. [29] use policy network and



3

value network to play Go and beat the world-level professional
player. Deep reinforcement learning has also been applied in
various computer vision tasks. Caicedo et al. [46] propose a
deep reinforcement learning method for active object localiza-
tion, where the agent is trained to deform the bounding box
using sample transformation actions. Zhou et al. [47] propose
a deep reinforcement learning based image caption model,
which utilizes a “policy network” and a “value network” to
collaboratively generate captions. Zhao et al. [48] utilize the
information entropy to guide a reinforcement learning agent to
select the key part of an image for better image classification.
Rao et al. [49] propose attention-aware deep reinforcement
learning (ADRL) to discard the misleading and confounding
frames and focus on the attentions in face videos for better
person recognition. Inspired by the recent advances of deep
reinforcement learning, we think that hashing problem can be
modeled by deep reinforcement learning from two aspects:
1) Hashing functions can be regarded as agents, which take
actions to project images into binary hash codes. 2) The agents
in the reinforcement learning framework can choose actions
to maximize the sum of rewards in a task, which enlightens us
that if we regard the hash code generation as a sequential task,
it is possible to learn hashing functions dependently within
reinforcement learning framework.

III. DEEP REINFORCEMENT LEARNING HASHING

Different from existing deep hashing methods, we model
the hashing problem as a Markov Decision Process (MDP),
which provides a formal framework to model an agent that
makes a sequence of decisions. In our proposed DRLIH, we
consider a batch of images as the environment, and define
the states as image features combined with images’ internal
features of the policy network. The agent projects images into
binary codes based on the environment and its current states.
In the following part, we first give the formal notations of
hashing problems, then we introduce the definition of state,
action and reward in our proposed deep reinforcement learning
hashing network, then we introduce the network structure
of our proposed DRLIH in detail, finally we introduce the
sequential learning strategy of DRLIH network.

A. Notations

Given a set of n images X ∈ RD. The goal of hashing
methods is to learn a set of q hashing functions H =
[h1, h2, · · · , hq], which encode an image x ∈ X into a q-
dimensional binary code H(x) in the Hamming space, while
preserving the semantic similarity of images. Most deep hash-
ing methods learn H independently and directly, while ignore
the correlations between different hashing functions. In this
paper we intend to learn the hashing functions H sequentially
by deep reinforcement learning.

B. Definition of the reinforcement hashing learning

1) State: In our DRLIH approach, the current hash code
supposes to be generated in serialization which can capture the
ranking errors caused by the previous generated hash codes.

So the state has to reflect the history information of previous
hash codes. We define the state as a tuple (h, i), where h
is a history action vector of the generated hash codes, and i
denotes the image feature vector. The image feature vector is
extracted from the original images using a pre-trained CNN
model, and the history action vectors can be obtained from
the policy network.

2) Action: Given the state tuple s = (h, i), the agent will
predict the probability of the actions for current state. It is
noted that the hashing problem only has two possible actions
(1 or 0) and the sum of the action probability equals to 1.
Different from most of the reinforcement methods that predict
the probability distribution for every possible action, we take
the probability of the hash code 1 as the policy network output.
The overall probability distribution is formulated as follows:

P (a|s, θ) =
{

1− policy(s, θ) a=0
policy(s, θ) a=1 (1)

where the policy(s, θ) denotes the output of policy network
with input state s and parameters θ.

Considering that only one bit of hash code does not have
enough ability to correct the history ranking errors, we propose
an action group to address this problem. An action group is
composed by k adjacent hash functions. Each action in the
group shares the same reward which is designed to enhance
the ability of correcting the ranking errors. The action group
is the minimal step for the agent which is the actual action
definition in the framework. The action probability πθ(si, Ai)
is formulated as follows:

Ai = [ati+1, ati+2, ..ati+k]

πθ(si, Ai) =

k∏
j=1

P (ati+j |ŝi,j , θ)
(2)

where Ai is the i-th action group, ati+1..k is the element of
the action group, ŝi,j is the input state of the ati+1 and will
be given more details in next subsection.

3) Reward: After we obtain the generated hash codes, we
use a triplet ranking loss [42]–[44] as the reward function
to measure the quality of generated codes. It is noted that the
probability of the hash code 1 can be regarded as relaxed hash
code, which is widely used in many hashing methods [3], [19],
[22]. The higher probability of the action to project images
into hash code 1, the value of the probability is closer to 1 and
vice versa. So we adopt the probability sequence of projecting
images into hash code 1 as the relaxed hash code to calculate
the reward.

