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Abstract—With the increasing demands on interactive video
applications, how to adapt video bit rate to avoid network
congestion has become critical, since congestion results in self-
inflicted delay and packet loss which deteriorate the quality of
real-time video service. The existing congestion control is hard
to simultaneously achieve low latency, high throughput, good
adaptability and fair bandwidth allocation, mainly because of the
hardwired control strategy and egocentric convergence objective.

To address these issues, we propose an end-to-end statistical
learning based congestion control, named Iris. By exploring
the underlying principles of self-inflicted delay, we reveal that
congestion delay is determined by sending rate, receiving rate
and network status, which inspires us to control video bit rate
using a statistical-learning congestion control model. The key
idea of Iris is to force all flows to converge to the same queue
load, and adjust the bit rate by the model. All flows keep a small
and fixed number of packets queuing in the network, thus the fair
bandwidth allocation and low latency are both achieved. Besides,
the adjustment step size of sending rate is updated by online
learning, to better adapt to dynamically changing networks.

We carried out extensive experiments to evaluate the per-
formance of Iris, with the implementations of transport layer
(UDP) and application layer (QUIC) respectively. The testing
environment includes emulated network, real-world Internet and
commercial LTE networks. Compared against TCP flavors and
state-of-the-art protocols, Iris is able to achieve high bandwidth
utilization, low latency and good fairness concurrently. Especially
over QUIC, Iris is able to increase the video bitrate up to 25%,
and PSNR up to 1dB.

Index Terms—Congestion control, real-time video streaming,
low latency, statistical learning, adaptive adjustment.

I. INTRODUCTION

W ITH the widespread deployments of LTE/WiFi wire-
less networks and the forthcoming 5G [1], inter-

active video applications are growing exponentially, from
the mobile video chatting, such as Skype [2], FaceTime,
to AR/VR streaming [3] and cloud gaming [4, 5]. These
video applications require not only higher bandwidth but
also lower transmission delay. However, real-world network
capacity is constrained, especially in wireless networks with
unpredictable dynamics (e.g. random packet loss, channel
fading, etc) [6, 7]. It imposes great challenges on nowadays
video bitrate adaptation, which adjusts video streaming bit
rate to reduce self-inflicted delay and loss.

The existing work related to rate adaptation can be mainly
divided into two categories. The first is the research of
adaptive bit rate (ABR) algorithms over application layer,
including [8–11]. They usually use HTTP as the transport
protocol and adjust the video bit rate according to bandwidth
estimation and buffer state [9]. However, the underlying TCP
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Fig. 1: The architecture of real-time video transmission.

of HTTP will essentially bring high latency [12], which is not
suitable for real-time video transmission.

The second kind of rate adaptation related work is conges-
tion control based on transport layer. As shown in Figure 1,
congestion control plays an important role in the real-time
video transmission, which adapts video bit rate to avoid self-
inflicted delay and packet loss. Many rate adaptation schemes
[13–18] have been proposed for video calling or video con-
ferencing. Most of them focus on rate allocation upon given
bandwidth [13, 14] or relay server selection [17, 18]. Seldom
of them considers how to reduce end-to-end congestion delay.
In addition to the conventional TCP-like algorithms [19, 20],
there are also some end-to-end congestion control designed for
real-time video streaming or low-latency transmission, which
can limit the self-inflicted delay [15, 21, 22] or achieve TCP
fairness [16]. Some methods also adjust video bit rate with
online learning [23, 24]. But these existing algorithms still
have some flaws, mainly including the following two aspects.

• Non-coexistence of high throughput and low latency.
Considering only packet loss will lead to high queuing
delay, but the algorithms overly concerned about delay
also lead to low throughput [25].

• Hardwired control strategy. Most methods adjust send-
ing rate with fixed step size or multiplier [26]. This
manual mapping cannot always be optimal in changing
networks, resulting in performance degradation.

• Egocentric convergence objective. Some algorithms
based on objective function are self-centered and lack
communication between concurrent data streams, thus
thye can not keep the same convergence goal for different
clients, which leads to unfair bandwidth allocation.

Motivated by these issues, to obtain higher video transmis-
sion quality, we probe into the essence of congestion control
and consider whether it is possible to design an algorithm that
achieves the goals of low latency, high channel utilization,
good adaptability to changing networks and fair bandwidth
allocation. Some recently proposed algorithms [27, 28] have
enlightened us: a congestion control with low-latency fairness
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objective and a learned rate adjustment strategy.
In this paper, we start with an in-depth investigation into

network congestion in LTE, WiFi and Internet, to explore the
underlying principles of congestion delay. The data-driven
analysis reveals that there is a strong correlation between
transmission latency, sending rate and receiving rate. In-
spired by the observations, we have designed Iris, an end-
to-end learning-based congestion control algorithm for real-
time video streaming. It mainly consists of two components:
low-latency fairness model and learning-based rate control
strategy. The fairness model forces all streams to keep a small
and fixed number of packets queuing in network, achieving
fairness and low congestion delay. The learning-based rate
control builds a statistical function between round-trip time
(RTT), sending rate and receiving rate, based on online linear
regression learning. Then it is used to determine the proper
sending rate, which avoids fixed adjustment step size and
converges to the fairness objective more quickly.

The contributions of this paper can be summed up in the
following three aspects:
• We explore the underlying reasons for congestion delay

in video transmission and reveal the correlation between
transmission latency, sending rate and receiving rate,
which inspires us to design a low-latency algorithm with
statistical learning.

