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Abstract—This paper enhances the intra prediction by using 

multiple neural network modes (NM). Each NM serves as an end-

to-end mapping from the neighboring reference blocks to the 

current coding block. For the provided NMs, we present two 

schemes (appending and substitution) to integrate the NMs with 

the traditional modes (TM) defined in high efficiency video coding 

(HEVC). For the appending scheme, each NM is corresponding to 

a certain range of TMs. The categorization of TMs is based on the 

expected prediction errors. After determining the relevant TMs 

for each NM, we present a probability-aware mode signaling 

scheme. The NMs with higher probabilities to be the best mode are 

signaled with fewer bits. For the substitution scheme, we propose 

to replace the highest and lowest probable TMs. New most 

probable mode (MPM) generation method is also employed when 

substituting the lowest probable TMs. Experimental results 

demonstrate that using multiple NMs will improve the coding 

efficiency apparently compared with the single NM. Specifically, 

proposed appending scheme with seven NMs can save 2.6%, 3.8%, 

3.1% BD-rate for Y, U, V components compared with using single 

NM in the state-of-the-art works. 

 
Index Terms—High Efficiency Video Coding (HEVC), intra 

prediction, neural network, probability 

 

I. INTRODUCTION 

ITH the rapid development of the multimedia society, the 

video traffic is forecasted to occupy more than 80% 

internet traffic by 2021 as described in [1]. Therefore, video 

compression technology becomes quite important. Intra 

prediction is an essential component in the video compression, 

which can reduce the spatial redundancy by utilizing the 

similarity of the adjacent pixels. For each coding block, the 

predicted pixels are the linear regression of the neighboring 

reference pixels. The prediction is performed according to the 

mode and size. The available prediction modes have been 

increased in the past few video compression standards. In 

H.264/AVC [2], two non-directional modes (Planar, DC) and 

eight directional modes are supported, while for the successor 

HEVC [3], the amount of directional modes grows from 8 to 33. 

To further enhance the prediction accuracy, the number of 
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directional modes is expanded to 65 for the next-generation 

standard versatile video coding (VVC) as reported in [4]. 

Regarding the prediction size, it is from 4×4 to 16×16 in H.264, 

while the maximum size is enlarged to 64×64 in HEVC. In 

VVC, in addition to the square shape, intra sub partition (ISP) 

is also adopted to support non-square prediction sizes [5]. With 

more possible combinations of prediction modes and sizes, the 

prediction error can be decreased thus the coding efficiency can 

be improved. 

 Apart from the expansions of the prediction mode and size, 

there have also been many other developments to ameliorate the 

prediction accuracy of the intra prediction. Considering that the 

correlation between the reference pixels and coding block 

pixels will become higher with shorter distance, some in-block 

reconstruction methods are presented. Abdoli et al. [6] 

performed in-block reconstruction for each 4×4 block at the 

pixel level. Similarly, when ISP is exploited, the reconstruction 

is sub-block level for each block. To capture the subtle 

directional texture inside the block, Markov model-based 

filtering schemes have also been proposed to substitute the 

traditional copying-based predictions. Chen et al. [7] and Li et 

al. [8] proposed a recursive extrapolation with a 3-tap and 4-tap 

filters. Chen et al. [9] presented an iterative filtering method to 

smooth the predicted pixels. Different from the aforementioned 

methods, Yeh et al. [10] presented a bi-directional intra 

prediction based on two neighboring predictors. Image 

inpainting methods were also used for the intra prediction as 

reported in [11]-[12]. Li et al. [13]-[14] utilized multiple lines 

rather than a single line as the reference pixels. Zhang et al. [15] 

proposed a hybrid prediction by using both local and non-local 

correlations. 

Recently, there have been several standard works for the 

VVC intra prediction. Linear regression models are presented 

to reduce the redundancy between luma and chroma 

components as described in [16]-[17]. Both non-filtered and 

filtered reference samples are used for the prediction based on 

the position information as proposed in [18]-[19]. Besides, 

four-tap intra interpolation filters are utilized to improve the 

directional intra prediction accuracy as reported in [20], and 
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multiple reference lines are also adopted as stated in [21]. 

Although the aforementioned literatures have promoted the 

intra prediction, they are all based on the linear calculation. In 

fact, recently, neural networks have shown its strong ability in 

image and video compression due to its powerful non-linear 

mapping ability. The related works will be introduced in 

Section II.B. For the intra prediction, there have been also 

several neural network-based methods. Li et al. [22]-[23] 

exploited fully connected (FC) networks to perform the 

prediction by using the multiple neighboring pixels. After 

obtaining the pre-trained model, each model can be regarded as 

a neural network mode (NM). By integrating these NMs with 

traditional modes (TM) defined in HEVC, up to 7.4% bits can 

be saved as reported in [23]. Pfaff et al. [24] applied at most 35 

NMs on non-square blocks and employed a neural network to 

select the most probable NM. On average, about 3% BD-rate 

can be saved compared with original hevc test model (HM).  

Though the previous works have achieved significant coding 

gains by using neural networks, there are still several 

opportunities for the further improvements. First is to use 

multiple NMs. For [23], the author exploited two NMs and 

shown that dual NMs can achieve better coding efficiency than 

single NM. For [24], the author did consider multiple NMs. 

However, only one NM is finally selected for the prediction. 

With more NMs, the prediction accuracy ought to be enhanced 

which can bring less distortions. On the other hand, more NMs 

spend larger mode signaling which will increase the bit count. 

Therefore, an optimal trade-off between rate and distortion of 

using multiple NMs is expected. Secondly, the authors in [22]-

[24] append NMs to TMs which will increase the number of 

overall modes. As a result, extra flags are required to signal the 

additional modes. Therefore, maintaining the total number of 

modes also worth attempting. 

In this paper, we focus on the prediction of multiple NMs 

starting from a fixed block size 8×8. Detailed analysis are 

performed to show the effect of using multiple NMs. The main 

contributions are as follows. 

1) Two schemes (appending and substitution) to integrate 

NMs with TMs: We present two integration schemes and 

analyze their coding gains and complexities thoroughly. For the 

appending scheme, NMs are regarded as additional modes to 

TMs. For the substitution schemes, TMs are replaced by NMs. 

2) Probability-based TM categorization and mode signaling 

for the appending scheme: When appending multiple NMs, 

certain TMs are clustered to correspond with one NM based on 

the expected prediction error. Besides, a mode signaling 

scheme is performed for each NM based on the probability. 

3) Probability-based TM selection for the substitution 

scheme: We propose to substitute TMs from two aspects of 

view. One is to replace the highest probable TMs, while the 

other is to supplant the lowest probable TMs. When replacing 

the lowest probable TMs, we present the most probable mode 

(MPM) generation scheme. 

Experimental results demonstrate that using multiple NMs 

can achieve significant BD-rate saving. Compared with using 

single NM, 2.6%, 3.8%, 3.1% BD-rate are saved for three 

channels, respectively. 

The rest of the paper is organized as follows. Section II 

describes the related work. Section III and IV presents our 

proposals and the training process, respectively. The results are 

demonstrated in Section V, followed by the conclusions and 

future work in Section 0. 

II. RELATED WORK 

This section is composed of two parts. First, we introduce the 

intra prediction in HEVC. Second, we review some recent 

neural network-based methods in image/video compression. 

A. HEVC Intra Prediction 

There are 35 intra modes supported in HEVC as shown in 

Fig. 1. The modes can be categorized to non-directional and 

directional modes. The former is composed of two modes: 

Planar and DC, and the latter can be classified according to their 

directions. Among all the 35 modes, the best luma mode 

decision is conducted with two steps. In the first step, a list of 

candidate modes is constructed, and then the final best mode is 

decided from the candidate mode list in the second step. The 

overall process is shown in Fig. 2. From the 35 modes, eight 

modes are selected based on sum of absolute transformed 

differences (SATD) cost. After that, at most two modes from 

the MPM set are appended in the candidate list. The MPM set 

is constructed based on the mode information of the left and 

above units. Among all the candidate modes, the best mode is 

selected by comparing rate-distortion (R-D) cost. 

When calculating rate for each candidate modes, it is 

composed of the bits for the mode signaling and the bits for the 

residual. Several syntax elements (SE) are provided for mode 
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Fig. 1 35 HEVC intra modes. 

 

start

SATD of 35 
modes

R-D cost of candidate 
modes

Get MPM modes

end
 

Fig. 2 The procedure of the best luma mode selection in HEVC Test Model. 
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signaling as shown in Fig. 3. For the luma mode, the SE 

prev_intra_luma_pred_flag is used to indicate whether the best 

mode is from MPM set or not. If the mode is from MPM set, it 

is binarized as 1. Otherwise, it is binarized as 0. If the best mode 

belongs to the MPM set, mpm_idx specifies the index of three 

MPM modes. Two bins are utilized to distinguish three indexes. 

If the best mode does not belong to the MPM set, 

rem_intra_luma_pred_mode is used to indicate the number of 

the remaining modes. Five bins are used to represent 32 cases. 

For the chroma mode, intra_chroma_pred_mode is used to 

indicate the index of five candidate modes. Three bins are used 

to indicate the index. 

After finishing the luma prediction, the best luma mode is 

derived for the chroma component. In addition to the derived 

mode, four modes are added in the candidate mode for chroma. 

If the best luma mode is not among Planar, DC, TM26 (TM-

VER) and TM10 (TM-HOR), these four modes and the derived 

luma mode constitute the candidate mode list. Otherwise, these 

four modes and TM34 build up the candidate list. 

B. Neural Network-based Methods for Image/Video Coding 

There are two types of methods. The first kind is full neural 

network-based schemes. Toderici et al. [25]-[26] exploited 

multiple layers of recurrent neural networks to recursively 

compress the residuals. Balle et al. [27]-[28] utilized 

convolutional neural networks (CNN) to construct two 

autoencoders among which one is used to estimate the coded bit 

range for the other. Cheng et al. [29] analyzed the energy 

compaction property of learned image compression for non-

linear neural network systems. Those works have outperformed 

the latest image compression knows as HEVC intra prediction 

(i.e. BPG) in terms of MS-SSIM. Regarding to the video 

compression, Rippel et al. [30] presented a learned end-to-end 

framework that is better than all the existing standards 

concerning the quality matrix of MS-SSIM. The second type is 

adopting neural network technology in the components of 

traditional compression standards. For the intra prediction, 

[22]-[24] treated neural networks as new prediction modes to 

enhance the prediction accuracy. For the inter prediction, [31]-

[35] improved the motion interpolation accuracy by using CNN. 

Regarding the loop filters and post-processing, quite a few of 

works [36]-[40] have been reported and some CNN-based 

filters have been proposed with respect to the VVC. About 

discrete cosine transform (DCT), there have also been several 

literatures [41]-[42] using CNN to replace the traditional 

transforms. Xu et al. [43] used deep learning for the video 

transcoding. Lin et al. [44] improved the coding gain at low-

bitrates by learning-based super resolution and adaptive block 

patching. 

III. PROPOSED INTRA CODING BASED ON MULTIPLE NEURAL 

NETWORK MODES 

In this section, we will formulate the problem at first, and 

then present two methods to integrate the NM with TM. 