For training images (X ,Y), wehre Y denotes the corre-
sponding labels. We sample a set of triplet tuples based on
the labels, T = {(xi, x+i , x

−
i )}ti=1, in which xi and x+i

are two similar images with the same labels, while xi and
x−i are two dissimilar images with different labels, and t is
the number of sampled triplet tuples. For the triplet tuples
(xi, x

+
i , x

−
i ), i = 1 · · · t, the reward function is defined as:

J (h(xi), h(x+i ), h(x
−
i )) =

max(0,mt + ‖h(xi)− h(x+i )‖
2 − ‖h(xi)− h(x−i )‖

2)
(3)

where ‖ · ‖2 denotes the Euclidean distance, h(·) denotes
the probability sequence of the corresponding image, and the



4

π(a|s)

Environment Agent

State

Images

·

Representation learning layers

Label

Image feature

Action

Reward

Reward 

Fucntion

Policy

Network

History

Hash codes

Fig. 1: Overview of our proposed deep reinforcement learning hashing network, which consists of a representation learning
network, a policy network and a reward function. The policy network serves as the agent and makes decisions to project images
into binary codes, while the reward function drives the sequential training of the whole network.

constant parameter mt defines the margin between the relative
similarities of the two pairs (xi, x

+
i ) and (xi, x

−
i ), that is to

say, we expect the distance of dissimilar pair (xi, x
−
i ) to be

larger than that of similar pair (xi, x
+
i ) by a margin of at

least mt. Triplet ranking loss based reward can reflect the
semantic ranking information, which well evaluates the quality
of previous generated hash codes. It is noted that although
triplet ranking loss is based on semantic labels, our proposed
approach is different from supervised hashing methods. Since
we only use triplet ranking loss to evaluate how well the
learned hash functions performs on the current environment,
then the next hashing function can make decisions to generate
hash codes based on the calculated reward, thus our proposed
approach fits the reinforcement learning paradigm.

There are two hierarchical rewards to encourage the agent
to find the correct hash codes. The first reward is the action
group reward which mainly focuses on the hash code quality
in the group level. The second reward is the global action
reward which focus on the quality of the whole hash code.
The hierarchical rewards are defined as:

Rgi,j = −J (hj(xi), hj(x
+
i ), hj(x

−
i ))

RGi = −J (h(xi), h(x+i ), h(x
−
i ))

(4)

where Rgi,j denotes the group action reward of the i-th image
in j-th action group, hj denotes the probability sequence of
the j-th action group, and RGi denotes the global action reward
of the i− th image.

C. Deep reinforcement learning hashing network

The overall framework of our proposed deep reinforcement
learning network is shown in Figure 1, which consists of
two parts. The first part is the environment including a
representation network and a reward function, which provide
the reward and state for the agent. The second part is a policy

network serves as the agent, which obtains the state from the
environment and generates the hash codes.

1) The representation network: The representation network
serves as a feature extractor, it is a deep convolutional network
composed of several convolutional layers and fully connected
layers. The representation network provides the image features
i in the state tuple (h, i). We adopt the VGG-19 network [50]
as the representation network. The first 18 layers follow the
exactly same settings in the VGG-19 network. We mainly
focus on the design of the policy network and the reward
function.

2) Policy network: The policy network is composed of a
RNN layer and a policy layer. RNN layer transforms the image
features into an internal state, while the policy layer further
maps the internal state into a policy probability. The main idea
behind the RNN model is a built-in memory cell, which stores
information over previous steps and implies the history actions.
Figure 2 shows the details of the policy network, which maps
the state tuple (h, i) to the probability of an action group.
The memory cell aggregates information from two sources:
the previous cell memory unit, and the input vector in current
step. Formally, for a state tuple (h, i), the RNN layer maps the
input to an output sequence by computing activations of the
units in the network with the following equation recursively:

ct = tanh(Wxixt + bxi +Whict−1 + bhi) (5)

where xt, ct are the input and hidden vectors, t denotes the
t-th step, Wxi and Whi are the weight matrix from the input
xt and hidden vectors to the new hidden state, bxi and bhi
are the bias terms.

We initialize the RNN layer with c0 = h and x0 = i. But
in the following step, we set the xi = ci−1 to emphasis the
history action information in one action group. Although the
image feature is only the input of the first step, the information



5

History

π(a|s)

History 

RNN 

cell

Image

 feature
π(a|s)

Action group

Action group 

reward

π(a|s)

π(a|s)

History 

Action 

groupImage

 feature

Image

 feature

Global reward
Image

 feature

Fig. 2: The unrolled details of the policy network. During the training stage, the global reward ensures the generated codes to
preserve the semantic ranking information, while the action group reward drives the network to correct the errors caused by
previous generated hash codes.

of the image feature remains in the hidden state with the
changing history action information. Thus the hash codes are
influenced by the history information and adjusted to correct
the errors caused by previous actions. The last hidden state ck
will be regarded as the history information h to synthesis the
state of next step.

The policy layer is a fully connect layer defined as:

ht(x) = sigmoid(WT
h ct + v) (6)

where ct is the output extracted from RNN layer in step t,
Wh denotes the weights in the policy layer, and v is the bias
parameter. Through the policy layer, the output of RNN at
step t is mapped into [0, 1]. We apply a threshold function to
obtain the final binary codes from the policy probability:

bk(x) = g(h(x)) = sgn(hk(x)− 0.5), k = 1, · · · , q (7)

D. Agent training strategy

Finally we introduce the agent training strategy. Firstly we
unroll the policy network to better show the details, as shown
in Figure 2, we use two reward functions to drive the training
of policy network which are defined in equation (4).