• An adaptive bitrate adjustment scheme is introduced.
According to the learning model, the rate adjustment step
size can be periodically updated online, which avoids the
hardwired control strategy to better adapt to dynamically
changing networks.

• A low-latency fairness model which can be proved the-
oretically is introduced. With the estimation of network
status, the fairness model indicates the direction and size
of delay adjustment, so that a fair share of bandwidth and
low latency are guaranteed.

The paper is organized as follows: Section II introduces the
related work at first. Section III highlights the motivation of
this paper. Section IV describes our proposed Iris algorithm
and the details of implementation are shown in Section V.
Section VI shows the experimental results and corresponding
analysis. Section VII concludes the paper.

II. RELATED WORK

Conventional congestion control algorithms can be mainly
divided into two categories: loss-based and delay-based. The
loss-based methods, starting from Reno [29] and extending
to Cubic [19] and Compound [30], interpret packet loss as
the fundamental congestion signal. They continually push
packets into the buffer of bottleneck link until packet loss
occurs, resulting in “bufferbloat” and high queuing delay
[12]. Besides, in wireless networks, low bandwidth utilization
also results from the stochastic loss unrelated to congestion
[31]. To address these issues, the algorithms like Vegas
[20], FAST [32] and LEDBAT [33] use delay, rather than
packet loss, as the congestion signal. They perform well in
constraining queuing delay, but overestimate delay because of
ACK compression or network jitter, resulting in inadequate

utilization of bandwidth [25]. Moreover, they will be starved
when sharing a bottleneck link with concurrent loss-based
flows [34]. Therefore, these conventional methods are not
suitable for real-time video streaming.

There are also many studies focusing on special cases of
network environments, including the algorithm customized for
datacenters [35–37], cellular networks [38, 39], Web applica-
tions [40] and so on. These solutions yield good performance
under the specific network conditions, but can not improve the
performance of video streaming transmission. The algorithms
specially designed for real-time video transmission mainly
include [15, 21, 41]. They use packet loss and delay as
congestion metrics, and empirically set some fixed thresholds.
When the congestion metrics are higher or lower than these
thresholds, the sending rate is adjusted accordingly. As we
mentioned earlier, this hardwired control strategy can not
maintain effectiveness in changing networks, resulting in
performance degradation.

Over the past decade, more and more researchers have
abandoned the TCP-like hardwired mapping rate control
which maps events to fixed reactions (e.g. using fixed thresh-
olds or step sizes). They prefer to generate effective control
strategies through algorithms rather than handicraft, such as
PCC [42], Verus [43], Remy [27] and Vivace [23]. Especially,
Remy replaces the human designed algorithm with an offline
optimization scheme that searches for the best scheme within
its assumed network scenario. But the performance drastically
degrades when the actual network conditions deviate from
its assumptions [44]. PCC and Vivace propose to empirically
observe and adopt actions that result in higher performance,
but they have to try many times before deciding on the best
action. The lag selection will affect the delay performance
of real-time video streaming. Google proposes BBR [22] to
address the limitations of conventional TCP, which tries to
make the number of inflight packets (i.e. data sent but not yet
acknowledged) converge to bandwidth-delay product (BDP).
However, it has poor performance in TCP-fairness, and its
throughput will fluctuate periodically and violently due to its
synchronization mechanism, which destroys the smoothness
of video bitrate [45].

In this paper, we propose a learning-based congestion
control algorithm. Compared against these existing works, our
innovations (and differences) lie in the following aspects:
• Convergence objective. Although we need to obtain

delay information in Iris, its explicit convergence ob-
jective is the load of the queue, as described in Sec-
tion IV-A2. This is different from the traditional delay-
based algorithms in which explicit delay values are used
as congestion benchmarks. It can avoid the latecomer
issue [33] of delay-based algorithms and improve fair-
ness performance, but does not need to adopt hard
synchronization like BBR [22].

• Environmental adaptation. Iris introduced a rate adjust-
ment method based on statistical learning, as described in
Section IV-A4, to balance the generality and specificity
of the algorithm. Based on the collected historical data,
Iris can adaptively change the rate adjustment step size
without setting specific parameters for each network.
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(a) LAN.
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(b) WAN.
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(c) WiFi network.
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(d) LTE network.

Fig. 2: The scatter plot of x − r (Mbps) and RTT variation
(ms) under different networks.

• Low overhead. Different from the existing work that
combines the concept of ”learning”, Iris uses a simple but
effective linear regression learning model, which guaran-
tees low overhead in complexity and time consumption.
This approach avoids the drawbacks of Remy’s offline
learning due to its complexity [44], and is better at real-
time than PCC and Vivace.

III. DATA STUDY OF CONGESTED NETWORK

In order to understand the dynamics of the network, we
generate packets to probe real-world networks, and explore
the specific factors that directly affect the network state. To
collect the network trace, we build a measurement testbed,
consisting of an Ali Elastic Compute Service (ECS), a laptop
and a Huawei P20 mobile phone. With UDP used in the
transport layer, we tagged packets with sequence numbers
and sender timestamp, and implemented ACK return for each
packet in the application layer, to enable RTT and receiving
rate calculation. The network trace is collected separately
under LAN, WAN, WiFi and LTE networks, and the network
operators are all China Mobile.

For collecting network trace, UDP packets are emitted with
the fixed interval, a sending epoch of 100ms. Within i-th
epoch, the sending rate xi is constant. The corresponding RTT
rtti and receiving rate ri is calculated from the ACKs of the
all packets emitted in this epoch. The calculation details are
shown in Section V-A.