A. Mode Probability Analysis and Problem Formulation 

In the real coding, the probabilities of 35 TMs to be best 

mode are different. We encode 2550 still images provided in 

the New York city library [49] with a moderate quantization 

parameter (QP) 27. The probabilities of non-directional and 

directional TMs being the best mode are given in Table I, and 

the probabilities of all the directional TMs being the best mode 

are demonstrated in Fig. 4. From the results, we can see that the 

non-directional TMs have higher probability than directional 

TMs to be the best mode. For the horizontal TMs from 2 to 18, 

the distribution is symmetric to TM-HOR. The probability of 

TM-HOR is the highest and decreases when the distance with 

TM-HOR becomes larger. Noted that for TM2 and TM18, the 

probability becomes larger than the neighboring TMs. For the 

vertical TMs from 18 to 34, the distribution is similar with that 

for the horizontal TMs. 

When using multiple NMs, each NM is corresponding with 

certain TMs and there are a wide variety of the correspondence. 

Given that we have N NMs, and the relevant TM set for NMs 

is marked as S. The target is to minimize the prediction error 

compared with TM, which can be formulized as the following 

problem 

min
𝑁,𝑆

∆𝐷 = min
𝑁,𝑆

(∑ 𝑃𝑖 ∗ ∆𝐷𝑠(𝑖)

𝑁−1

𝑖=0

) 

= min
𝑁,𝑆

(∑ 𝑃𝑖 ∗ (𝐷𝑠(𝑖)
𝑁 − 𝐷𝑠(𝑖)

𝑇 )

𝑁−1

𝑖=0

) 
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Fig. 3 Mode signaling for 35 luma modes. prev_intra_luma_pred_flag 

represents whether the best mode is from MPM set or not. mpm_idx 
represents the index of 3 MPM modes. rem_intra_luma_pred_mode 

represents the index of 32 non-MPM modes. 

 

TABLE I 

PROBABILITIES OF NON-DIRECTIONAL AND DIRECTIONAL TMS FOR 

BEING THE BEST MODE 

TM  Prob. (%)  

Non-directional 51.1 

Directional 48.9 

 

 
Fig. 4 The probability distribution of directional TMs being the best mode. 
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= min
𝑁,𝑆

(∑ (∑ 𝑝𝑗
𝑗∈𝑠(𝑖)

) ∗ (𝐷𝑠(𝑖)
𝑁 −

∑ 𝑑𝑗
𝑇

𝑗∈𝑠(𝑖)

|𝑠(𝑖)|
)

𝑁−1

𝑖=0

) (1) 

where 𝑠(𝑖) is the TM set for the i-th NM, 𝐷𝑠(𝑖)
𝑁  and 𝐷𝑠(𝑖)

𝑇  are the 

MSE for the i-th NM and average MSE for the i-th TM set, 𝑃𝑖  

is the probability of the i-th NM, which can be calculated by the 

summation of the probabilities of the TMs in 𝑠(𝑖), 𝑝𝑗  is the 

probability of the j-th TM. 

B. Appending Neural Network Modes to Traditional HEVC 

Modes 

When appending NMs, the purpose is to use several NMs to 

achieve better prediction accuracy than 35 TMs. Therefore, the 

TM sets of all the NMs should satisfy the following equation 

⋃ 𝑠(𝑖)
𝑁−1

𝑖=0
= [0,34] (2) 

where N is the number of supported NMs, and s(i) is the TM set 

for the i-th NM. In this section, we propose the methods for N 

being one, three, five and seven. 

 When appending N NMs, overall (35+N) modes are 

supported, and the proposed method to select the best luma 

mode is shown in Fig. 5. In addition to the TMs selected by the 

SATD cost and the MPM set, NM is also included in the 

candidate list. Noted that NM is not involved in the MPM 

generation. Therefore, for each block, if the best mode is NM, 

we have to set a TM for the sake of MPM generation of its right 

and bottom blocks. After generating the candidates, R-D cost is 

calculated to decide the best mode.  

If one NM is provided, according to Eq. (2), this NM is 

corresponding to all the 35 TMs, thus we have entire 36 modes. 

For the binarization of these 36 modes, a mode signaling 

scheme is adopted as shown in Fig. 6. One extra SE nn_flag is 

used to distinguish whether the best mode is NM or not. If the 

best mode is NM, nn_flag is set as 1. Otherwise, nn_flag is 

assigned as 0. In the case of the best mode being TM, the mode 

signaling for the 35 modes maintains the same as the original 

HEVC, as described in Section II.A. By comparing the R-D cost, 

if the best mode is NM, we set MPM0 as the best TM. It is 

because MPM0 has the highest probability to be selected as 

reported in [43]. 

When appending one NM, ∆𝐷 in Eq. (1) is 23 according to 

the experimental results. The positive value means that the 

prediction error of NM is larger than that of TMs. In order to 

enhance the prediction accuracy, we increase the number of 

NMs from one to three. First, 35 TMs can be categorized to 

non-directional and directional TMs. For the directional TMs, 

due to a good symmetrical property, the horizontal and vertical 

TMs are grouped into individual category. These three NMs are 

symbolled as NM3-NA (non-directional), NM3-VER and 

NM3-HOR as shown in Table II, and the TM set for the three 

NMs are [0,1], [2,18] and [18,34], respectively. 

For the 38 (35+3) modes, the signaling method is presented 

in Fig. 6. The difference with appending one NM is that extra 

SE nn_mode is required to represent the best mode. The 

binarization for the three NMs is shown in Table II. For each 

NM, the probability is estimated by the summation of the 

probabilities of the oriented TMs. Thus, the probability of 

NM3-NA is higher than NM3-HOR and NM3-VER. For the 

NMs with higher probability, few bins are assigned. Therefore, 

one bin is assigned for NM3-NA while two bins are assigned 

for the other two NMs. As shown in Table II, b0 represents 

whether the NM is non-directional or not, and b1 means 

whether the NM is horizontal or not. 

By appending three NMs, the results of ∆𝐷𝑠(𝑖)(i ≤ 2) are 

shown in Table III. When using three NMs, ∆𝐷 can be reduced 

to 2.62 by Eq. (1). However, positive value indicates that the 

prediction error of NM is still larger than that of TM. Therefore, 

1

2

2

MPM Non-MPM

MPM0

MPM1 MPM2

 remaining 
32 modes

1 0

1 0

0 1

A. nn_flag
B. nn_mode

3

A

B
1. 
prev_intra_luma
_pred_flag
2. 
mpm_idx
3. 
rem_intra_luma
_pred_mode

 
Fig. 6 Proposed mode signaling for (35+n) luma modes. 

 
TABLE II 

BINIRIZATION OF NN_MODE FOR APPENDING 1, 3, 5 AND 7 NMS. 

# of  

NMs 

Binirization Symbol 

b0 b1 b2 b3  

1     NM1 

3 

1    NM3-NA 

0 1   NM3-HOR 

0 0   NM3-VER 

5 

1    NM5-NA 

0 1 1  NM5-HOR0 

0 1 0  NM5-HOR1 

0 0 0  NM5-VER0 

0 0 1  NM5-VER1 

7 

1    NM7-NA 

0 0 1 1 NM7-HOR0 

0 1 1  NM7-HOR1 

0 0 1 0 NM7-HOR2 

0 0 0 0 NM7-VER0 

0 1 0  NM7-VER1 

0 0 0 1 NM7-VER2 

 

start

SATD of 35 
TMs

R-D cost of candidate 
modes

Get MPM modes
(TM)
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generation

 
Fig. 5 Proposed luma mode selection for the appending schemes. n 

(1,3,5,7) is the number of appending NMs. 
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we further increase the number of NMs. From the results in 

Table III, we can observe that the prediction accuracy of non-

directional NM has surpassed that of non-directional TMs. To 

further enhance the accuracy of directional prediction, the 

number of directional NMs is increased from two to four. Due 

to the good symmetric property, horizontal and vertical TMs are 

symmetrically divided into two categories, and the symbols are 

given in Table II. 

In order to represent five NMs, three bins are required for 

nn_mode. Similar to appending three NMs, only one bin (b0) is 

consumed in the case of NM-NA. For the four directional NMs, 

two additional bins are required. b1 indicates whether the NM 

is horizontal or not, while b2 indicates whether the NM is close 

to the diagonal direction or not. 

By appending five NMs, the results of ∆𝐷𝑠(𝑖)(i ≤ 4)  are 

shown in Table III. By Eq. (1), ∆𝐷 becomes -2.9. The negative 

value represents that using five NMs can eventually achieve a 

better prediction accuracy than only using TMs. 

When appending five NMs, ∆𝐷 becomes negative. However, 

the categorization of the directional TMs is completely 

symmetrical to TM-HOR and TM-VER. Therefore, the TMs 

with high probabilities to be the best mode are categorized into 

different groups. For instance, TM25 is categorized in NM5-

VER0, while TM27 is categorized in NM5-VER1. As a 

consequence, the probabilities of directional NMs are quite 

close, and the bin count for each directional NM is identical. In 

order to solve this problem, we propose to append seven NMs. 

For the horizontal TMs, we supply three NMs that are 

corresponding to the TMs of [2,9 − ∆1 ], [10 − ∆1, 10 + ∆1 ] 

and [11 + ∆1, 18]. By doing so, the TMs around TM-HOR can 

all be clustered into [10 − ∆1, 10 + ∆1 ]. Similarly, we also 

distribute the vertical TMs into three categories that are 

[18,25 − ∆2], [26 − ∆2, 26 + ∆2] and [27 + ∆2, 34]. ∆𝐷 in Eq. 

(1) can be calculated as 

∆𝐷 = ∆𝐷𝑁𝐴 + ∆𝐷𝐻𝑂𝑅(∆1) + ∆𝐷𝑉𝐸𝑅(∆2) (3) 

where ∆𝐷𝑁𝐴 , ∆𝐷𝐻𝑂𝑅  and ∆𝐷𝑉𝐸𝑅  are for non-directional, 

horizontal and vertical NMs, respectively. Since the three NMs 

are correspdoning to different TMs, we minimize their ∆𝐷  

individually. For ∆𝐷𝑁𝐴, it is the same as that in appending three 

and five NMs, which is equal to -5.1. For ∆𝐷𝐻𝑂𝑅  and ∆𝐷𝑉𝐸𝑅, 

they can be calculated by the following equations 

 

∆𝐷𝐻𝑂𝑅(∆1) = ∑ 𝑃𝑖 ∗ ∆𝐷𝑠(𝑖)

3

𝑖=1

 

= ∑ 𝑝𝑗
𝑗∈[2,9−∆1]

∗ ∆𝐷[2,9−∆1] 

+ ∑ 𝑝𝑗
𝑗∈[10−∆1,10+∆1]

∗ ∆𝐷[10−∆1,10+∆1] 

+ ∑ 𝑝𝑗
𝑗∈[11+∆1,18]

∗ ∆𝐷[11+∆1,18] (4) 

∆𝐷𝑉𝐸𝑅(∆2) = ∑ 𝑃𝑖 ∗ ∆𝐷𝑠(𝑖)

6

𝑖=4

 

= ∑ 𝑝𝑗
𝑗∈[18,25−∆2]

∗ ∆𝐷[18,25−∆2] 

+ ∑ 𝑝𝑗
𝑗∈[26−∆2,26+∆2]

∗ ∆𝐷[26−∆2,26+∆2] 

+ ∑ 𝑝𝑗
𝑗∈[27+∆2,34]

∗ ∆𝐷[27+∆2,34] (5) 

where ∆𝐷𝑠(𝑖)(𝑖 = 1,2,3) are the function of ∆1 . It is because 

with larger ∆1, the number of TMs within [2,9 − ∆1] and [11 +
∆1, 18] is decreased while the number is increased within [10 −
∆1, 10 + ∆1]. Thus, ∆𝐷𝑠(1) and ∆𝐷𝑠(3) will be decreased, while 

∆𝐷𝑠(2) will be increased. The results of ∆𝐷𝑠(𝑖)(𝑖 = 1,2,3) under 

various ∆1 is shown in Fig. 7. Based on ∆𝐷𝑠(𝑖), we can calculate 

∆𝐷𝐻𝑂𝑅(∆1)  as shown in Fig. 8. We can see that 

𝑎𝑟𝑔𝑚𝑖𝑛(∆𝐷𝐻𝑂𝑅(∆1))  is 2 and 𝑚𝑖𝑛(∆𝐷𝐻𝑂𝑅(∆1))  is -0.7. 