We use the Monte-Carlo Policy Gradient [51] to update the
parameters to maximize the expected total reward of the action

group:

Lg(θ) = EA∼π(A|s;θ)(
∑
i

Rgi )

≈
∑
i

log[π(Ai|si; θ)]Rgi

=
∑
i

∑
k

log[P (ai,k|ŝi,k; θ)]Rgi

(8)

where Lg(θ) is the expected total reward of the action group.
The global action reward mainly focuses on the quality of

the whole set of hash codes, we adopt gradient decent method
to optimize the global action reward. According to equation
(3), we can compute the sub-gradient for each triplet tuple
(xi, x

+
i , x

−
i ), with respect to h(xi), h(x+i ) and h(x−i ) as:

∂RGi
∂h(xi)

= 2(h(x−i )− h(x
+
i ))× Ic

∂RGi
∂h(x+i )

= 2(h(x+i )− h(xi))× Ic

∂RGi
∂h(x−i )

= 2(h(xi)− h(x−i ))× Ic

Ic = Imt+‖h(xi)−h(x+
i )‖2−‖h(xi)−h(x−

i )‖2>0

(9)

where Ic is an indicator function, Ic = 1 if c is true, otherwise
Ic = 0. Thus the global reward can ensure the generated codes
to preserve the semantic ranking information.

At last, we explain how the policy network has the ability to
correct the history ranking errors through the details of RNN



6

gradient. The gradient of RNN network is formulated as:

δth = θ′(ct)(δ
t
kwh + δt+1

h whi)

δth
4
=
∂JL
∂ct

δtk
4
=
∂JL
∂ht

(10)

where ct and ht are the hidden state and output of RNN
respectively, θ(ct) denotes the function which maps the ct to
ht. The gradient of hidden layer in the step t consists of two
parts: the gradient from the output in t step , and the gradient
from the hidden layer in t + 1 step. The latter is considered
as the sequential reward which can correct the errors caused
by previous generated hash codes. In the training stage, the
previous hash functions will receive the gradient information
from current hash function and update the parameters to
improve the retrieval accuracy.

IV. EXPERIMENTS

In this section, we will introduce the experiments conducted
on 3 widely-used datasets compared with 8 state-of-the-art
methods, including unsupervised methods LSH [2], SH [5],
ITQ [33] and supervised methods SDH [38], CNNH [17],
NINH [3], DSH [25] and HashNet [26]. LSH, SH, SDH, and
ITQ are traditional hashing methods without deep networks,
while CNNH, NINH, DSH, HashNet and our proposed DRLIH
are deep hashing methods, which take the raw image pixels
as input to conduct hashing function learning.

A. Datasets

We conduct experiments on 3 widely-used image retrieval
datasets:

• The CIFAR10 [52] dataset contains 60000 color images
from 10 classes, the size of each image is 32 × 32.
Following [3], [17], we randomly select 1000 images as
query set. For the compared unsupervised methods, all
the rest images are used as the training set, while for
the compared supervised methods, we further randomly
select 5000 images to form the training set.

• The NUS-WIDE [53] dataset contains nearly 270000
images with associated labels from 81 semantic concepts.
We use the 21 most frequent concepts to conduct exper-
iment following [3]. We randomly select 2100 images as
the query set, 100 images per concept. All the rest images
are used as training set for unsupervised methods, while
we further randomly select 10500 images to form training
set for supervised methods.

• The MIRFlickr [54] dataset consists of 25000 images
obtained from Flickr website as well as associated tags.
These images are annotated with one or multiple labels
of 38 semantic concepts. Similarly, we randomly choose
1000 images as the query set, and use the rest images
as the training set of unsupervised methods, and further
select 5000 images as training set of supervised methods.

B. Experiment Settings and Evaluation Metrics
We implement the proposed approach based on the open-

source framework pytorch1. The parameters of the first 18
layers in our network are initialized with the VGG-19 net-
work [50], which is pre-trained on the ImageNet dataset [55].
Similar initialization strategy has been used in other deep
hashing methods [18], [22], [25]. The dimension of RNN’s
hidden layer is set to be 4096 in the policy network. In all
experiments, our networks are trained with the initial learning
rate of 0.001, we decrease the learning rate by a factor of 10
every 10000 steps. And the mini-batch size is 16, the weight
decay parameter is 0.0005. For the parameter in our proposed
loss function, we set mt = 1 in all the experiments. For
the length of action group, we set it as 12 through out the
experiments.

We compare the proposed DRLIH approach with eight state-
of-the-art methods, including unsupervised methods LSH, SH
and ITQ, supervised methods SDH, CNNH, NINH, DSH and
HashNet. The brief introductions of these methods are as
follows:
• LSH [2] is a data independent unsupervised method,

which uses randomly generated hash functions to map
image features into binary codes.

• SH [5] is a data dependent unsupervised method, which
learns hash functions by making hash codes balanced and
uncorrelated.

• ITQ [33] is also a data dependent unsupervised method,
which learns hash functions by minimizing the quanti-
zation error of mapping data to the vertices of a binary
hypercube.

• SDH [38] is a supervised method, which leverages label
information to obtain hash codes by integrating hash code
generation and classifier training.

• CNNH [17] is a two-stage deep hashing method, which
learns hash codes for training images in first stage, and
trains a deep hashing network in second stage.

• NINH [3] is a one-stage deep hashing method, which
learns deep hashing network by a triplet loss function to
measure the ranking information provided by labels.