A. Correlation Between Sending, Receiving Rate and RTT

We collected the trace under different networks, and ex-
tracted the sending rate, receiving rate and delay information
for correlation analysis. Define ∆rtti as the RTT variation
between two adjacent epochs:

LAN WAN WiFi LTE
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Fig. 3: Average PLCC of ∆rtt and x−r with 90% confidence
interval in different real-world networks in leisure hours and
peak hours.

∆rtti = rtti − rtti−1 (1)

which represents the change of network congestion.
The correlation analysis is used to study the relationship

among sending rate x, receiving rate r and RTT variation.
Figure 2 displays the scatter plots of the traces under differ-
ent networks, each of which contains more than 1500 data
points. Intuitively, whether it is in WAN, LAN, WiFi or LTE
networks, the difference between sending rate and receiving
rate, i.e. x− r, always has a strong positive correlation with
∆rtt. Besides, the correlation is the strongest in LAN, while
the correlation decreases slightly in LTE network because of
more network jitter noise. This positive correlation indicates
that, if the sending rate is larger than the receiving rate, the
RTT in the network will also increase, which is not conducive
to avoiding congestion.

B. Quantitative Correlation Study

To verify the correlation, we collected a large number of
traces under different networks, respectively in leisure hours
(i.e. 9:00 to 11:00) and peak hours (i.e. 19:00 to 21:00). For
each trace, Pearson linear correlation coefficient (PLCC) is
calculated for statistical analysis.

Figure 3 displays the PLCC of ∆rtt and x − r with
90% confidence interval under different networks in peak
and leisure hours. We find that PLCC is the largest in LAN
(up to 0.97), but the smallest in LTE networks (around 0.7),
which is similar to the discovery in Section III-A. It is mainly
because, compared to the simple network environment in the
LAN, LTE networks have more noise and will weaken the
correlation. Besides, PLCC in leisure hours is a little bigger
than that during peak hours, resulting from the fact that the
network load is heavier during the peak hour and will produce
more noise.

In summary, PLCC is different under different networks and
at different times. But even so, PLCC is still larger than 0.65
in the worst case, which is enough to prove the correlation.
Therefore, the further verified conclusion is obtained that ∆rtt
and x− r have strong linear correlation.

C. Linear Regression Learning

Due to the consistent high PLCC as shown in Figure 3,
we believe the rate difference x − r and RTT variation are
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Fig. 4: The probability density function (PDF) of k and b
values under different networks in leisure and peak hours.

always strongly linearly correlated. Therefore, the discovery
motivates us to build the model expressing ∆rtti as follows:

∆rtti = k × (xi − ri) + b (2)

where k indicates the extent to which ∆rtt is affected by x−r
and b is a bias. Since b can be regarded as a Gauss white noise,
we use maximum likelihood to solve Equation (2) based on
historical data [46].

This expression is logical from the view of congestion
control. When sending rate exceeds receiving rate, the number
of packets in the queue of bottleneck link will increase,
resulting in the rise of queuing delay and RTT, and vice versa.

D. Distribution of k and b

Furthermore, we study whether this function expression
is constant in the real complex networks. Based on the
collected traces, above maximum likelihood estimation is used
to obtain the quantized values of k and b. Figure 4 displays the
probability density function (PDF) of obtained k and b under
different networks, respectively in leisure hours (i.e. 9:00 to
11:00) and peak hours (i.e. 19:00 to 21:00). It shows that
the distributions of k and b are always approximate Gauss
distribution regardless of the network type, which validates
the applicability of the maximum likelihood method.

For further analysis, under different networks, the mean
of k is obviously different, which is mainly related to the
available bandwidth at that time. But as for b, the mean value
is always near 0, no matter what type of network it is in.
Although its variance is slightly different, we think of b as a
Gauss noise, and it is usually small enough to be overlooked.

As shown in Figure 4(a) and Figure 4(c), although the
distribution of k values is always Gaussian, its mean value has
shifted markedly. That is to say, the distribution of k values

will change over time in the same network. Therefore, the
way to generate a fixed function to adjust the sending rate is
not optimal. Because when the network conditions change,
the functional relationship between x − r and ∆rtt will
also change. It inspires us to design the step size adaptation
mechanism as described in Section V-B.

E. Key Insights

Through the above correlation analysis and verification,
we further emphasize the motivation of this paper into three
aspects:
• An important discovery is observed, i.e. the difference

between sending rate x and receiving rate r always has
a strong correlation with RTT variation ∆rtt.

• Through the analysis of correlation coefficient, the linear
model as Equation (2) is established, which enlightens
us on congestion control model.

• The values of k and b that represents the model parame-
ters are various at different networks and different times,
so a step size adaptation mechanism is necessary.

IV. LEARNING BASED CONGESTION CONTROL

In this section, our Iris is introduced, which is a statistical
learning based congestion control deeply inspired by our
research on the correlation analysis in real-world networks.

A. Iris Algorithm

1) Key Ideas:
Iris is designed as an efficient real-time congestion control,

which mainly consists of two modules, a low-latency
fairness model and a learning-based rate adjustment.
The fairness model forces all flows to keep a small
and constant number of packets queuing in network, i.e.
queue load, so as to achieve fairness and low latency
concurrently when there are multiple flows competing
on a bottleneck link. The learning-based rate adjustment
builds a statistical function between RTT and rate through
online linear regression learning, then uses the model to
determine the proper sending rate. It avoids fixed adjustment
step size and converges to the fairness objective more quickly.