Similarly, we can find that 𝑎𝑟𝑔𝑚𝑖𝑛(∆𝐷𝑉𝐸𝑅(∆2)) is also equal 

to 2 and 𝑚𝑖𝑛(∆𝐷𝑉𝐸𝑅(∆2)) is -3.0. Overall, ∆𝐷 for appending 

seven NMs is -8.8, which is smaller than -2.9 when we append 

five NMs. 

For the mode signaling, considering that NM7-NA has the 

highest probability than the other NMs, only one bin is allocated. 

Same as the mode signaling in appending three and five NMs, 

b0 is used to indicate whether the best NM is NM7-NA or not. 

For the six directional NMs, three more bins are spent. 

TABLE III 

∆𝐷𝑠(𝑖) FOR APPENDING ONE, THREE AND FIVE NMS 

 1NM 3 NMs 5 NMs 

i 0 0 1 2 0 1 2 3 4 

∆𝐷𝑠(𝑖) 23 -10 12 19 -10 -1 12 9 -1 

 

 
Fig. 7 ∆𝐷𝑠(𝑖) with various ∆1/∆2. 

 

 
Fig. 8 ∆DHOR and ∆DVER with various ∆1/∆2. 
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6 

Considering that NM7-HOR1 and NM7-VER1 have higher 

probability than the other directional NMs, fewer bins are 

assigned. b1 indicates whether the best NM comes from these 

two NMs. For the other two bins, b2 is used to indicate whether 

the best NM is horizontal NMs while b3 is used to indicate 

whether the best NM is diagonal. 

Similar with that in appending single NM, we have to set a 

best TM when NM is selected as the best mode. Now that 

multiple NMs have directional information based on which we 

can set the related directional TM. When the non-directional 

NM is selected, it indicates that the current PU does not have 

explicit directional texture. Therefore, Planar is set as the best 

TM. If horizontal NMs are selected, it indicates that the current 

block has more horizontal textures, thus TM-HOR is set as the 

best TM. Similarly, TM-VER is set as the best TM if the best 

NM comes from vertical NM set. 

After processing the luma component, the next step is to 

process the chroma component. In the original HM, the best 

luma mode will be derived as one candidate mode for the 

chroma prediction. In our proposal, if NM is the best luma mode, 

in the case of appending one NM and multiple NMs, MPM0 

and the best NM will be derived for the chroma prediction, 

respectively. 

C. Substituting Traditional HEVC Modes by Neural Network 

Modes 

Appending scheme could reduce the bin count when NM is the 

best mode, while one more bin is required when TM is the best 

mode. In order to avoid the additional bin count, we propose to 

replace TM(s) by NM(s) to remain the total number of modes. 

We propose two kinds of substitution schemes. The first type 

is focused on replacing high probable TMs, and each NM is 

corresponding to one TM. Therefore, Eq. (1) is rewritten as 

min
𝑁,𝑆

∆𝐷 = min
𝑁,𝑆

(∑ 𝑝𝑠(𝑖) ∗ ∆𝐷𝑠(𝑖)

𝑁−1

𝑖=0

) (6) 

where s(i) is the TM to be replaced. When replacing one TM, 

Eq. (6) can be simplified as 

min
𝑆

∆𝐷 = min
𝑠(0)

(𝑝𝑠(0) ∗ ∆𝐷𝑠(0))   (7) 

where the range of s(0) is [0,34]. Considering that ∆𝐷𝑠(0)  is 

minus for all the 35 cases. We can decide that 𝑎𝑟𝑔𝑚𝑖𝑛( ∆𝐷) is 

0 according to the probability distribution in Fig. 4, thus Planar 

is replaced. When substituting three TMs, Eq. (6) is rewritten 

as 

min
𝑆

∆𝐷 

= min
𝑆

(𝑝𝑠(0) ∗ ∆𝐷𝑠(0) + 𝑝𝑠(1) ∗ ∆𝐷𝑠(1) + 𝑝𝑠(2) ∗ ∆𝐷𝑠(2)) (8) 

where 𝑠(𝑖)  (i=0,1,2) stands for the three TMs that are 

substituted. According to the distributions in Fig. 4, the three 

smallest values of 𝑝𝑠(𝑖) ∗ ∆𝐷𝑠(𝑖) appear for i being 0, 1 and 26. 

Therefore, Planar, DC and TM-VER are substituted. 

 The second type is focused on substituting low probable TMs. 

From Fig. 4, we can see that several TMs have very small ratios 

to be the best mode. Among all the TMs, TM19 has the smallest 

ratio that is only 0.29%, which means that the contribution of 

TM19 to the coding gain could be very limited. On the other 

hand, the NMs such as NM1 probably have better prediction 

accuracy than TM19 in most scenarios. Therefore, substituting 

TM19 by NM1 is expected to enhance the coding efficiency. In 

addition to substituting one TM, we also exploit the effects of 

replacing three TMs. TM19 is replaced since it is the least 

significant. In addition, the least significant horizontal-up TM3 

and vertical-left TM33 are replaced according to the probability 

distribution in Fig. 4. NM3-NA, NM3-HOR and NM3-VER are 

used to replace the three TMs.  

The proposed best luma mode selection for the substitution 

scheme is shown in Fig. 9. Similar with the procedures in the 

original HM, we will select candidate modes as the first step. 

The candidate modes are composed of three parts. The first part 

is selected by comparing the SATD cost. Originally, we have to 

calculate the SATD costs of all the 35 TMs. Since n TMs are 

now replaced by NM, thus only the remaining (35-n) TMs 

require SATD cost computation to pick up eight candidates. 

The second part of the candidate modes comes from the MPM 

set. The proposed MPM generation scheme is shown in the 

pseudo code of Algorithm 1. In the original HM, if the modes 

of the left and the above PU are the same TM, MPM1 and 

MPM2 will be set as TM-1 and TM+1, respectively. However, 

considering that several TM(s) now have been used to represent 

Algorithm 1 Proposed MPM generation scheme for 

substituting low probable TMs 

Input 

best TM of left PU: PL  

best TM of above PU: PA 

TM to be substituted: TMS 

Output 

3 MPM modes: M0, M1, M2 

if (PL==PA) then 

    if (PL==TMS) then 

        M0=PL, M1 = Planar, M2 = DC; 

    else if (PL==TMS-1) then 

        M0=PL, M1 = PL-1, M2 = PL+2; 

    else if (PL==TMS+1) then 

        M0=PL, M1 = PL-2, M2 = PL+1; 

else 

    same as origin 

end 

 

start

SATD of 
(35-n) TMs

R-D cost of candidate 
modes

Get MPM modes
(TM or NM)

n NMs

end

Candidate 
mode 

generation

 
Fig. 9 Proposed luma mode selection for the substituting schemes. n is the 

number of modes to be replaced. 
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the NM which does not have the original directional 

information. Therefore, adding the neighboring directional TM 

(i.e. TM-1 and TM+1) into MPM set is not reasonable anymore. 

In our proposed MPM generation method, TM which will be 

substituted is denoted as TMS. If the best modes of the left and 

above PU are both TMS, MPM1 and MPM2 are set as Planar 

and DC, respectively. If the best mode is TMS+1 for both left 

and above PU, MPM1 is set as TMS in the original HM while 

TMS-1 in our proposal. If the best mode is TMS-1 for both left 

and above PU, MPM2 is set as TMS in the original HM while 

TMS+1 in our proposal. The third part of the candidate modes 

is the NM. After deciding the candidate modes, the best mode 

can be selected by comparing the R-D costs. 

For the chroma prediction, the processing method is the same 

as the original HM. Noted that if the best luma mode is NM, the 

derived mode for the chroma prediction is also the same NM. 

IV. TRAINING PROCESS 

A. Network Architecture 

For each 2N×2N block, the proposed network is shown in 

Fig. 10. The network is composed of four FC layers and three 

Parametric Rectified Linear Unit (PReLU) [46] layers. The 

input/output dimension of each layer is given in Fig. 10. First, 

multiple pixels of the reference blocks are flattened to one-

dimensional vector which is the input of the network. The 

output of the network is reshaped to 2N×2N size as the 

predicted pixels for the current block.  

About the reference pixels, similar with the previous works 

[22]-[23], we utilize five neighboring 2N×2N blocks and 

reshaped to a vector of 2N×2N×5 dimensions as shown in Fig. 

10. Take 8×8 as an example, the input is composed of five 8×8 

blocks. Therefore, the input dimension of the first FC layer is 

320 (8×8×5). For the next three FC layers and PReLU layers, 

the input dimensions are all 1024. For the final FC layer, the 

output dimension is 64 (8×8) which can be reshaped to a two-

dimensional representation. 

The loss function for the training is defined in Eq. (9) where 

𝛩 is the parameter set of weights (W), biases (B) of the FC layer 

and scale factor of PReLU, 𝜆 is the weight of the regularization 

term and M is the batch size. R means the reconstructed pixels 

of the reference blocks which is the input of the network, and Y 

represents the original pixels of the current coding block. We 

will learn the network parameters 𝛩 to perform the mapping 

from R to Y. 

L(𝛩) =
1

𝑀
∑ ‖𝐹(𝑅𝑚, 𝛩) − 𝑌𝑚‖2 + 𝜆‖𝑊‖

2
2

𝑀

𝑚=1

(9) 

 𝜆 and M are set as 0.0005 and 16 in the training. Weights are 

initialized as a normal distribution with zero mean and standard 

deviation of 1. Bias and the scale factor in PReLU are initialized 

as 0 and 0.25, respectively. ADAM [47] is used for the 

optimization with the recommended parameters in [47]. The 

learning rate is set as 0.0001 for the first epoch, and then 

decayed by 10 and 100 for the next two epochs. 