• DSH [25] is a one-stage deep hashing method, which de-
signs a loss function to maximize the discriminability of
the output space by encoding the supervised information
from the input image pairs, and simultaneously imposing
regularization on the real-valued outputs to approximate
the desired discrete values.

• HashNet [26] directly learns the binary hash codes and
addresses the ill-posed gradient and data imbalance prob-
lems in an end-to-end framework of deep feature learning
and binary hash encoding.

For our proposed DRLIH, and compared CNNH, NINH,
DSH and HashNet methods, we use the raw image pixels as
input. The implementations of CNNH, DSH and HashNet are
provided by their authors, while NINH is our own implementa-
tion. Since the representation learning layers of CNNH, NINH,
DSH and HashNet are different from each other, for a fair
comparison, we use the same VGG-19 network as the base

1http://pytorch.org



7

TABLE I: MAP scores with different length of hash codes on CIFAR10, NUS-WIDE and MIRFlickr datasets. MAP scores
are calculated based on top 5000 returned images for NUS-WIDE dataset. The best results of each code length are shown in
boldface.

Methods CIFAR10 NUS-WIDE MIRFlickr
12bit 24bit 32bit 48bit 12bit 24bit 32bit 48bit 12bit 24bit 32bit 48bit

DRLIH (ours) 0.816 0.843 0.855 0.853 0.823 0.846 0.845 0.853 0.796 0.811 0.810 0.814
HashNet∗ 0.765 0.823 0.840 0.843 0.812 0.833 0.830 0.840 0.777 0.782 0.785 0.785

DSH∗ 0.708 0.712 0.751 0.720 0.793 0.804 0.815 0.800 0.651 0.681 0.684 0.686
NINH∗ 0.792 0.818 0.832 0.830 0.808 0.827 0.827 0.827 0.772 0.756 0.760 0.778
CNNH∗ 0.683 0.692 0.667 0.623 0.768 0.784 0.790 0.740 0.763 0.757 0.758 0.755

SDH-VGG19 0.430 0.652 0.653 0.665 0.730 0.797 0.819 0.830 0.732 0.739 0.737 0.747
ITQ-VGG19 0.339 0.361 0.368 0.375 0.777 0.800 0.806 0.817 0.686 0.685 0.687 0.689
SH-VGG19 0.244 0.213 0.213 0.209 0.712 0.697 0.689 0.682 0.618 0.604 0.598 0.595

LSH-VGG19 0.133 0.171 0.178 0.198 0.518 0.567 0.618 0.651 0.575 0.584 0.604 0.614
SDH 0.255 0.330 0.344 0.360 0.460 0.510 0.519 0.525 0.595 0.601 0.608 0.605
ITQ 0.158 0.163 0.168 0.169 0.472 0.478 0.483 0.476 0.576 0.579 0.579 0.580
SH 0.124 0.125 0.125 0.126 0.452 0.445 0.443 0.437 0.561 0.562 0.563 0.562

LSH 0.116 0.121 0.124 0.131 0.436 0.414 0.432 0.442 0.557 0.564 0.562 0.569

10 20 30 40 50

Number of bits
(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 h
am

m
.d

is
t.<

=
2

CIFAR-10

200 400 600 800 1000

Number of retrieved samples
(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 4
8 

bi
ts

CIFAR-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall @ 48 bits
(c)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 4
8 

bi
ts

CIFAR-10

DRLIH(ours)
HashNet*
DSH*
NINH*
CNNH*
SDH-VGG19
ITQ-VGG19
SH-VGG19
LSH-VGG19
SDH
ITQ
SH
LSH

Fig. 3: The comparison results on CIFAR10. (a) Precision within Hamming radius 2 using hash lookup; (b) Precision at top
k returned results. (c) Precision-Recall curves of Hamming Ranking with 48bit.

structure for all the deep hashing methods. And the network
parameters of all the deep hashing methods are initialized with
the same pre-trained VGG-19 model, thus we can perform a
fair comparison between them. The results of CNNH, NINH,
DSH and HashNet are referred as CNNH∗, DSH∗, NINH∗
and HashNet∗ respectively.

For other compared traditional methods without deep net-
works, we represent each image by hand-crafted features
and deep features respectively. For hand-crafted features, we
represent images in the CIFAR10 and MIRFlickr by 512-
dimensional GIST features, and images in the NUS-WIDE by
500-dimensional bag-of-words features. For a fair comparison
between traditional methods and deep hashing methods, we
also conduct experiments on the traditional methods with deep
features, where we extract 4096-dimensional deep feature for
each image from the same pre-trained VGG-19 network. We
denote the results of traditional methods using deep features
by LSH-VGG19, SH-VGG19, ITQ-VGG19 and SDH-VGG19.
The results of SDH, SH and ITQ are obtained from the
implementations provided by their authors, while the results
of LSH are from our own implementation.

To objectively and comprehensively evaluate the retrieval
accuracy of the proposed approach and the compared methods,
we use four evaluation metrics: Mean Average Precision

(MAP), precision at top k returned results, precision-recall
curves and precision within Hamming radius 2 using hash
lookup. These four evaluation metrics are defined as follows:
• The MAP scores are computed as the mean of average

precision (AP) for all queries, and AP is computed as:

AP =
1

R

n∑
k=1

k

Rk
× relk (11)

where n is the size of database, R is the number of
relevant images in database, Rk is the number of relevant
images in the top k returns, and relk = 1 if the image
ranked at k-th position is relevant and 0 otherwise.