2) Low-latency fairness Model:
As the core of Iris, the objective function with the ability

to achieve low latency and fairness is designed, and its main
component is the estimation of queue load.

As mentioned above, rtti represents the average RTT
within the i-th epoch. We define T as target delay, which
is set to the minimum RTT in a time window by default. So
rtti − T represents the extra queuing delay and the number
of extra packets in bottleneck queue within i-th epoch is
calculated as xi · (rtti − T ). It represents the extra queue
load estimation which indicates the extent of congestion.
Therefore, the congestion can be avoided by maintaining it
at a fixed range, i.e. xi · (rtti − T ) = B, with B defined as
the queue load target.

Therefore, our objective function can be expressed as:
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U(xi, rtti) = xi · (rtti − T )−B (3)

where B represents the convergence status of Iris. Fewer
redundant packets in the bottleneck queue helps Iris achieve
high channel utilization and low latency at the same time.
Thus it also tells the sender how to adjust its sending rate.
When xi · (rtti − T ) is higher than B, the network is
considered to be congested, so the sending rate is supposed
to be decreased, and vice versa. In addition, the fairness is
guaranteed if each flow maintains the same number of packets
filled into the bottleneck link.

3) Expected RTT Variation Adjustment:
The objective function in our Low-latency Fairness Model

implies the extent of congestion. Combining the results of
our previous correlation analysis, we designed the following
strategies to adjust the expected next RTT Variation di+1:
when U(xi, rtti) < 0, the queue load does not reach our
target. To improve bandwidth utilization, next RTT Variation
di+1 is expected to be greater than 0, because it usually
indicates a higher sending rate. In the opposite case, di+1 is
expected to be less than 0. By adjusting the expected RTT step
by step, Equation (3) will tend to be established. Therefore,
we first simply define the expected RTT variation for the next
epoch di+1 as follows:

di+1 = −U(xi, rtti) (4)

However, the real-world network has jitter noise so that
the measurement of RTT is not completely accurate, which
also leads to the existence of abnormal value of U(xi, rtti).
To prevent over-adjustment, the activation function tanh is
introduced to limit the range of RTT variation, which is
expressed as follows.

tanh(U) =
eU − e−U

eU + e−U
(5)

The main reason for using tanh function is that it has an
effective suppression on abnormal values. However, in the
original tanh function, the effective range of independent
variables is only about [-1,1], while our objective function
U can be as high as dozens. Therefore, in the process of
implementation, we also need to stretch the effective scope of
tanh function through dividing U(xi, rtti) by an expansion
coefficient M . Finally, di+1 can be expressed as follows.

di+1 = −δ · tanh(
U(xi, rtti)

M
) (6)

where δ > 0 represents the threshold of RTT variation.
By this method, the farther away from convergence target,

the larger adjustment step size will be adopted. Besides, it
helps to solve the problem of delay overestimation [25].

4) Learning-based Rate Adjustment:
According to the result of correlation analysis in Section III,

the strong linear correlation between ∆rtt and x − r is
captured. Therefore, if the expected next RTT Variation di+1

has been determined, the next sending rate xi+1 can be
expressed as:

xi+1 = ri+1 +
di+1

k
(7)

but when Iris makes the decision on xi+1 for the next epoch,
ri+1 is unknown to the sender, so it is estimated by recently
seen receiving rate in implementation, i.e. ri, and k is learned
from linear regression of historical data, determining the rate
adjustment step size.

The design of Equation (7) is reasonable. When di+1 is
greater than 0, the channel is considered underutilized and
we tend to fill more packets into the bottleneck queue, so the
sending rate is supposed to be increased. On the contrary, if
di+1 is less than 0, it means that the number of packets in the
queue exceeds the budget and is easy to cause congestion.
In this case, sending rate is supposed to be adjusted to the
decreasing direction.

B. Fairness Analysis

Iris uses the low-latency fairness model, coupling with
the learning-based rate adjustment, to guarantee high perfor-
mance from the individual sender’s perspective and ensure the
convergence to a global fair rate allocation. Specifically, we
consider a network model in which N flows compete on a
bottleneck link with the bandwidth of C and the buffer is a
FIFO queue.

Theorem. When N Iris-senders share a congested bottle-
neck link and each sender uses the rate control mechanism as
Equation (7), the senders’ sending rates converge to a global
fair configuration.
Proof. We define that for a pair of senders a and b, within
epoch i, their sending rates are respectively xi,a and xi,b.
And xi,b is larger than xi,a. So, if the rate difference between
any two flows decreases with time, the theorem is valid. It is
equivalent to proving that

|xi+1,b − xi+1,a| < |xi,b − xi,a|

|ri,b − ri,a +
di+1,b

k
− di+1,a

k
| < |xi,b − xi,a| (8)

The bottleneck link is congested, i.e.
∑

j∈N xi,j > C.
Combined with the network link model, the difference in
receiving rate can be expressed as ri,b − ri,a =

C(xi,b−xi,a)∑
j∈N xi,j

.
Therefore, the following formula can be obtained.

0 < ri,b − ri,a < xi,b − xi,a (9)

In order for the condition of Equation (8) to be satisfied,
the following equation must be established.