B. Training Data Generation 

We use the New York city library [49] as the training set. All 

the still images in [49] are encoded by HM version 16.9 [48] to 

generate the training data. According to [23], the training model 

has good generalization ability under different quantization 

parameter (QP) settings. Therefore, we use a moderate QP 27 

for encoding all the training sequences. During the encoding, 

for each 8×8 block, the best coding block will be decided 

according to the R-D cost. For each best coding block, we fetch 

the reconstructed pixels of the neighboring five 8×8 blocks. If 

the pixel has not been reconstructed yet, its closest 

reconstructed pixel is used to fill the value. The original pixels 

of the current 8×8 block are fetched as the ground truth. It is 

noted that there is one difference in building the training set 

with [22]-[23]. In the previous literatures, the blocks with 

extremely high complex textures are excluded from the training 

set. For each block, SATD and mean squared error (MSE) were 

calculated in [22]and [23] respectively to justify whether it is 

high complex or not. However, according to our observation, 

excluding extremely complex blocks will not enhance the 

prediction accuracy, and calculating SATD or MSE takes time 

during the training process. Therefore, we include all the blocks 

in the training set. Overall, 53171363 samples constitute the 

training set and it takes around eight hours for training one 

epoch by using GeForce GTX 1080. 

V. EXPERIMENTAL RESULTS 

We integrate the proposed method into HM 16.9 [48]. The 

first frame of 20 sequences in [50] and eight 4K sequences in 

[51] are encoded by the configuration of “All-intra-main”. The 

proposed method and HM only allow 8×8 intra coding. The 

BD-rate and BD-psnr are measured for QPs of 22, 27, 32 and 
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Fig. 10 The network architecture. 
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37 by using Bjontegaard’s method [52]. Noted that there is no 

overlap between training set and test set. 

A. Coding Results of Proposed Schemes 

In Table IV, we give BD-rate of all the appending schemes 

for the Y, U, V channels compared with the anchor. When 

appending one NM, 4.4%, 6.2% and 6.6% bitrate can be saved 

for three channels, respectively. From the results, we can see 

that we can save BD-rates for all the test sequences. However, 

the bit saving fluctuates hugely for different sequences. 

Especially, for some 4K sequences such as Tango and 

Rollercoaster, we can save more than 15% BD-rates for some 

channels. It is because more NMs are selected as the best mode 

for these sequences. As a result, the number of bits for the luma 

mode signaling can be significantly reduced. Originally, for 

each prediction block, at most six bins are required for the mode 

signaling, while in our method, only one bin is consumed if NM 

is selected. However, if few blocks select NMs as the best mode, 

there is a one-bin penalty for signaling TM compared with the 

anchor. In this case, the coding gain is small. To verify the 

aforementioned assumption, we check the ratio of NM being 

the best mode for all the 28 test sequences at QP27 and the 

results are shown in Fig. 11. We can see that there is a definite 

TABLE IV 
CODING GAIN OF THE PROPOSED APPENDING SCHEMES. 

  App1 App3 App5 App7 

Class Sequence Y U V Y U V Y U V Y U V 

A1 (4K) 

Tango -15.6  -21.5  -17.7  -16.9  -24.7  -19.2  -17.4  -25.0  -19.3  -18.4  -24.7  -20.8  

Drums100 -3.7  -5.0  -5.7  -6.1  -6.4  -7.3  -5.0  -4.5  -6.9  -6.7  -6.1  -7.6  

CampfireParty -3.6  -10.3  -12.9  -7.4  -9.4  -14.6  -6.7  -9.7  -14.0  -7.7  -10.9  -14.5  

ToddlerFountain -2.8  -4.8  -2.1  -4.8  -11.2  -5.6  -5.0  -10.5  -4.6  -5.7  -12.4  -4.9  

Average of Class A1 -6.4  -10.4  -9.6  -8.8  -12.9  -11.7  -8.5  -12.4  -11.2  -9.7  -13.5  -12.0  

A2 (4K) 

CatRobot -5.5  -9.9  -8.4  -7.1  -10.7  -12.0  -6.8  -8.8  -12.1  -8.0  -9.8  -12.9  

TrafficFlow -8.7  -9.1  -15.0  -7.5  -10.8  -17.9  -7.9  -8.6  -17.5  -8.4  -10.7  -17.0  

DaylightRoad -8.3  -18.7  -16.1  -8.5  -19.6  -17.9  -8.3  -18.2  -17.5  -8.5  -14.0  -16.7  

Rollercoaster -14.9  -19.9  -13.9  -17.2  -25.8  -18.2  -16.7  -24.9  -17.3  -17.8  -25.6  -17.8  

Average of Class A2 -9.3  -14.4  -13.3  -10.1  -16.7  -16.5  -9.9  -15.1  -16.1  -10.7  -15.0  -16.1  

A (WQXGA) 

Traffic -3.1  -3.7  -5.7  -4.7  -4.7  -5.7  -4.6  -4.7  -6.2  -5.2  -5.0  -5.8  

PeopleOnStreet -3.2  -2.7  -5.5  -4.4  -3.6  -7.9  -5.2  -3.5  -8.7  -5.4  -2.8  -9.0  

Nebuta -1.6  -1.9  -1.9  -3.1  -2.0  -2.4  -2.8  -1.4  -1.9  -3.8  -2.0  -2.4  

SteamLocomotive -2.9  -7.7  -3.5  -4.0  -10.5  -8.3  -4.2  -10.5  -10.1  -4.8  -10.1  -10.1  

Average of Class A -2.7  -4.0  -4.1  -4.0  -5.2  -6.1  -4.2  -5.0  -6.7  -4.8  -5.0  -6.8  

B (1080P) 

Kimono -6.0  -5.8  -7.9  -9.5  -10.3  -12.6  -10.0  -9.1  -12.6  -10.9  -10.5  -14.2  

ParkScene -2.2  -4.9  -2.9  -3.9  -6.1  -1.6  -3.9  -5.8  -2.5  -4.4  -5.5  -2.7  

Cactus -2.3  -2.9  -5.8  -3.6  -3.6  -5.1  -3.9  -3.2  -3.9  -4.3  -2.8  -6.3  

BQTerrace -9.7  -13.2  -9.5  -9.7  -12.3  -9.8  -7.6  -12.0  -8.5  -9.9  -14.7  -7.0  

BasketballDrive -2.4  -4.8  -8.3  -2.8  0.3  -8.4  -3.1  -4.3  -8.7  -3.2  -2.9  -5.2  

Average of Class B -4.5  -6.3  -6.8  -5.9  -6.4  -7.5  -5.7  -6.9  -7.3  -6.6  -7.3  -7.1  

C (WVGA) 

BasketballDrill 0.0  -0.8  -0.7  -0.7  0.3  -1.6  0.8  0.5  -1.4  -1.6  -1.9  -4.3  

BQMall -1.6  -1.0  -3.8  -3.1  -1.1  -4.4  -3.2  -1.0  -3.0  -3.5  -1.5  -4.3  

PartyScene -1.1  -2.0  -1.5  -2.0  -2.0  -1.9  -2.4  -1.7  -1.2  -2.4  -2.0  -0.8  

RaceHorsesC -1.4  -1.5  -1.3  -2.6  -1.5  -1.5  -2.4  -1.2  -0.5  -3.1  -2.8  -1.7  

Average of Class C -1.0  -1.3  -1.8  -2.1  -1.0  -2.4  -1.8  -0.8  -1.5  -2.6  -2.1  -2.8  

D (WQVGA) 

BasketballPass -1.3  -3.9  -3.0  -2.6  -4.7  1.0  -1.6  -4.0  1.8  -2.7  -1.9  1.8  

BQSquare -0.9  2.3  -3.9  -1.4  3.1  -6.9  -1.5  4.0  -7.1  -1.6  2.2  -4.9  

BlowingBubbles -1.1  -1.4  -0.3  -1.9  -1.6  -0.9  -2.4  -1.1  0.3  -2.7  -2.0  -1.2  

RaceHorses -1.3  -1.1  -1.6  -2.5  -0.9  -1.3  -2.2  0.0  -0.5  -3.1  -0.5  -0.3  

Average of Class D -1.2  -1.0  -2.2  -2.1  -1.0  -2.0  -1.9  -0.3  -1.4  -2.5  -0.5  -1.1  

E (720P) 

FourPeople -4.7  -5.4  -7.0  -5.7  -4.8  -10.5  -5.8  -6.6  -5.8  -6.0  -0.9  -7.6  

Johnny -7.7  -8.1  -9.9  -7.9  -11.7  -10.5  -7.7  -5.8  -12.1  -8.6  -9.8  -9.7  

KristenAndSara -5.8  -3.2  -9.5  -6.3  -5.2  -9.2  -6.1  -4.4  -9.7  -6.7  -4.3  -10.8  

Average of Class E -6.1  -5.6  -8.8  -6.6  -7.3  -10.1  -6.5  -5.6  -9.2  -7.1  -5.0  -9.4  

Average -4.4 -6.2 -6.6 -5.6 -7.2 -7.9 -5.5 -6.7 -7.6 -6.3 -7.0 -7.8 

 

 
Fig. 11 The relationship between average YUV BD-rate reduction and 

NM ratio for the 28 test sequences. 
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relationship between the BD-rate reduction and NM ratio. The 

largest average YUV BD-rate reduction occurs for the sequence 

Tango (index 1) which owns the highest NM ratio (84.4%). On 

the contrary, the smallest average YUV BD-rate reduction is 

achieved for the sequence BasketballDrill (index 18) that has 

the lowest NM ratio (27.6%). 

When appending multiple NMs, we can achieve more coding 

gain. Specifically, 6.3%, 7.0% and 7.8% BD-rates can be saved 

for three channels when appending seven NMs. We can see that 

when increasing the number of NMs from three to five, the BD-

rate becomes worse, while it becomes better if further 

increasing the number of NMs to seven. This observation 

demonstrates that grouping important TMs in one category 

could enhance the coding efficiency. When appending five 

NMs, TM9 and TM11 are grouped into two categories. TM25 

and TM27 are also located in two categories. As a result, each 

category has close probability to be selected, which will weaken 

the efficiency of the context-adaptive coding. 

For the substitution scheme, the results of the BD-rates are 

shown in Table V. When substituting the lowest probable TM 

(SubL1), less than 1% BD-rate can be saved compared with the 

anchor. When replacing the three lowest probable TMs (SubL3), 

1.7%, 1.4%, 1.2% BD-rates can be saved for the three channels, 

respectively. When substituting the highest probable TM 

(SubH1), around 2% BD-rates can be saved compared with the 

anchor. If the three highest probable TMs are replaced (SubH3), 

larger BD-rate saving can be achieved for all the three channels. 

From the results, we can see that replacing high probable TMs 

is much more efficient than replacing low probable TMs in 

terms of the coding gain. In the case of substituting one TM, the 

average Y-BD-rate saving is only 0.8% for SubL1, while it can 

reach 2.3% for SubH1. In the case of substituting three TMs, 

the average Y-BD-rate saving is only 1.7% for SubL3, while it 

can achieve 2.9% for SubH3. 

By comparing Table IV with Table V, we can observe that 

the appending schemes can achieve much better coding 

TABLE V 
CODING GAIN OF THE PROPOSED SUBSTITUTION SCHEMES. 