• Precision at top k returned results (topK-precision): The
precision with respect to different numbers of retrieved
samples from the ranking list.

• Precision within Hamming radius 2: Precision curve of
returned images with the Hamming distance smaller than
2 using hash lookup.

C. Experiment Results

1) Experiment results on CIFAR10 dataset: Table I shows
the MAP scores with different length of hash codes on
CIFAR10 dataset. Overall, the proposed DRLIH achieves the



8

10 20 30 40 50

Number of bits
(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 h
am

m
.d

is
t.<

=
2

NUS-WIDE

200 400 600 800 1000

Number of retrieved samples
(b)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
re

ci
si

on
 @

 4
8 

bi
ts

NUS-WIDE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall @ 48 bits
(c)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 4
8 

bi
ts

NUS-WIDE

DRLIH(ours)
HashNet*
DSH*
NINH*
CNNH*
SDH-VGG19
ITQ-VGG19
SH-VGG19
LSH-VGG19
SDH
ITQ
SH
LSH

Fig. 4: The comparison results on NUS-WIDE. (a) Precision within Hamming radius 2 using hash lookup; (b) Precision at
top k returned results. (c) Precision-Recall curves of Hamming Ranking with 48bit.

10 20 30 40 50

Number of bits
(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 h
am

m
.d

is
t.<

=
2

MIRFLICKR

200 400 600 800 1000

Number of retrieved samples
(b)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
re

ci
si

on
 @

 4
8 

bi
ts

MIRFLICKR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall @ 48 bits
(c)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
re

ci
si

on
 @

 4
8 

bi
ts

MIRFLICKR

DRLIH(ours)
HashNet*
DSH*
NINH*
CNNH*
SDH-VGG19
ITQ-VGG19
SH-VGG19
LSH-VGG19
SDH
ITQ
SH
LSH

Fig. 5: The comparison results on MIRFlickr. (a) Precision within Hamming radius 2 using hash lookup; (b) Precision at top
k returned results. (c) Precision-Recall curves of Hamming Ranking with 48bit.

highest average MAP of 0.842, and consistently outperforms
state-of-the-art methods on all hash code lengths. More specif-
ically, the result tables are partitioned into three groups: deep
hashing methods, traditional methods with deep features and
traditional methods with hand-crafted features. Compare with
the highest deep hashing methods HashNet∗, which achieves
average MAP of 0.818, the proposed DRLIH has an absolute
improvement of 0.024. Compare with the highest traditional
methods using deep features SDH-VGG19, which achieves an
average MAP of 0.600, the proposed method has an absolute
improvement of 0.242. While the highest traditional methods
using handcrafted features SDH achieves average MAP of
0.322, the proposed approach has an absolute improvement
of 0.520.

Figure 3(a) shows the precisions within Hamming radius
2 using hash lookup. The precision of proposed DRLIH
consistently outperforms state-of-the-art methods on all hash
code lengths. The precision of most traditional methods de-
crease when using longer hash codes. This is because the
number of images sharing the same Hamming code decreases
exponentially for longer hash codes (e.g. 48bit), which will
cause some queries fail to return images within Hamming
radius 2. While the proposed DRLIH achieves the highest

precision on 48bit code length, which shows the robustness of
proposed method on longer hash codes. Figure 3(b) shows the
precision at top k returned results, we can also observe that
our proposed DRLIH achieves the best precision compared
with state-of-the-art methods. Figure 3(c) demonstrates the
precision-recall curves using Hamming ranking with 48bit
codes. DRLIH still achieves the best accuracy on all recall
levels, which further demonstrates the effectiveness of the
proposed approach.

2) Experiment results on NUS-WIDE dataset: Table I
shows the MAP scores with different length of hash codes on
NUS-WIDE dataset. Following [17], we calculate the MAP
scores based on top 5000 returned images. Similar results
can be observed, our proposed DRLIH still achieves the best
MAP scores (average 0.842). DRLIH achieves an absolute
improvement of 0.013 on average MAP compared to the
highest deep methods HashNet∗ (average 0.829). Compare
with the highest traditional method using deep features ITQ-
VGG19, which achieves an average MAP of 0.800, DRLIH
has an absolute improvement of 0.042. It is also interesting
to observe that with the deep features extracted from VGG-
19 network, the traditional methods such as SDH and ITQ
achieve comparable results with deep hashing methods.



9

top10 returned samplesquery

query top10 returned samples

DRLIH

HashNet*

NINH*

DRLIH

HashNet*

NINH*

Fig. 6: Some retrieval results of NUS-WIDE dataset using Hamming ranking on 48bit hash codes. The blue rectangles denote
the query images. The red rectangles indicate wrong retrieval results. We can observe that DRLIH achieves the best results.

10 20 30 40 50

Number of bits
(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 h
am

m
.d

is
t.<

=
2

CIFAR-10

200 400 600 800 1000

Number of retrieved samples
(b)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

P
re

ci
si

on
 @

 4
8 

bi
ts

CIFAR-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall @ 48 bits
(c)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 4
8 

bi
ts

CIFAR-10

DRLIH(Ours) Baseline_noseq Baseline_ng

Fig. 7: The comparison results of baseline methods on CIFAR10. (a) Precision within Hamming radius 2 using hash lookup;
(b) Precision at top k returned results; (c) Precision-Recall curves of Hamming Ranking with 48bit.