0 <
di+1,a

k
− di+1,b

k
< xi,b − xi,a (10)

As the buffer is shared across all flows on the bottleneck
link, they have the same queuing delay, i.e. qi = rtti,a −
Ti,a = rtti,b−Ti,b. And the tanh function in Equation (6) is
monotonically increasing, hence di+1,a

k >
di+1,b

k . Defining Ui

as xi(rtti−T )−B
M , we can prove that
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1

k
(di+1,a − di+1,b) < xi,b − xi,a

δ

k
(tanh(Ui,b)− tanh(Ui,a)) < xi,b − xi,a

δ

k

tanh(Ui,b)− tanh(Ui,a)

Ui,b − Ui,a

Ui,b − Ui,a

xi,b − xi,a
< 1

δ

k

rtti − T
M

tanh(Ui,b)− tanh(Ui,a)

Ui,b − Ui,a
< 1 (11)

where tanh function has the largest slope at zero and its value
is 1, so 0 <

tanh(Ui,b)−tanh(Ui,a)
Ui,b−Ui,a

< 1. And the value of
M ∗ k is usually much larger than δ(rtti − T ), as described
in Section V-D. Thus the Equation (8) is established and the
fair configuration is achieved.

V. IMPLEMENT

A. Receiving Rate Estimation

Considering that the channel unpredictably changes over
time, especially in wireless networks, Iris adjusts sending rate
in a small epoch of ε ms to quickly adapt to the changing
link. In order to obtain the receiving rate estimation, we
first tagged packets with sequence numbers and sender’s
timestamp, and implemented ACK return for each data packet
in the application layer, with UDP used in the transport layer.

In particular, our receiving rate is not obtained by the
common calculation method. As shown in Figure 5, within i-
th epoch, the total number of packets sent is xi ·ε. ti represents
the ACK return time of the last packet of this epoch, thus
ti − ti−1 represents the total time for the successful delivery
of all packets in the i-th epoch. So the receiving rate estimate
ri of the i-th epoch is calculated at ti, as follows.

ri =
xi · ε

ti − ti−1
(12)

B. Update k

As described in Section III-D, the k value reflects the rela-
tionship between ∆rtt and x− r, which directly determines
the rate adjustment step size according to Equation (7). But
it will change with the dynamics of the network. That is
to say, a fixed k value can not be effective under various
network conditions. Therefore, a periodic update mechanism
for the k values is designed in Iris. To keep up with the
network dynamics, the update cycle is set to 5 seconds
empirically. Then, linear regression learning is used to fit k
values periodically, based on the historical data.

TABLE I: Default parameter settings.

Parameter Value

Epoch time ε ms 50
Scaling multiplier M of tanh 100

Extra queue load target B 10
RTT variance boundary δ 3

C. Cold Start

At the start-up of Iris, there is no data to support it to
obtain the effective k value, and any handcrafted initial value
is difficult to be robust to all kinds of networks with different
capacities. Therefore, we adopt the similar control strategy
as the slow-start stage of TCP to quickly perceive the link
capacity and collect the training data in this cold start process.

After Iris starts, the initial sending rate of 100Kbps is first
adopted, then it is doubled every epoch for updating the next
sending rate. Once the packet loss rate is increased, Iris will
exit from the startup phase and use the collected data to learn
an initial k value. After that, k is periodically updated as
described in Section V-B.

D. Parameters Settings

Different parameters will directly affect the performance
of iris. Unless stated otherwise, we implement Iris using the
parameter default values in Table I. ε represents the sending
rate adjustment interval. The smaller ε is more conducive to
improving the adaptability of the algorithm, but will affect
the accuracy of receiving rate estimation in a single epoch.
Considering these two aspects, we empirically set ε as 50ms
based on a large number of experimental tests under different
networks. M determines the the effective limits of tanh func-
tion and δ limits the range of RTT variance, empirically set to
100 and 3 respectively, taking into account the applicability
and generality for various networks. B is the extra queue load
target and too large B will result in high self-inflicted delay,
so we set the value of B to 10.

VI. PERFORMANCE EVALUATION

In this section, we conducted extensive experiments to eval-
uate the performance of Iris, considering both the transport
layer and the application layer. The experimental environment
consists of a variety of networks, including emulated network,
real-world Internet and commercial LTE networks.

A. Testbed

In order to evaluate the performance of Iris in transport
layer and network layer respectively, we implement it in UDT
[47, 48] and QUIC [49]. The aim of QUIC implementation is
to build an HTTP live streaming server, to evaluate the bitrate
and PSNR gain of Iris in the application layer.

For transport layer testing, we implement a user-space
prototype based on UDT. In this scenario, the comparison
objects mainly include Sprout [38, 50], PCC (with latency
utility function by default) [51], BBR and TCP variants (e.g.
Cubic and Vegas). Two main metrics of the performance
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Fig. 6: Iris is robust to random packet loss.

are considered, namely throughput and delay characteristics.
The testbeds in emulation and real-world environment are
introduced below.

In the emulation environment, we design a dumbbell topol-
ogy consisting of two nodes in the LAN, where one plays
as sender and the other is receiver. The nodes are con-
nected through Gigabit fiber and run a configurable number
of sources with Linux core 4.9. For PCC and Sprout, the
developers’ implementations are used. We employ the NetEm
linux module along with the traffic shaper TC to configure the
link parameters, such as bottleneck bandwidth, propagation
delay, packet loss and maximum queue size. Besides, tcpdump
is used to capture packets to measure the metrics.