  SubL1 SubL3 SubH1 SubH3 

Class Sequence Y U V Y U V Y U V Y U V 

A1 (4K) 

Tango -1.7  -3.7  -1.0  -2.9  -4.0  0.2  -5.9  -6.3  -4.2  -7.6  -10.0  -5.5  

Drums100 -0.9  -0.2  -0.9  -2.2  -1.1  -0.9  -1.8  -1.4  -1.6  -2.8  -2.3  -3.2  

CampfireParty -1.0  -4.6  -4.2  -1.8  -5.1  -3.2  -2.9  -3.0  -3.8  -2.7  -2.5  -5.6  

ToddlerFountain -1.0  -1.1  0.3  -1.9  -2.0  -1.6  -1.9  -2.4  -1.6  -3.1  -4.5  -2.5  

Average of Class A1 -1.1  -2.4  -1.5  -2.2  -3.1  -1.4  -3.1  -3.3  -2.8  -4.0  -4.8  -4.2  

A2 (4K) 

CatRobot -0.7  -1.7  -0.7  -1.6  -2.0  -1.1  -2.9  -3.5  -2.7  -4.1  -5.3  -4.5  

TrafficFlow -0.9  -1.0  -0.3  -0.3  -1.5  0.7  -3.2  -3.7  -2.4  -3.5  -5.7  -4.5  

DaylightRoad -1.4  -4.0  -0.7  -2.2  -6.0  -2.1  -3.1  -5.4  -3.8  -4.2  -8.4  -5.5  

Rollercoaster -1.0  0.1  -2.9  -3.8  -2.1  -4.1  -6.2  -5.4  -7.7  -7.1  -7.0  -7.2  

Average of Class A2 -1.0  -1.7  -1.1  -2.0  -2.9  -1.6  -3.8  -4.5  -4.1  -4.7  -6.6  -5.4  

A (WQXGA) 

Traffic -0.8  -0.7  -1.5  -2.0  -1.0  -1.2  -1.9  -1.9  -1.1  -2.5  -2.5  -2.7  

PeopleOnStreet -1.4  -0.5  -1.3  -2.3  -0.2  -1.0  -1.9  -0.8  -2.2  -2.6  -1.0  -2.6  

Nebuta -0.9  -0.6  -0.8  -1.9  -0.4  -0.5  -1.3  -0.9  -1.3  -1.6  -1.0  -1.4  

SteamLocomotive -1.1  -1.6  -2.9  -2.0  -4.0  -2.4  -2.0  -3.2  -2.8  -2.7  -2.1  -2.3  

Average of Class A -1.1  -0.8  -1.6  -2.1  -1.4  -1.3  -1.8  -1.7  -1.9  -2.3  -1.6  -2.3  

B (1080P) 

Kimono -1.5  -1.2  -3.1  -2.9  -1.6  -1.6  -4.1  -4.0  -4.2  -5.9  -5.8  -7.6  

ParkScene -0.7  1.2  -4.6  -1.5  -1.3  -3.2  -1.7  -0.7  0.1  -2.1  -3.3  -4.6  

Cactus -0.6  -0.7  -0.6  -1.5  -0.8  -1.4  -1.5  -1.0  -2.0  -1.9  -1.6  -2.5  

BQTerrace 0.3  0.5  -0.9  -1.1  -0.5  -0.7  -2.4  -3.8  -0.5  -2.9  -4.6  -2.5  

BasketballDrive -0.9  0.2  2.9  -1.4  0.7  1.3  -1.5  -1.2  1.2  -2.3  1.0  0.2  

Average of Class B -0.7  0.0  -1.3  -1.7  -0.7  -1.1  -2.2  -2.1  -1.1  -3.0  -2.9  -3.4  

C (WVGA) 

BasketballDrill 1.1  0.9  2.2  0.2  0.2  -0.3  0.2  -1.2  -0.1  0.3  0.4  0.8  

BQMall -0.9  0.7  -0.8  -1.5  0.4  -1.5  -1.3  0.7  -2.2  -1.9  -1.3  -3.1  

PartyScene -0.7  -1.1  -0.1  -1.1  -1.3  -0.6  -0.9  -0.6  -1.3  -1.2  -1.1  -1.3  

RaceHorsesC -0.6  -0.2  -0.5  -1.3  -0.4  0.1  -1.1  -0.5  0.3  -1.2  -1.1  -1.3  

Average of Class C -0.3  0.1  0.2  -0.9  -0.3  -0.6  -0.8  -0.4  -0.8  -1.0  -0.8  -1.2  

D (WQVGA) 

BasketballPass -0.6  0.2  0.5  -1.0  -2.0  1.5  -0.6  -2.1  1.7  -0.8  -1.9  -0.9  

BQSquare -0.4  2.5  -1.0  -0.9  2.9  -3.0  -0.7  4.0  -3.4  -0.9  2.7  -5.8  

BlowingBubbles -0.5  0.1  1.7  -1.1  0.6  1.9  -0.7  -1.6  -0.1  -1.1  -2.2  0.4  

RaceHorses -0.8  0.4  0.4  -1.2  -0.7  -1.0  -1.5  0.2  -0.4  -1.3  0.1  -0.9  

Average of Class D -0.6  0.8  0.4  -1.0  0.2  -0.1  -0.9  0.1  -0.6  -1.0  -0.3  -1.8  

E (720P) 

FourPeople -1.0  0.7  0.3  -2.5  0.1  -0.6  -2.8  -0.5  -1.4  -3.7  -1.3  -3.3  

Johnny -0.8  -1.7  0.6  -1.8  -5.8  -2.1  -4.1  -3.1  -2.2  -5.2  -5.3  -6.0  

KristenAndSara -1.2  0.0  -1.3  -2.0  0.0  -3.6  -3.3  -1.3  -6.6  -4.2  -3.9  -5.1  

Average of Class E -1.0  -0.3  -0.2  -2.1  -1.9  -2.1  -3.4  -1.7  -3.4  -4.4  -3.5  -4.8  

Average -0.8 -0.6 -0.8 -1.7 -1.4 -1.2 -2.3 -2.0 -2.0 -2.9 -2.9 -3.3 

 

 

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on May 06,2020 at 16:55:33 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2019.2963620, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

efficiency than the substituting schemes. The best coding gain 

for the substitution scheme is substituting three high probable 

TMs, which can save 2.9%, 2.9% and 3.3% BD-rates for three 

channels. However, when appending three TMs, we can save 

5.6%, 7.2% and 7.9% BD-rates for three channels, respectively. 

It is because appending NMs can save the cost of mode 

signaling compared with the origin. As a result, fewer mode 

signaling cost can significantly contribute to the coding 

efficiency in the case of appending NMs. However, since there 

is no change for the mode signaling for the substitution scheme, 

thus the coding gains for the substituting schemes mainly come 

from the prediction accuracy enhancement. 

B. Coding Efficiency Comparison with Previous Works 

Since appending seven NMs can achieve the best coding 

efficiency among all the proposals, so we compare its coding 

results with the previous works [22]-[23]. [22] only focused on 

the 8x8 block prediction, thus we directly use the BD-rate 

results in the literature. About [23], the author performed a 

complete comparison based on a variable block size. To 

compare with [23] and show the effect of proposed multiple 

NMs, we reimplemented their methods of using one NM and 

adapted to 8×8, the coding gain compared with the anchor is 

shown in Table VI. Noted that for the fair comparison, we use 

the same pre-trained model in our proposal and the 

reimplementation of [23]. As shown in Table VI, compared 

with [22], we could achieve significant coding gains. The main 

reason is that we use more neural network layers and 

dimensions. In [22], only three layers are adopted and the 

dimension is 128, while we utilize four layers and the 

dimension is 1024. It shows that using appropriately more 

layers and dimensions does improve the network prediction 

accuracy. Compared with [23], a better coding gain can be 

achieved due to two differences. The first difference is the TM 

setting when NM is the best mode. In [23], if NM is the best 

mode, Planar is set as the best TM for the current block. 

However, in our proposal, MPM0 rather than Planar is set as 

TABLE VI 

CODING EFFICIENCY COMPARISON WITH PREVIOUS WORKS 

  ICIP’17 [22] TIP’18 [23]  Proposed App7 

Class Sequence Y U V Y U V Y U V 

A1 (4K) 

Tango -3.3 -4.8  -4.5 -15.6  -23.0  -17.4  -18.4  -24.7  -20.8  

Drums100 -1.5 -1.9  -1.6 -2.5  0.6  -1.5  -6.7  -6.1  -7.6  

CampfireParty -0.5 -0.8  -0.9 -4.3  2.2  -10.2  -7.7  -10.9  -14.5  

ToddlerFountain -2.1 -2.4  -2.7 -3.1  -5.7  -1.8  -5.7  -12.4  -4.9  

Average of Class A1 -1.9  -2.5  -2.4  -6.4  -6.5  -7.7  -9.6  -13.5  -12.0  

A2 (4K) 

CatRobot -1.0 -1.7  -1.3 -5.7  -6.7  -7.9  -8.0  -9.8  -12.9  

TrafficFlow -1.4 -1.8  -1.9 -7.2  -7.5  -16.6  -8.4  -10.7  -17.0  

DaylightRoad -1.6 -3.4  -2.8 -7.0  -11.3  -14.2  -8.5  -14.0  -16.7  

Rollercoaster -1.8 -2.5  -2.1 -11.6  -14.3  -9.3  -17.8  -25.6  -17.8  

Average of Class A2 -1.5  -2.4  -2.0  -7.9  -10.0  -12.0  -10.7  -15.0  -16.1  

A (WQXGA) 

Traffic -1.0 -1.4  -1.6 -1.6  -0.5  -1.3  -5.2  -5.0  -5.8  

PeopleOnStreet -1.3 -1.6  -2.0 -2.9  -1.1  -5.8  -5.4  -2.8  -9.0  

Nebuta -1.6 -1.4  -1.5 -1.4  2.1  1.3  -3.8  -2.0  -2.4  

SteamLocomotive -1.7 -2.3  -2.6 -2.9  -6.8  -6.3  -4.8  -10.1  -10.1  

Average of Class A -1.4  -1.7  -1.9  -2.2  -1.6  -3.0  -4.8  -5.0  -6.8  

B (1080P) 

Kimono -3.2 -4.1  -4.0 -5.5  -4.9  -8.1  -10.9  -10.5  -14.2  

ParkScene -1.1 -1.3  -1.4 -2.3  -1.2  -1.0  -4.4  -5.5  -2.7  

Cactus -0.9 -1.3  -1.7 -2.0  0.0  -1.9  -4.3  -2.8  -6.3  

BQTerrace -0.5 -2.1  -1.2 -4.6  -13.3  -2.9  -9.9  -14.7  -7.0  

BasketballDrive -0.9 -0.1  -0.1 -1.6  -4.2  -6.1  -3.2  -2.9  -5.2  

Average of Class B -1.3  -1.8  -1.7  -3.2  -4.7  -4.0  -6.5  -7.3  -7.1  

C (WVGA) 