Figures 4(a), (b) and (c) demonstrate the precision within
Hamming radius 2 using hash lookup, precision at top k re-
turned results and the precision-recall curves using Hamming
ranking with 48 bits. Similar trends can be observed on these
three evaluation metrics, the proposed DRLIH also achieves
promising results on NUS-WIDE dataset on all hash code
lengths, which further shows the effectiveness of our proposed
DRLIH.

3) Experiment results on MIRFLICKR dataset: Table I
shows the MAP scores with different length of hash codes
on MIRFlickr dataset. We can also observe that our proposed
DRLIH still achieves the best MAP scores (average 0.808).
DRLIH achieves an absolute improvement of 0.026 on aver-
age MAP compared to the highest deep methods HashNet∗
(average 0.782). Compare with the highest traditional method

using deep features SDH-VGG19, which achieves an average
MAP of 0.739, DRLIH has an absolute improvement of 0.069.
Compare with the highest traditional method using hand-
crafted features SDH, which achieves an average MAP of
0.602, DRLIH has an absolute improvement of 0.206.

We can observe from Figure 4(a) that the proposed DRLIH
achieves the best precision within Hamming radius 2 using
hash lookup. Figure 4(b) demonstrates the precision at top
k returned results, our proposed DRLIH achieves the best
precision compared with state-of-the-art methods. Figure 4(c)
shows the precision-recall curves using Hamming ranking
with 48 bits, and similar trends can be observed that the
proposed DRLIH also achieves best precision on all recall
levels compared with state-of-the-art methods.

Finally, we demonstrate the top 10 retrieval results of NUS-



10

10 20 30 40 50

Number of bits
(a)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86
P

re
ci

si
on

 @
 h

am
m

.d
is

t.<
=

2
NUS-WIDE

200 400 600 800 1000

Number of retrieved samples
(b)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

P
re

ci
si

on
 @

 4
8 

bi
ts

NUS-WIDE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall @ 48 bits
(c)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
 @

 4
8 

bi
ts

NUS-WIDE

DRLIH(Ours) Baseline_noseq Baseline_ng

Fig. 8: The comparison results of baseline methods on NUS-WIDE. (a) Precision within Hamming radius 2 using hash lookup;
(b) Precision at top k returned results; (c) Precision-Recall curves of Hamming Ranking with 48bit.

10 20 30 40 50

Number of bits
(a)

0.78

0.8

0.82

0.84

0.86

0.88

0.9

P
re

ci
si

on
 @

 h
am

m
.d

is
t.<

=
2

MIRFLICKR

200 400 600 800 1000

Number of retrieved samples
(b)

0.84

0.85

0.86

0.87

0.88

0.89

0.9

P
re

ci
si

on
 @

 4
8 

bi
ts

MIRFLICKR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall @ 48 bits
(c)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
re

ci
si

on
 @

 4
8 

bi
ts

MIRFLICKR

DRLIH(Ours) Baseline_noseq Baseline_ng

Fig. 9: The comparison results of baseline methods on MIRFlickr. (a) Precision within Hamming radius 2 using hash lookup;
(b) Precision at top k returned results; (c) Precision-Recall curves of Hamming Ranking with 48bit.

TABLE II: Comparison between baseline methods and our proposed approach with different length of hash codes on CIFAR10,
NUS-WIDE and MIRFlickr datasets.

Methods CIFAR10 NUS-WIDE MirFlickr
12bit 24bit 32bit 48bit 12bit 24bit 32bit 48bit 12bit 24bit 32bit 48bit

DRLIH (ours) 0.816 0.843 0.855 0.853 0.823 0.846 0.845 0.853 0.796 0.811 0.810 0.814
Baseline noseq 0.759 0.802 0.811 0.822 0.803 0.811 0.820 0.824 0.764 0.775 0.776 0.784

Baseline ng 0.805 0.823 0.820 0.826 0.811 0.824 0.829 0.835 0.774 0.778 0.784 0.789

WIDE using Hamming ranking on 48bit hash codes. As shown
in Figure 6, our proposed DRLIH achieves the best results.

4) Baseline experiments: To verify the effectiveness of
action group and sequence learning strategy of deep rein-
forcement learning, we also conduct two baseline experiments.
More specifically, we first set the length of the action group
as 1, which implies that we train the network without action
group, we denote this method as Baseline ng. We also conduct
a baseline experiment without the sequence learning strategy,
where we replace the agent with a fully-connected layer whose
dimension is the same as the hash code length and train
the network by the triplet ranking loss. This layer serves as
hashing layer that maps features of representation network
into binary codes directly and independently. We denote this
method as Baseline noseq. Comparing the proposed DRLIH
approach with Baseline ng, we can verify the effectiveness

of action group. Comparing our DRLIH approach with Base-
line noseq, we can verity the effectiveness of the sequence
learning strategy. The results are shown in table II, and we
can observe that compare with Baseline ng, our proposed
DRLIH approach improves the average MAP score from
0.819 to 0.842 on CIFAR10 dataset, from 0.825 to 0.842 on
NUS-WIDE dataset and from 0.781 to 0.808 on MIRFlickr
dataset. This demonstrates that the proposed action group
method can promote the retrieval accuracy. Comparing with
Baseline noseq, our proposed DRLIH approach improves the
average MAP score from 0.799 to 0.842 on CIFAR10 dataset,
from 0.815 to 0.842 on NUS-WIDE dataset and from 0.775
to 0.808 on MIRFlickr dataset. This demonstrates that we
can benefit from sequence learning of deep reinforcement
learning framework to promote retrieval accuracy. We can
also observer that Baseline ng has better performance than