In the real-world environment, we mainly consider inter-
continental Ethernet and LTE mobile network. In the case of
intercontinental Ethernet, four Ali ECSs are employed to es-
tablish a node in Beijing, HongKong, Singapore and America
respectively. Our host is used as sender while these nodes
are regarded as receivers. As for LTE network, we employ
a laptop connected with a 4G mobile phone to run these
algorithms on China Mobile, a commercial LTE network. In
order to evaluate the performance of these algorithms, a lot of
tests have been carried out considering different time, different
network access modes and other factors. The total time of
collected traces is over 50 hours.

For the evaluation in application layer, in addition to the
HTTP live streaming server over QUIC, we implement a a
video player based on the open source MPEG-DASH dash.js
[52]. The QUIC server provides the video with five different
bitrate versions (350Kbps, 620Kbps, 1.57Mbps, 2.54Mbps
and 3.60Mbps), which are divided into segments with the
same length (1 second), and the buffer length is set as 15
seconds. The traffic shaper TC is also used to configure
the link parameters from server to client. When switching
different algorithms in the congestion control module of
QUIC, the performance of Iris can be evaluated based on the
information output from the browser console.

B. Evaluation in Emulated Networks

1) Robustness to Random Loss:
Lossy links in todays networks are not uncommon: wireless

links are often unreliable and very long wired network paths
can also have random loss caused by unreliable infrastructure.
To further quantify the effect of random loss, we use tc to
configure a bottleneck link with 20Mbps bandwidth, 50ms

round-trip propagation delay and varying loss rate, to evaluate
the algorithms’ robustness to random loss.

As Figure 6 shown, Cubic and Vegas perform badly when
there is random packet loss. Even 0.5% of the random packet
loss rate will reduce their channel utilization to less than
50%. And the performance of PCC will also drop sharply
when the packet loss rate is greater than 3%. In contrast,
our Iris and BBR are robust to random packet loss, which
is because the packet loss is not considered as a congestion
signal in the rate adjustment mechanism.

2) Tolerance to Long RTT:
Satellite Internet is widely used for critical missions such as

emergency and military communication, which is challenging
for congestion control because it has high propagation delay
(RTprop), large bandwidth-delay product and random loss.
Referring to the real-world measurement for the WINDs
satellite Internet system [53], we evaluate Iris on an emulated
link with 20 Mbps capacity, 1 BDP of buffer, 0.74% stochastic
loss rate and changing RTprop.

Table II shows the average throughput and queuing delay of
the protocols v.s. Iris. Compared against Iris, the throughput
of Cubic and Vegas is less than 10%, due to the random packet
loss in the link. PCC obtained the highest throughput, but at
the cost of excessive latency. BBR is able to ignore random
loss, but still underutilized the link as its rate oscillated wildly.
In contrast, Iris achieves over 70% of optimal throughput at a
time delay cost of only around 20 milliseconds. Although it
is also affected by the high BDP, a good trade-off is achieved
between throughput and delay.

TABLE II: Average throughput (Mbps) and queuing delay
(ms) vs. Iris in emulated satellite link with high RTprop.

RTprop 600ms 800ms 1000ms

Country Rate Delay Rate Delay Rate Delay
Iris 16.7 16 15.6 19 13.9 21

Vegas 0.03× 0.06× 0.02× 0.05× 0.03× 0.09×
Cubic 0.06× 0.12× 0.03× 0.15× 0.03× 0.19×
BBR 0.71× 1.02× 0.65× 0.88× 0.51× 0.93×
PCC 1.12× 31.3× 1.24× 38.6× 1.34× 42.3×

3) Responsiveness to Network Variation:
We next demonstrate how quickly Iris can adapt to dynam-

ically changing network conditions. We start with a network
employing tc where the bottleneck bandwidth changes every
40 seconds, with 50ms round-trip propagation delay and
10KB buffer. For each protocol, we repeat the test with 160
seconds duration.

Figure 7 illustrates the behavior of several of the protocols
across time. Our Iris and PCC have almost the same
throughput in the stable state, but when the bottleneck
bandwidth changes, PCC’s response is much slower. From
startup to rate stability, PCC even takes ten seconds. This is
mainly because PCC determines the direction of adjustment
by several attempts before the sending rate is adjusted. As for
Cubic, the higher capacity results in the larger rate jitter, due
to the small buffer. BBR will periodically reduce its sending
rate because of its time delay synchronization mechanism.
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Fig. 8: Performance of intra-protocol fairness.

4) Fairness Evaluation:
Intra-protocol fairness
We first evaluate the intra-protocol fairness of Cubic, BBR,

PCC and our Iris separately. For this purpose, a dumbbell
topology in the LAN is built to demonstrate their dynamic
behavior with three flows sharing a bottleneck link with 20
Mbps bandwidth, 50 ms RTT and 0.5 BDP buffer.

Figure 8 shows the bandwidth allocation. Basically, Cubic,
BBR, PCC and Iris all achieve a fair share of bandwidth. How-
ever, at the equilibrium point of fair bandwidth allocation, the
throughput of each Cubic flow is severely jitter, which is not
a stable convergence. As for BBR, the intra-protocol fairness
is much better than Cubic, but there is a periodical sharp
drop in throughput due to its synchronization mechanism for
aligning the state of each flow. Although PCC can also share
the bottleneck bandwidth fairly, its convergence time is too
long, even tens of seconds, which is also confirmed in [22].
In contrast, our algorithm performs better either in terms of
convergence speed or stability of convergence points.