BasketballDrill -0.3 -1.5  -1.5 1.2  2.8  3.3  -1.6  -1.9  -4.3  

BQMall -0.3 -0.3  -0.5 -1.4  1.6  0.2  -3.5  -1.5  -4.3  

PartyScene -0.4 -0.5  -0.4 -1.1  0.2  1.5  -2.4  -2.0  -0.8  

RaceHorsesC -0.8 -1.5  -1.1 -1.2  1.7  3.4  -3.1  -2.8  -1.7  

Average of Class C -0.5  -1.0  -0.9  -0.6  1.6  2.1  -2.7  -2.1  -2.8  

D (WQVGA) 

BasketballPass -0.4 -1.4  -1.0 0.4  -2.4  3.4  -2.7  -1.9  1.8  

BQSquare -0.2 -1.0  0.5 -0.8  3.3  -5.0  -1.6  2.2  -4.9  

BlowingBubbles -0.6 -0.2  -1.0 -1.3  1.8  2.5  -2.7  -2.0  -1.2  

RaceHorses -0.6 -1.2  -1.4 -1.0  2.7  3.0  -3.1  -0.5  -0.3  

Average of Class D -0.5  -1.0  -0.7  -0.7  1.4  1.0  -2.5  -0.6  -1.2  

E (720P) 

FourPeople -0.8 -1.0  -2.3 -3.4  -0.3  -6.1  -6.0  -0.9  -7.6  

Johnny -1.0 -1.3  -1.4 -8.3  -4.3  -14.9  -8.6  -9.8  -9.7  

KristenAndSara -0.8 -1.1  -1.1 -5.8  -2.6  -12.7  -6.7  -4.3  -10.8  

Average of Class E -0.9  -1.1  -1.6  -5.8  -2.4  -11.2  -7.1  -5.0  -9.4  

Average of All -1.1 -1.6 -1.6 -3.7 -3.2 -4.7 -6.3 -7.0 -7.8 
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the best TM. The second difference lies in the chroma 

prediction. In [23], if the best luma mode is NM, NM is directly 

used for the chroma prediction. By doing so, the cost of mode 

signaling for the chroma components can be reduced while the 

prediction error will be increased. In our method, NM is just 

derived as a candidate for the chroma prediction. 

On average, compared with [22], we can save 5.2%, 5.4% 

and 6.2% more BD-rates for Y, U and V channel respectively. 

Compared with [23], we can save 2.6%, 3.8% and 3.1% more 

BD-rates for the three channels, respectively. 

C. Coding Complexity Analysis 

In addition to the coding gain, we also give the complexity 

increasement compared with the anchor in terms of the 

encoding and decoding time in Table VII. The test is conducted 

on Intel Core i7-7820X CPU@3.60GHz with 32GB RAM. For 

the encoding, when appending one NM, the encoding times 

becomes 5.7x larger. When the number of appending NMs 

increases, the encoding times becomes 31.5x, 47.7x and 63.4x 

larger for three, five and seven NMs, respectively. For the 

substitution scheme, when replacing one and three high 

probable TM, 5.5x and 21.1x larger encoding time is consumed, 

respectively. When replacing one and three low probable TM, 

7.5x and 24.1x larger encoding time is consumed, respectively. 

From the results, we can see that replacing low probable TMs 

consume more encoding time than replacing high probable TMs. 

It is because when replacing high probable TMs, the NMs are 

very likely to be included in the MPM set, thus there is no need 

to additionally add the NMs in the candidate mode list. 

However, when replacing low probable TMs, the NMs will be 

included in the MPM set only if the best mode of the 

neighboring block is the same NM. Therefore, the NMs will be 

additionally appended in the candidate mode list. As a result, 

the number of candidate modes of replacing low probable TMs 

is larger than that of replacing high probable TMs, thus the 

encoding time is a little bit longer. 

For the decoding, when appending one NM, 38.2x larger 

decoding time is consumed. When appending more NMs, the 

decoding time becomes 168.6x, 181.7x and 190.3x larger for 

three, five and seven NMs, respectively. For the substitution 

scheme, when replacing one and three high probable TMs, 

23.2x and 58.3x larger decoding time is consumed, respectively. 

When replacing one and three low probable TMs, 24.8x and 

47.8x larger decoding time is spent, respectively. The decoding 

complexity is related with the NM ratios. If NM ratio is higher, 

the decoding time will be enlarged. Therefore, appending one 

NM requires larger decoding time than substituting one NM 

since more NMs are selected when using the appending scheme. 

From the results, we can also see that appending multiple NMs 

consume much more decoding time than appending one NM. It 

is because NM is adopted for the chroma prediction when 

appending multiple NMs. 

[22] also gave the encoding and decoding complexity 

increase compared with the anchor, thus we directly use the 

measured results in the literature. We can see that compared 

with [22], we can achieve better coding efficiency by all the 

proposals except replacing low probable TMs. However, the 

complexity also becomes higher since more network layers and 

larger dimensions are adopted in our proposal. For [23], we 

measure the encoding/decoding complexity for using one NM. 

About 14.2x and 132.3x higher encoding and decoding time is 

consumed compared with the anchor. Compared with [23], 

proposed appending one scheme can achieve better coding 

efficiency with smaller encoding/decoding time. It is because 

[23] directly perform NM for the chroma prediction if the best 

luma mode is NM, which will increase the burden of the chroma 

prediction. 

D. Visualized Result of Prediction Blocks 

As shown in Section V.A, by using NMs, the coding efficiency 

can be improved in terms of an objective measurement (i.e. BD-

rate). In order to further confirm the efficiency of NMs, we 

present the visualized results of four cases in Fig. 12. The red 

box is the raw block, and five surrounding blocks are the 

neighboring reference blocks. The predicted block by the 

specific NM and TM is illustrated in the figure.  

For the case (a), two predicted blocks are generated by the 

NM1 and TM0 (Planar), respectively. We can see that there are 

several black regions in the top of the raw block, while this 

black region does not appear in the predicted block by TM0. It 

is because TM0 utilizes an interpolation-like prediction which 

will smooth the predicted pixels. As a result, some local 

textures will be lost. However, by using NM1, we can see that 

the local upper black region can be remained. 

For the case (b), two predicted blocks are generated by the 

NM3-NA and TM0, respectively. In the raw block, most pixels 

are dark except the left-bottom regions. By using TM0, the 

upper half part in the predicted block is lighter than that in the 

raw block. However, by using NM3-NA, the upper half part of 

the predicted block is as dark as the raw block. Moreover, for 

the left-bottom region, the predicted pixels as light as the ones 

in the raw block. 

For the case (c), two predicted blocks are generated by the 

NM3-HOR and TM11, respectively. In the raw block, for the 

bottom parts, there are several dark horizontal strips. Therefore, 

the best TM is 11. For the predicted blocks of NM3-HOR, we 

can see that we can not only achieve a good prediction for the 

bottom dark horizontal strips, but the other parts are also close 

to the raw block. 

For the case (d), two predicted blocks are generated by the 

NM3-VER and TM27, respectively. In the raw block, for the 

TABLE VII 

ENCODING AND DECODING COMPLEXITY INCREASE ALONG WITH THE 

BD-RATES 

 Complexity BD-rate (%) 

Method Encoder Decoder Y U V 

ICIP’17 [22] 148% 290% -1.1 -1.6 -1.6 

TIP’18 [23] 1421% 13227% -3.7 -3.2 -4.7 

App1 566% 3821% -4.4 -6.2 -6.6 

App3 3149% 16860% -5.6 -7.2 -7.9 

App5 4769% 18171% -5.5 -6.7 -7.6 

App7 6335% 19032% -6.3 -7.0 -7.8 

SubH1 546% 2316% -2.3 -2.0 -2.0 

SubH3 2105% 5828% -2.9 -2.9 -3.3 

SubL1 748% 2475% -0.8 -0.6 -0.8 

SubL3 2410% 4778% -1.7 -1.4 -1.2 
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vertical middle part, there are several dark vertical strips. 

Therefore, the best TM is 27. For the predicted blocks of NM3-

VER, we can see that we can not only achieve a good prediction 

for the middle dark vertical strips, but the other parts are also 

close to the raw block. 

E. Analysis on Training QP 

We have analyzed the influence of this parameter (training QP) 

by doing the following three experiments. (1) set 

QP={22,27,32,37} for the training to evaluate the effect of 

using multiple QPs. (2) set QP=37 for the training to evaluate 

the effect of using large QP. (3) set QP=22 for the training to 

evaluate the effect of using another moderate QP. 

For all the three experiments, the batch size and the total 

iteration is the same as the case of QP being 27. When applying 

the trained models in the appending scheme with one NM, the 

BD-rate compared with the anchor is shown in Table VIII. 

When using multiple QPs (22, 27, 32, 37) as the training set, 

the average BD-rate is -4.5%, -6.1% and -6.7% for three 

channels respectively. When using QP22, the average BD-rate 

is -4.3%, -6.1% and -6.7%. When using QP37, the average BD-

rate is -3.4%, -4.0% and -4.2%. We can see that using multiple 

QPs or using another moderate QP will not influence the final 

coding results so much. However, if we use a large QP such as 

37, the coding gain will decrease obviously. It is because that 

the reconstructed pixels of large QP have poor quality, thus the 

learned mapping from the reference reconstructed blocks to the 

current blocks cannot fit an optimal regression in most 

scenarios.  

F. Ablation Study 

We have conducted the ablation study in terms of the number 

of used networks, the number of layers and the number of nodes 

in each layer. For each case, we evaluate the BD-rate saving, 

the encoding and decoding complexity. The ablation study of 

appending one NM is shown in Table IX. From the results, we 

can see that when increasing the number of layers from three to 

four, more coding gain can be achieved. For example, when 

using 512 nodes, the average BD-rate saving is 4.0%, 5.6% and 

5.8% for three layers. When increasing to four layers, 0.4%, 

0.4% and 0.9% more BD-rate can be saved. However, when 

further increasing the number of layers from four to five, there 

is no obvious coding gain while the encoding/decoding 

complexity becomes higher. Therefore, we think that using four 

layers is a reasonable trade-off between coding gain and 

complexity. 

Reference pixels and original block

Predicted 
block by 

NM1

Predicted 
block by 

TM0

Reference pixels and original block

Predicted 
block by 
NM3-NA

Predicted 
block by 

TM0

Reference pixels and original block

Predicted 
block by 

NM3-HOR

Predicted 
block by 

TM11

Reference pixels and original block

Predicted 
block by 

NM3-VER

Predicted 
block by 

TM27

(a) (b)

(d)(c)

Raw block Raw block

Raw blockRaw block

 
Fig. 12 Visualized results for best NM and best TM prediction. 
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In the case of four layers, we also conduct the ablation study 

of appending three NMs, as shown in Table X. When increasing 

the number of nodes from 512 to 1024, more coding gain can 

be achieved especially for the U and V channels. However, if 

we further increase the number of nodes from 1024 to 2048, 

there is no obvious coding gain, while the complexity becomes 

much higher. Therefore, we think that using 1024 nodes is a 

reasonable trade-off between coding gain and complexity. 