11

the Baseline noseq, which further shows the effectiveness of
the sequential learning strategy. Figures 7, 8 and 9 show the
precision within hamming radius 2, precision at top k returned
results and precision recall curves on three datasets, we can
observe that the proposed DRLIH approach outperforms two
baseline methods on these three evaluation metrics.

V. CONCLUSION

In this paper, we have proposed a Deep Reinforcement
Learning approach for Image Hashing (DRLIH). First, we
propose a policy based deep reinforcement learning network
for modeling hashing functions. We utilize recurrent neural
network (RNN) to model hashing functions as agents, which
take actions of projecting images into binary codes sequen-
tially. While we regard hash codes and the image features
as states, which provide history actions taken by agents.
The whole network is trained by optimizing two hierarchical
reward functions. Second, we propose a sequential learning
strategy based on proposed DRLIH, which can iteratively
optimize the overall accuracy by correcting the error generated
by history actions. Experiments on three widely used datasets
demonstrate the effectiveness of our proposed approach.

The future work lies in two aspects: First, we will try to
define the sequential learning process explicitly, such that we
can better model the sequential learning. Second, we intend to
exploit more advanced deep reinforcement learning framework
to achieve better retrieval accuracy.

REFERENCES

[1] J. Wang, T. Zhang, N. Sebe, H. T. Shen et al., “A survey on learning to
hash,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 4, pp. 769–790, 2018.

[2] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in International Conference on Very Large
Data Bases (VLDB), vol. 99, no. 6, 1999, pp. 518–529.

[3] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning
and hash coding with deep neural networks,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3270–
3278.

[4] J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for
hashing with compact codes,” in International Conference on Machine
Learning (ICML), 2010, pp. 1127–1134.

[5] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Annual
Conference on Neural Information Processing Systems (NIPS), 2009,
pp. 1753–1760.

[6] S. Zhang, J. Li, M. Jiang, and B. Zhang, “Scalable discrete supervised
multimedia hash learning with clustering,” IEEE Transactions on Cir-
cuits and Systems for Video Technology (TCSVT), vol. PP, no. 99, pp.
1–1, 2017.

[7] Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear discrete hashing,” IEEE
Transactions on Multimedia (TMM), vol. 19, no. 1, pp. 123–135, 2017.

[8] P. Li, M. Wang, J. Cheng, C. Xu, and H. Lu, “Spectral hashing with
semantically consistent graph for image indexing,” IEEE Transactions
on Multimedia (TMM), vol. 15, no. 1, pp. 141–152, 2013.

[9] Y. Zhang, L. Zhang, and Q. Tian, “A prior-free weighting scheme for
binary code ranking,” IEEE Transactions on Multimedia (TMM), vol. 16,
no. 4, pp. 1127–1139, 2014.

[10] M. Kafai, K. Eshghi, and B. Bhanu, “Discrete cosine transform locality-
sensitive hashes for face retrieval,” IEEE Transactions on Multimedia
(TMM), vol. 16, no. 4, pp. 1090–1103, 2014.

[11] K. Ding, B. Fan, C. Huo, S. Xiang, and C. Pan, “Cross-modal hashing
via rank-order preserving,” IEEE Transactions on Multimedia (TMM),
vol. 19, no. 3, pp. 571–585, 2017.

[12] V. E. Liong, J. Lu, Y.-P. Tan, and J. Zhou, “Deep video hashing,” IEEE
Transactions on Multimedia (TMM), 2016.

[13] Y. Hao, T. Mu, R. Hong, M. Wang, N. An, and J. Y. Goulermas,
“Stochastic multiview hashing for large-scale near-duplicate video re-
trieval,” IEEE Transactions on Multimedia (TMM), vol. 19, no. 1, pp.
1–14, 2017.

[14] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” International Journal
of Computer Vision (IJCV), vol. 42, no. 3, pp. 145–175, 2001.

[15] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning
natural scene categories,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2005, pp. 524–531.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Annual Conference on
Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[17] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for
image retrieval via image representation learning,” in AAAI Conference
on Artificial Intelligence (AAAI), 2014, pp. 2156–2162.

[18] T. Yao, F. Long, T. Mei, and Y. Rui, “Deep semantic-preserving
and ranking-based hashing for image retrieval,” in International Joint
Conference on Artificial Intelligence (IJCAI), 2016, pp. 3931–3937.

[19] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable
deep hashing with regularized similarity learning for image retrieval
and person re-identification,” IEEE Transactions on Image Processing
(TIP), vol. 24, no. 12, pp. 4766–4779, 2015.