RTT fairness
Typically, the flows sharing the same bottleneck link have

different propagation delay. Ideally, they should get identical
bandwidth allocation, but many algorithms exhibit significant
RTT unfairness, disadvantaging flows with larger RTTs. To
evaluate the performance of Iris in this area, we further
consider an experiment where three competing Iris flows with
three different propagation delays of 50 ms, 100 ms and 150
ms share a 20 Mbps bottleneck link.
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Fig. 9: The bandwidth allocation of three concurrent flows
with different round-trip propagation delays.
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Fig. 10: Throughput of different algorithms versus Cubic,
shown by plotting the mean and standard deviation of the
bandwidth utilization.

Figure 9 shows the temporal variation in the throughput of
the three different Iris flows. Intuitively, the throughput of Iris
flows is independent of the propagation delays of the flows,
so Figure 9 doesn’t look very different from Figure 8(d). It
is due to the effect of our proposed Low-latency Fairness
Model, where the difference between di and T in Equation (3)
can eliminate the effect of different propagation delays. It
is queuing delay instead of RTT that can actually affect Iris
algorithm to adjust the sending rate.

Fairness with TCP
Since most traffic in the Internet is still TCP-based (such

as Cubic and Compound), if a congestion control algorithm is
to be applied in real network environment, it is necessary to
achieve a reasonable bandwidth allocation in the competition
with TCP traffic. For this purpose, we use the same network
as Section VI-B4 to carry out some experiments. We run
a Cubic sender as background traffic and a sender of the
congestion control algorithm being evaluated. These flows are
run concurrently for 20 seconds.

Figure 10 shows the bandwidth utilization achieved by the
evaluated algorithms versus the background Cubic traffic.
Intuitively, Vegas is suffering from low throughput when
competing against Cubic, which is just the weakness of most
delay-based algorithms. On the contrary, PCC and BBR
are too aggressive, which will seriously affect other flows
on the Internet. As for Iris, even if we set target delay T
to the minimum of RTTs (i.e. Iris-min), it can still obtain
over 35% bandwidth allocation. This is because when Cubic
accumulates packets to increase RTT, the minimum value
Iris sees in the time window will also increase, which will
improve its convergence target. If we use the median of RTTs



9

050100150200250300

RTT (ms)

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)
Cubic

Vegas

Sprout

BBR

PCC-latency

PCC-loss

Iris

(a) Peak hours (8:00PM-9:00PM).

050100150200250300

RTT (ms)

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Cubic

Vegas

Sprout

BBR

PCC-latency

PCC-loss

Iris

(b) Leisure hours (10:00AM-11:00AM).

050100150200250300

RTT(ms)

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

B
ette

r

(c) Statistical mean.

Fig. 11: Throughput and RTT in LTE networks of stationary scenario, five tests of 60s for each algorithm.
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Fig. 12: Convergence speed and throughput stability in dif-
ferent concurrent numbers.

as the target delay T (i.e. Iris-mid), the bandwidth allocation
will be closer to the ground truth (i.e. Cubic v.s. Cubic) [26].

5) Convergence Speed and Stability:
When the network environment changes, the convergence

speed and stability of the protocol determine the performance
of throughput and delay. In order to measure these two aspects
quantitatively, the following experiments are designed in this
paper. On a link of 50 Mbps bandwidth and 50 ms RTT, for
each protocol, we start 15 flows one by one at intervals of
50 seconds, which is sufficient for most of the protocols to
achieve fair convergence. The convergence speed is measured
by the time required for convergence, which is calculated as
the time from the newer flows entry to the earliest time after
which Jain’s fairness index is maintained over 0.9 for at least 5
seconds. And the stability is estimated as the average standard
deviation of throughput of all flows after the convergence
point is reached.

Figure 12 displays the convergence time and stability as
the number of flows increases. From the view of convergence
speed and the stability after convergence, our Iris and Vegas
have relatively close performance, which is much better than
other algorithms. It is worth noting that when the number
of flows exceeds 11, Cubic can no longer achieve a fair
convergence, whose bandwidth utilization will also decrease
dramatically. It is so-called “TCP Incast” phenomenon [54].
As for PCC, this threshold is even 7. Although BBR is able to
achieve fair convergence, its convergence time will continue
to rise with the increase of the number of flows.

C. Evaluation in Real-World LTE Networks

1) Stationary Scenario:
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Fig. 13: Performance in LTE networks of moving scenario.

In the real-world LTE network, an ideal congestion control
algorithm can achieve high throughput and low latency at the
same time. We first test the protocols in peak hours and leisure
hours to evaluate the performance in stationary scenes. In
addition, we evaluated PCC using loss utility function (PCC-
loss) and delay utility function (PCC-latency) respectively.
This evaluation was carried out in Peking University and
connected to the commercial network operator, China Mobile.

Figure 11 displays the test results of average throughput
and RTT. Intuitively, for all algorithms, the throughput in
peak hours is smaller and RTT is larger. For PCC, the loss
utility function makes it fill the buffer as much as possible,
resulting in extremely high delay. But the utility function
that tends to low delay will make it unable to get high
bandwidth allocation, because its utility function can not
correctly determine the direction of speed adjustment in
highly variable networks. For Iris, although the throughput
is not the highest, it can effectively balance throughput and
delay, which is more important for real-time congestion
control.

2) Motion Scenario:
Furthermore, we evaluated the performance of the protocols

on LTE networks in motion scenarios. Note that the subway
was chosen as the test scene, mainly because there is no influ-
ence from the multi base station switching in the tunnel, so the
environment is more simple. On line four of Beijing Subway,
from East Gate of Peking University to Yuanmingyuan Park
Station, each protocol has been tested ten times.