 

TABLE VIII 
CODING GAIN OF USING DIFFERENT QP FOR THE TRAINING 

  QP27 QP22 QP37 4 QPs (22,27,32,37) 

Class Sequence Y U V Y U V Y U V Y U V 

A1 (4K) 

Tango -15.6  -21.5  -17.7  -13.4  -20.5  -16.3  -12.5  -13.8  -10.4  -16.4  -23.0  -18.6  

Drums100 -3.7  -5.0  -5.7  -4.0  -5.4  -6.4  -3.3  -4.0  -5.3  -4.0  -5.8  -6.8  

CampfireParty -3.6  -10.3  -12.9  -3.4  -11.1  -13.9  -2.1  -6.1  -6.0  -4.2  -10.3  -14.3  

ToddlerFountain -2.8  -4.8  -2.1  -3.0  -4.8  -2.1  -2.5  -6.1  -2.4  -3.2  -5.8  -2.7  

Average of Class A1 -6.4  -10.4  -9.6  -5.9 -10.5 -9.7 -5.1 -7.5 -6.0 -6.9 -11.2 -10.6 

A2 (4K) 

CatRobot -5.5  -9.9  -8.4  -4.8  -9.4  -8.9  -3.5  -4.8  -4.4  -5.5  -9.1  -8.6  

TrafficFlow -8.7  -9.1  -15.0  -8.5  -11.3  -17.9  -7.9  -5.0  -12.3  -10.0  -9.0  -16.6  

DaylightRoad -8.3  -18.7  -16.1  -8.2  -17.7  -16.4  -5.4  -10.9  -7.9  -8.1  -14.7  -15.7  

Rollercoaster -14.9  -19.9  -13.9  -13.0  -16.7  -12.1  -8.7  -8.7  -5.4  -14.0  -19.1  -11.1  

Average of Class A2 -9.3  -14.4  -13.3  -8.6 -13.8 -13.8 -6.4 -7.4 -7.5 -9.4 -13.0 -13.0 

A (WQXGA) 

Traffic -3.1  -3.7  -5.7  -3.2  -4.5  -5.8  -2.9  -3.5  -5.2  -3.2  -4.4  -5.6  

PeopleOnStreet -3.2  -2.7  -5.5  -3.5  -3.8  -5.8  -3.1  -3.4  -5.3  -3.6  -3.0  -6.7  

Nebuta -1.6  -1.9  -1.9  -1.7  -1.9  -2.2  -1.6  -1.9  -1.9  -1.7  -1.8  -2.0  

SteamLocomotive -2.9  -7.7  -3.5  -3.0  -7.3  -3.9  -2.8  -8.9  -4.8  -3.1  -8.8  -3.0  

Average of Class A -2.7  -4.0  -4.1  -2.8 -4.4 -4.4 -2.6 -4.4 -4.3 -2.9 -4.5 -4.3 

B (1080P) 

Kimono -6.0  -5.8  -7.9  -5.8  -6.3  -8.3  -5.3  -5.3  -6.9  -6.7  -7.2  -9.4  

ParkScene -2.2  -4.9  -2.9  -2.4  -3.7  -3.0  -2.0  -1.8  -1.1  -2.7  -3.4  -3.0  

Cactus -2.3  -2.9  -5.8  -2.5  -2.6  -4.7  -1.9  -1.7  -4.0  -2.6  -2.4  -6.2  

BQTerrace -9.7  -13.2  -9.5  -9.6  -13.2  -12.6  -6.7  -8.3  -8.1  -8.2  -10.4  -8.9  

BasketballDrive -2.4  -4.8  -8.3  -2.6  -5.7  -6.0  -1.8  -4.1  -0.3  -2.0  -0.7  -8.3  

Average of Class B -4.5  -6.3  -6.8  -4.6 -6.3 -6.9 -3.5 -4.2 -4.1 -4.4 -4.8 -7.2 

C (WVGA) 

BasketballDrill 0.0  -0.8  -0.7  0.1  -1.7  -1.3  -0.1  -0.2  -0.3  0.0  -1.3  -0.7  

BQMall -1.6  -1.0  -3.8  -1.8  -2.1  -3.1  -1.3  -0.2  -1.8  -1.5  0.3  -2.8  

PartyScene -1.1  -2.0  -1.5  -1.3  -1.6  -1.4  -1.0  -1.3  -0.5  -1.1  -1.5  -1.3  

RaceHorsesC -1.4  -1.5  -1.3  -1.4  -1.2  -1.9  -1.4  -1.9  -1.2  -1.5  -1.9  -1.6  

Average of Class C -1.0  -1.3  -1.8  -1.1 -1.7 -1.9 -1.0 -0.9 -1.0 -1.0 -1.1 -1.6 

D (WQVGA) 

BasketballPass -1.3  -3.9  -3.0  -0.8  -2.4  -3.5  -1.5  -4.4  -1.2  -1.3  -3.6  -0.6  

BQSquare -0.9  2.3  -3.9  -0.9  3.9  -4.1  -0.8  2.8  -7.2  -1.1  -0.9  -4.6  

BlowingBubbles -1.1  -1.4  -0.3  -1.2  -1.8  0.4  -0.8  -1.1  -0.5  -1.0  -0.7  -1.0  

RaceHorses -1.3  -1.1  -1.6  -1.6  -0.1  -1.2  -1.1  -0.4  -0.6  -1.2  -1.4  -0.7  

Average of Class D -1.2  -1.0  -2.2  -1.1 -0.1 -2.1 -1.0 -0.7 -2.4 -1.2 -1.7 -1.7 

E (720P) 

FourPeople -4.7  -5.4  -7.0  -4.9  -3.5  -6.9  -3.5  -1.8  -3.7  -4.5  -2.7  -7.4  

Johnny -7.7  -8.1  -9.9  -8.1  -8.6  -8.3  -5.1  -5.8  -2.0  -7.8  -12.1  -9.0  

KristenAndSara -5.8  -3.2  -9.5  -6.1  -5.0  -9.1  -3.8  -0.1  -6.6  -5.8  -5.0  -10.5  

Average of Class E -6.1  -5.6  -8.8  -6.4 -5.7 -8.1 -4.1 -2.6 -4.1 -6.0 -6.6 -9.0 

Average -4.4 -6.2 -6.6 -4.3 -6.1 -6.7 -3.4 -4.0 -4.2 -4.5 -6.1 -6.7 

 
TABLE IX 

ABLATION STUDY OF APPENDING ONE NM 

 3 layer 4 layer 5 layer 

 BD-rate Complexity BD-rate Complexity BD-rate Complexity 

node Y U V Enc Dec Y U V Enc Dec Y U V Enc Dec 

512 -4.0 -5.6 -5.8 246 1025 -4.4  -6.0  -6.7  285 1378 -4.3  -6.2  -6.6  331 1709 

1024 -4.0 -5.7 -6.2 359 1936 -4.4  -6.2  -6.6  566 3821 -4.7  -6.2  -7.0  908 6782 

2048 -3.9 -5.7 -6.2 1242 9406 -4.4  -6.2  -6.8  2376 19690 -4.5  -6.4  -6.7  3362 28264 

 
 

TABLE X 

ABLATION STUDY OF APPENDING THREE NMS WITH FOUR LAYERS 

node 
Y-BD 

(%) 

U-BD 

(%) 

V-BD 

(%) 

Enc 

(%) 

Dec 

(%) 

512 -5.5 -6.2 -7.3 992 4485 

1024 -5.6 -7.2 -7.9 3149 16860 

2048 -6.0 -7.0 -8.0 10903 65196 
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G. R-D Curve and Subjective Results 

We have added the R-D curves for the proposed appending 

scheme with 7 NMs, the compared methods [22]-[23] and the 

original HEVC in Fig. 13. The result is for the average results 

of all the test sequences under four test QP22, 27, 32 and 37. 

We can see that compared with the anchor and the previous 

works, our proposal’s curve locates at the left and top region, 

which indicates that the proposal can reach small bitrates or 

high PSNR. 

In addition, we also evaluate the R-D curve of six high QPs 

(QP37~QP42) and subjective results for two test sequences 

Kimono and KristenAndSara as shown in Fig. 14-17. From the 

R-D curves, we can see that by using our methods, there is a 

significant coding gain for both sequences. The subjective 

results for the two sequences are shown in Fig. 16 and Fig. 17, 

respectively. For Kimono, when using our proposal, we can 

obtain better subjective results especially for the human face. 

For KristenAndSara, when using our proposal, we can obtain 

better subjective results especially for the sleeve. 

 

VI. CONCLUSIONS 

In this paper, we develop an intra prediction method driven 

by multiple NMs. Two types of strategies are presented to 

integrate NMs with TMs. Compared with the previous work, 

when appending seven NMs, we can save 2.6%, 3.8%, 3.1% 

BD-rates for Y, U, V channels respectively. Besides, we have 

also visualized the predicted blocks by NMs to verify the 

effectiveness. 

About the future work, since the effect of multiple NMs has 

been verified for a fixed block size 8×8, thus we will extend to 

variable block sizes. Second, as shown in Section V.C, the 

encoding/decoding complexity is much higher than the anchor 

without using NMs. Therefore, the acceleration for the NM 

processing is highly required. 

ACKNOWLEDGMENT 

The authors would like to thank Dr. Jiahao Li from Peking 

University for his great helps on this work. 

REFERENCES 

 

[1] A. Kalampogia, and P. Koutsakis, “H.264 and H.265 video bandwidth 
prediction”, IEEE Transactions on Multimedia, vol. 20, no. 1, pp. 171-

182, Jan. 2018. 

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of 
the H.264/AVC video coding standard”, IEEE Transactions on Circuits 

and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003. 

[3] G. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high 
efficiency video coding (HEVC) standard,” IEEE Transactions on 

Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, 

Dec. 2012. 
[4] J. Chen, Y. Ye, and S. H. Kim, Algorithm description for Versatile Video 

Coding and Test Model 3 (VTM 3), document JVET-L1002-v1, Oct. 2018. 

[5] S. Hernandez, V. George, J. Ma, T. Nguyen, H. Schwarz, D. Marpe, T. 
Wiegand, CE3: Intra Sub-Partitions Coding Mode (Tests 1.1.1 and 1.1.2), 

document JVET-M0102-v5, Jan. 2019. 

[6] M. Abdoli, F. Henry, P. Brault, P. Duhamel, and F. Dufaux, “Short-
Distance Intra Prediction of Screen Content in Versatile Video Coding 

(VVC),” IEEE Signal Processing Letters, vol. 25, no. 11, pp. 1690-1694, 

Nov. 2018. 
[7] Y. Chen, J. Han, and K. Rose, “A recursive extrapolation approach to intra 

prediction in video coding,” in Proc. 2013 IEEE Int. Conf. Acoust., 

Speech Signal Process. (ICASSP), pp. 1734-1738. 
[8] S. Li, Y. Chen, J. Han, T. Nanjundaswamy, and K. Rose, “Rate-distortion 

optimization and adaptation of intra prediction filter parameters,” in Proc. 

 
Fig. 13 R-D curves of the proposal, previous works and anchor. The result 

is for the average results of all the test sequences under four test QP22, 
27, 32 and 37. 