[20] F. Zhao, Y. Huang, L. Wang, and T. Tan, “Deep semantic ranking
based hashing for multi-label image retrieval,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1556–
1564.

[21] W.-J. Li, S. Wang, and W.-C. Kang, “Feature learning based deep super-
vised hashing with pairwise labels,” in International Joint Conference
on Artificial Intelligence (IJCAI), 2016, pp. 1711–1717.

[22] H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for effi-
cient similarity retrieval,” in AAAI Conference on Artificial Intelligence
(AAAI), 2016, pp. 2415–2421.

[23] J. Zhang and Y. Peng, “Ssdh: semi-supervised deep hashing for large
scale image retrieval,” IEEE Transactions on Circuits and Systems for
Video Technology, 2017.

[24] ——, “Query-adaptive image retrieval by deep weighted hashing,” IEEE
Transactions on Multimedia, 2018.

[25] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing
for fast image retrieval,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2064–2072.

[26] Z. Cao, M. Long, J. Wang, and P. S. Yu, “Hashnet: Deep learning to hash
by continuation,” in The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[27] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
large-scale search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 12, pp. 2393–2406, 2012.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, p. 529, 2015.

[29] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and
M. Lanctot, “Mastering the game of go with deep neural networks and
tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[30] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: efficient indexing for high-dimensional similarity search,” in
International conference on Very large data bases (VLDB), 2007, pp.
950–961.

[31] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in Annual Conference on Neural Information
Processing Systems (NIPS), 2009, pp. 1509–1517.

[32] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
International Conference on Machine Learning (ICML), 2011, pp. 1–8.

[33] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean ap-
proach to learning binary codes,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011, pp. 817–824.

[34] L. Zhang, Y. Zhang, J. Tang, X. Gu, J. Li, and Q. Tian, “Topology pre-
serving hashing for similarity search,” in ACM International Conference
on Multimedia (ACM-MM), 2013, pp. 123–132.

[35] G. Irie, Z. Li, X.-M. Wu, and S.-F. Chang, “Locally linear hashing
for extracting non-linear manifolds,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014, pp. 2115–2122.

[36] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Annual Conference on Neural Information Processing
Systems (NIPS), 2009, pp. 1042–1050.



12

[37] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised
hashing with kernels,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012, pp. 2074–2081.

[38] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete hash-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 37–45.

[39] J. Wang, J. Wang, N. Yu, and S. Li, “Order preserving hashing for
approximate nearest neighbor search,” in ACM International Conference
on Multimedia (ACM-MM), 2013, pp. 133–142.

[40] Q. Wang, Z. Zhang, and L. Si, “Ranking preserving hashing for
fast similarity search,” in International Joint Conference on Artificial
Intelligence (IJCAI), 2015, pp. 3911–3917.

[41] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[42] M. Schultz and T. Joachims, “Learning a distance metric from relative
comparisons,” in Advances in Neural Information Processing Systems
(NIPS), 2003, pp. 41–48.

[43] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen,
and Y. Wu, “Learning fine-grained image similarity with deep ranking,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 1386–1393.

[44] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” Journal of Machine
Learning Research (JMLR), vol. 11, no. Mar, pp. 1109–1135, 2010.

[45] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[46] J. C. Caicedo and S. Lazebnik, “Active object localization with deep
reinforcement learning,” in Computer Vision (ICCV), 2015 IEEE Inter-
national Conference on. IEEE, 2015, pp. 2488–2496.

[47] Z. Ren, X. Wang, N. Zhang, X. Lv, and L.-J. Li, “Deep reinforcement
learning-based image captioning with embedding reward,” in Computer
Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on.
IEEE, 2017, pp. 1151–1159.

[48] D. Zhao, Y. Chen, and L. Lv, “Deep reinforcement learning with visual
attention for vehicle classification,” IEEE Transactions on Cognitive and
Developmental Systems, 2016.

[49] Y. Rao, J. Lu, and J. Zhou, “Attention-aware deep reinforcement learning
for video face recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 3931–3940.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2014.

[51] R. J. Williams, Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Springer, 1992, pp. 5–32.

[52] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[53] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide:
a real-world web image database from national university of singapore,”
in ACM international conference on image and video retrieval (CIVR),
2014, p. 48.

[54] M. J. Huiskes and M. S. Lew, “The mir flickr retrieval evaluation,”
in ACM International Conference on Multimedia Information Retrieval
(MIR), 2008, pp. 39–43.

[55] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.


	I Introduction
	II Related work
	II-A Image Hashing
	II-B Deep Reinforcement Learning

	III Deep reinforcement learning hashing
	III-A Notations
	III-B Definition of the reinforcement hashing learning
	III-B1 State
	III-B2 Action
	III-B3 Reward

	III-C Deep reinforcement learning hashing network
	III-C1 The representation network
	III-C2 Policy network

	III-D Agent training strategy

	IV Experiments
	IV-A Datasets
	IV-B Experiment Settings and Evaluation Metrics
	IV-C Experiment Results
	IV-C1 Experiment results on CIFAR10 dataset
	IV-C2 Experiment results on NUS-WIDE dataset
	IV-C3 Experiment results on MIRFLICKR dataset
	IV-C4 Baseline experiments


	V Conclusion
	References