Figure 13 shows the throughput CDF of these protocols.
Different with the stationary scenario, we find that the bot-
tleneck bandwidth of the network is closely related to the
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Fig. 14: Throughput vs. RTT from our host in Beijing to Ali ECS in HongKong, five tests of 60s for each algorithm.
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Fig. 15: The bitrate, PSNR and buffer occupancy during video playback when using different congestion control algorithms.

TABLE III: Average throughput (Mbps) and RTT (ms) vs. Iris
on the link from Beijing to the Ali ECS Beijing, HongKong,
Singapore and America.

Link BJ → BJ BJ → HK BJ → SG BJ → USA

Protocol Rate RTT Rate RTT Rate RTT Rate RTT
Iris 83.6 28 76.2 66 62.2 144 38.4 201

Vegas 0.52× 0.78× 0.19× 0.79× 0.22× 0.93× 0.21× 0.93×
Cubic 0.48× 0.80× 0.20× 0.74× 0.27× 0.93× 0.19× 0.93×
BBR 0.73× 1.07× 0.56× 1.11× 0.39× 0.99× 0.37× 0.97×

Sprout 0.05× 0.36× 0.06× 0.68× 0.06× 0.90× 0.06× 0.91×
PCC-Loss 1.08× 5.85× 1.07× 2.85× 0.90× 1.31× 1.06× 1.17×

PCC-Latency 0.69× 0.96× 0.49× 1.08× 0.41× 1.01× 0.32× 0.94×

location of the train when it is tested along the subway.
Therefore, the measured throughput and RTT are approxi-
mately linear. In a comprehensive view, our Iris outperforms
other protocols, achieving similar RTT but higher throughput.
Facing more complex networks and more physical link loss
in the high-speed motion scenarios, Cubic and Vegas can no
longer achieve high throughput.

D. Evaluation in Intercontinental Networks

To evaluate the protocols in the intercontinental networks,
we employ Ali ECS to establish four nodes in Beijing,
HongKong, Singapore and America respectively. Our host in
Beijing is used as a sender while these nodes are regarded as
receivers, forming four links.

Taking the link from the host in Beijing to Ali ECS
in HongKong as an example, Figure 14 shows throughput
and RTT of the protocols, in peak hours and leisure hours
respectively. Intuitively, our Iris algorithm outperforms oth-
ers. Different from the results in Figure 11, the bandwidth
utilization of Cubic and Vegas has decreased significantly,
while the throughput of PCC has increased a lot, mainly
because the complex background traffic often brings packet
loss, but delay jitter is more gentle than LTE network. Our
Iris is more competitive in the competition scenario, so it can
still maintain high throughput, no matter at peak or leisure
hours. In addition, we use the same method to evaluate the
algorithms on the other three links. Table III displays the
average throughput and RTT of these protocols vs. Iris, which
further proves the excellence of Iris.

E. Performance in HTTP over QUIC

To evaluate the gain of Iris congestion control algorithm for
Internet video transmission, we built an HTTP live streaming
system with QUIC server [55] and MPEG-DASH dash.js [52].
Notice that the adaptive bitrate (ABR) algorithm we used in
dash.js is a simple method based on bandwidth estimation.

As depicted in Figure 15, we compare our Iris with Cubic
and BBR under a real Internet bandwidth trace (about 180
seconds), where both the long-term shifts and short-term
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TABLE IV: Performance under the real Internet trace

Protocol Average
PSNR (dB)

Average
bitrate (Kbps)

Cubic 40.536 1624.4
BBR 40.712 1763.5
Iris 41.27 2033.8

fluctuations of bandwidth can be observed. Besides, the round-
trip propagation delay is set to 50ms and random loss is 1%.
Due to the conservative bandwidth-based adaption logic, there
is no stalling phenomenon in the process of video playback.
However, because of the low bandwidth utilization of Cubic
congestion control in this case, the client rarely requests the
highest bitrate video segments, as shown in Figure 15. And
the client with BBR algorithm has higher instability in bitrate,
compared with Iris.

In order to show the difference more clearly, we summarize
the bitrate proportion of the requested video segments, as
depicted in Figure 16. It demonstrates that more than 50%
of the video segments requested by Iris are 3600Kbps or
2540Kbps, while this percentage is only about 35% for Cubic.
Quantitatively, as shown in Table IV , Iris achieves a 25%
bitrate improvement over Cubic and 15% over BBR. And the
average PSNR of Iris is also the highest, compared against
Cubic and BBR. These results indicate that replacing the
congestion control module in QUIC with our proposed Iris
is able to achieve higher user experience quality.

VII. CONCLUSIONS

In this paper, we have designed Iris, an end-to-end statistical
learning based congestion control algorithm. The key ideas of
Iris are keeping a small and fixed queue load in networks, and
adaptively adjusting sending rate based on a linear-regression
learning model. By forcing all flows to maintain the same
queue load, a fair share of bandwidth and low latency are
both achieved. The rate can be periodically updated by online
regression learning, which avoids hardwired rate adjustment
to better adapt to dynamically changing networks. Extensive
experiments are carried out to evaluate the performance of
Iris. It shows that, in various network environments, Iris is
able to achieve high bandwidth utilization and low latency at
the same time, and outperforms most existing algorithms. It
also improves Internet video services in the application layer,

increasing the bitrate by 25% compared against Cubic, under
the real network trace.
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