 
Fig. 14 R-D curves of the proposal and anchor. The result is for the 

sequence Kimono under QP37-QP42. 

 

 
Fig. 15 R-D curves of the proposal and anchor. The result is for the 
sequence KristenAndSara under QP37-QP42. 

 

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on May 06,2020 at 16:55:33 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2019.2963620, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

15 

2014 IEEE International Conference on Image Processing (ICIP), pp. 

3146–3150. 

[9] H. Chen, T. Zhang, M.-T. Sun, A. Saxena, and M. Budagavi, “Improving 
intra prediction in high-efficiency video coding,” IEEE Trans. Image 

Process., vol. 25, no. 8, pp. 3671–3682, Aug. 2016. 

[10] C. H. Yeh, T. Y. Tseng, C. W. Lee, and C. Y. Lin, “Predictive Texture 

Synthesis-Based Intra Coding Scheme for Advanced Video Coding”, 

IEEE Transactions on Multimedia, vol. 17, no. 9, pp. 1508-1514, Sept. 
2015. 

(a) Raw image

(b) Proposal (3384kbpp, 36.57dB)(a) Raw image

(c) Anchor (3423kbpp, 35.57dB)
Raw Proposal Anchor

 
Fig. 16 Subjective results of the proposal and anchor for the sequence Kimono. 

 

(a) Raw image (b) Proposal (5241kbpp, 36.16dB)

(c) Anchor (5444kbpp, 35.54dB) Raw Proposal Anchor

 
Fig. 17 Subjective results of the proposal and anchor for the sequence KristenAndSara. 

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on May 06,2020 at 16:55:33 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2019.2963620, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

16 

[11] Y. Zhang and Y. Lin, “Improving HEVC intra prediction with PDE-based 
inpainting,” in Proc. 2014 Asia–Pacific Signal Inf. Process. Assoc. Annu. 

Summit Conf. (APSIPA), pp. 1–5. 

[12] X. Qi, T. Zhang, F. Ye, A. Men, and B. Yang, “Intra prediction with 
enhanced inpainting method and vector predictor for HEVC,” in Proc. 

2012 IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), pp. 

1217–1220. 
[13] J. Li, B. Li, J. Xu, and R. Xiong, “Efficient Multiple Line-Based Intra 

Prediction for HEVC,” IEEE Transactions on Circuits and Systems for 

Video Technology, vol. 28, no. 4, pp. 947- 957, Apr. 2018. 
[14] J. Li, B. Li, J. Xu, and R. Xiong, “Intra prediction using multiple reference 

lines for video coding,” in Proc. 2017 Data Compression Conference 

(DCC), pp. 221–230. 
[15] T. Zhang, X. Fan, D. Zhao, R. Xiong, and W. Gao, “Hybrid 

Intraprediction Based on Local and Nonlocal Correlations,” IEEE 

Transactions on Multimedia, vol. 20, no. 7, pp. 1622-1635, July 2018. 
[16] K. Zhang, J. Chen, L. Zhang, X. Li, and M. Karczewicz, “Enhanced 

Cross-Component Linear Model for Chroma Intra-Prediction in Video 

Coding,” IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 
3983-3997, Aug. 2018. 

[17] X. Ma, H. Yang, J. Chen, CE3: Tests of cross-component linear model in 

BMS (Test 4.1.8, 4.1.9, 4.1.10, 4.1.11), document: JVET-K0190_r1, July 
2018. 

[18] A. Said, X. Zhao, M. Karczewicz, J. Chen, and F. Zou, “Position 

dependent prediction combination for intra-frame video coding”, in Proc. 
2016 IEEE International Conference on Image Processing (ICIP), pp. 

534-538. 
[19] G. Auwera, V. Seregin, A. Said, A. Ramasubramonian, M. Karczewicz, 

CE3: Simplified PDPC (Test 2.4.1), document: JVET-K0063-v2, July 

2018. 
[20] B. Bross, H. Schwarz, D. Marpe, T. Wiegand, CE3: Multiple reference 

line intra prediction (Test 5.4.1, 5.4.2, 5.4.3 and 5.4.4), Document: JVET-

K0051-v1, July 2018. 
[21] N. Choi, M. Park, C. Kim, CE3: Results on Multiple 4-tap filter in JVET-

J0024, document: JVET-K0179-v1, July 2018. 

[22] J. Li, B. Li, J. Xu, and R. Xiong, “Intra prediction using fully connected 
network for video coding,” in Proc. 2017 IEEE International Conference 

on Image Processing (ICIP), pp. 1-4. 

[23] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully-connected network-based 
intra prediction for image coding,” IEEE Transactions on Image 

Processing, vol. 27, no. 7, pp. 3236–3247, July 2018. 

[24] J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, W. Samek, H. Schwarz, D. 
Marpe, T. Wiegand, “Neural network based intra prediction for video 

coding”, Applications of Digital Image Processing XLI, vol. 10752, p. 

1075213. International Society for Optics and Photonics, 2018. 
[25] G. Toderici, D. Vincent, N. Johnston, S. Hwang, D. Minnen, J. Shor, M. 

Covell, “Full Resolution Image Compression with Recurrent Neural 

Networks”, in Proc. 2017 IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 5306-5314. 

[26] G. Toderici, S. O'Malley, S. Hwang, D. Vincent, D. Minnen, S. Baluja, 

M. Covell, R. Sukthankar, “Variable Rate Image Compression with 
Recurrent Neural Networks”, arXiv:1511.06085 [cs.CV] 

[27] J. Ballé, D. Minnen, S. Singh, S. Hwang, N. Johnston, “Variational Image 

Compression with a Scale Hyperprior”, arXiv:1802.01436 [eess.IV] 
[28] J. Ballé, V. Laparra, E. Simoncelli, “End-to-end Optimized Image 

Compression”, arXiv:1611.01704 [cs.CV] 

[29] Z. Cheng, H. Sun, M. Takeuchi and J. Katto, “Learning Image and Video 
Compression through Spatial-Temporal Energy Compaction,” in Proc. 

2019 IEEE Conference on Computer Vision and Pattern Recognition, 

accepted. 
[30] O. Rippel, S. Nair, C. Lew, S. Branson, A. Anderson, L. Bourdev, 

“Learned Video Compression”, arXiv:1811.06981v1 

[31] N. Yan, D. Liu, H. Li, B. Li, L. Li, F. Wu, “Convolutional Neural 
Network-Based Fractional-Pixel Motion Compensation”, IEEE 

Transactions on Circuits and Systems for Video Technology, vol. 29, no. 

3, pp. 840-853, March 2019. 
[32] S. Huo, D. Liu, F. Wu, and H. Li, “Convolutional Neural Network-Based 

Motion Compensation Refinement for Video Coding,” in Proc. 2018 

IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-4. 
[33] Z. Zhao, S. Wang, S. Wang, X. Zhang, S. Ma, and J. Yang, “CNN-Based 

Bi-Directional Motion Compensation for High Efficiency Video Coding,” 

in Proc. 2018 IEEE International Symposium on Circuits and Systems 
(ISCAS), pp. 1-4. 

[34] S. Xia, W. Yang, Y. Hu, S. Ma, and J. Liu, “A Group Variational 

Transformation Neural Network for Fractional Interpolation of Video 

Coding”, in Proc. 2018 Data Compression Conference (DCC), pp. 127-
136. 

[35] N. Yan, D. Liu, H. Li, and F. Wu, “A convolutional neural network 

approach for half-pel interpolation in video coding,” in Proc. 2017 IEEE 
International Symposium on Circuits and Systems (ISCAS), pp. 1-4. 

[36] W. Park and M. Kim, “CNN-based in-loop filtering for coding efficiency 

improvement,” in Proc. 2016 IEEE 12th Image, Video, and 
Multidimensional Signal Processing Workshop (IVMSP), pp. 1-5. 

[37] C. Jia, S. Wang, X. Zhang, S. Wang, and S. Ma, “Spatial-Temporal 

Residue Network Based In-Loop Filter for Video Coding,” in Proc. 2017 
IEEE Visual Communications and Image Processing (VCIP), pp. 1-5. 

[38] X. Meng, C. Chen, S. Zhu, and B. Zeng, “A New HEVC In-Loop Filter 

Based on Multi-channel Long-Short-term Dependency Residual 
Networks,” in Proc. 2018 Data Compression Conference (DCC), pp. 187-

196. 

[39] C. Li, L. Song, R. Xie, and W. Zhang, “CNN based post-processing to 
improve HEVC,” in Proc. 2017 IEEE International Conference on Image 

Processing (ICIP), pp. 4577-4580. 

[40] X. Song, J. Yao, L. Zhou, L. Wang, X. Wu, D. Xie, and S. Pu, “A Practical 
Convolutional Neural Network as Loop Filter for Intra Frame,” in Proc. 

2018 IEEE International Conference on Image Processing (ICIP), pp. 

1133-1137. 
[41] D. Liu, H. Ma, Z. Xiong, and F. Wu, “CNN-based DCT-like transform 

for image compression,” in Proc. 2018 International Conference on 

Multimedia Modeling (MMM), pp. 61-72. 
[42] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep Convolutional 

AutoEncoder-based Lossy Image Compression,” in Proc. 2018 Picture 
Coding Symposium (PCS), pp. 253-257. 

[43] J. Xu, M. Xu, Y. Wei, Z. Wang, and Z. Guan, “Fast H.264 to HEVC 

Transcoding: A Deep Learning Method”, IEEE Transactions on 
Multimedia, early access. 

[44] H. Lin, X. He, L. Qing, Q. Teng, and S. Yang, “Improved Low-Bitrate 

HEVC Video Coding using Deep Learning based Super-Resolution and 
Adaptive Block Patching”, IEEE Transactions on Multimedia, early 

access. 

[45] R. Chernyak, “Analysis of the Intra Predictions in H.265/HEVC,” Applied 
Mathematical Sciences, vol. 8, 2014, no. 148, 7389-7408. 

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: 

Surpassing human-level performance on ImageNet classification,” in 
Proc. 2015 IEEE International Conference on. Computer Vision (ICCV), 

pp. 1026–1034. 

[47] D. Kingma and J. Ba, “Adam: a method for stochastic optimization,” 
arXiv:1412.6980 [cs.LG] 

[48] HEVC Test Model (HM-16.9). Accessed: Jan. 28, 2019. [Online]. 

Available: 
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.9/ 

[49] K. Wilson and N. Snavely, “Robust global translations with 1DSfM,” in 

Proc. 2014 IEEE European Conference on Computer Vision (ECCV), pp. 
61–75. 

[50] F. Bossen, Common HM Test Conditions and Software Reference 

Configurations, document JCTVC-L1100, Apr. 2013. 
[51] K. Suehring and X. Li, JVET common test conditions and software 

reference configurations, document JVET-B1010, Feb. 2016. 

[52] G. Bjontegaard, Calculation of Average PSNR Differences Between RD-
curves, document VCEG-M33, Apr. 2001. 

 

Authors’ photographs and biographies not available at the time of publication. 

Authorized licensed use limited to: WASEDA UNIVERSITY LIBRARY. Downloaded on May 06,2020 at 16:55:33 UTC from IEEE Xplore.  Restrictions apply. 


