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An Artificial Intelligence-Based System to Assess
Nutrient Intake for Hospitalised Patients

Ya Lu, Thomai Stathopoulou, Maria F. Vasiloglou, Stergios Christodoulidis, Zeno Stanga,
and Stavroula Mougiakakou

Abstract—Regular monitoring of nutrient intake in hospi-
talised patients plays a critical role in reducing the risk of
disease-related malnutrition. Although several methods to esti-
mate nutrient intake have been developed, there is still a clear
demand for a more reliable and fully automated technique, as
this could improve data accuracy and reduce both the burden
on participants and health costs. In this paper, we propose a
novel system based on artificial intelligence (AI) to accurately
estimate nutrient intake, by simply processing RGB Depth (RGB-
D) image pairs captured before and after meal consumption.
The system includes a novel multi-task contextual network for
food segmentation, a few-shot learning-based classifier built by
limited training samples for food recognition, and an algorithm
for 3D surface construction. This allows sequential food segmen-
tation, recognition, and estimation of the consumed food volume,
permitting fully automatic estimation of the nutrient intake for
each meal. For the development and evaluation of the system, a
dedicated new database containing images and nutrient recipes
of 322 meals is assembled, coupled to data annotation using
innovative strategies. Experimental results demonstrate that the
estimated nutrient intake is highly correlated (> 0.91) to the
ground truth and shows very small mean relative errors (< 20%),
outperforming existing techniques proposed for nutrient intake
assessment.

Index Terms—Artificial Intelligence, nutrient intake assess-
ment, few-shot learning.

I. INTRODUCTION

MALNUTRITION of hospitalised patients is a serious
condition associated with an increased risk of hospital

infections, higher mortality, morbidity, prolonged length of
hospital stay and extra healthcare expenses [1]. Investigations
performed among hospitalised patients in different countries
have shown that the average prevalence of hospitalised mal-
nutrition may be in the order of 40% [2]–[5]. Thus, main-
taining good nutritional status is of vital importance for both
hospitalised patients and social medical systems.

Since hospitalised malnutrition is mainly attributed to the
poor recognition and monitoring of nutritional intake [6], it
is crucial to regularly evaluate the daily food intake of hospi-
talised patients. Traditionally, this relies on non-automated or
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semi-automated approaches, such as food weighing [6], [7],
visual estimations [7]–[9], or digital photography [6], [10],
which are either time consuming, expensive or prone to errors.
Therefore, there is still an unambiguous need for a reliable and
simple solution to assess nutrient intake.

With the growth in AI-based image processing methods, it
has become feasible to analyse food items through a food
image, so that there is great potential to make estimation
of nutrient intake fully automatic. Recently, AI-based dietary
assessment systems, such as Im2Calories for calorie estimation
[11] and GoCARB for carbohydrate (CHO) estimation [12],
have been proposed. The systems process food images in
three steps: 1) food items segmentation; 2) food recognition
and 3) food volume estimation. Thus, nutrient content can be
calculated from the food nutrient database. While these pioneer
studies have demonstrated their viability to evaluate the food
intake using AI, there is also a need to further improve the
performance in terms of the accuracy of estimation and the
number of supported food categories. However, the difficulty
lies in the fact that the sophisticated annotation requirements
intrinsically limit the quality and the size of the food images
database for nutrient intake assessment. This further impedes
the use of some advanced AI algorithms [13]–[15] that have
already been applied for food image analysis, but which
heavily depend on having a large database. Therefore, we
require a dedicated database and associated AI algorithms that
can be adapted to limited training data.

In this paper, which is a continuation of our work in [16],
we propose an AI-based, fully automatic system for assessing
nutrient intake for hospitalised patients, by processing RGB-D
image pairs captured before and after a meal. A new database
for food images with associated nutrient information and
recipes is created from 322 food trays (meals) as prepared for
hospitalised patients by the central kitchen of Bern University
Hospital. The database includes a total of 1281 food items
from 521 food categories. This database is used for the design,
development and validation of a number of AI-based algo-
rithms to estimate nutrient intake. It involves: 1) a Multi-Task
Contextual Network (MTCNet) for food segmentation, which
employs a pyramid architecture for feature encoding and a
newly designed CTLayer to provide contextual information
between foods and serving plates; 2) a novel, in terms of
architecture, few-shot learning-based classifier [17] for food
recognition. The food recognition model is trained within the
framework of meta-learning [17] and takes advantage of the
transferred weight; 3) a 3D surface construction algorithm
[18] for the estimation of the consumed food volume; and 4)
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RGBD images of before meal

RGBD images of after meal

Nutrient intake 

assessment system

Daily 

menus

Input Output 

Calories 341 kcal

CHO 34 g

Protein 20 g

Fat 12 g

Salt 5 g

Fiber 2 g

Nutrient intake
Recipes

Fig. 1. An outline of the proposed system for assessing nutrient. The inputs of the system are the RGB-D image pairs captured before and after the meal.
The recipes include nutrient information and may be pre-integrated into the system. Daily menus can be integrated subsequently. The outputs of the system
are the results of food segmentation, recognition and volume estimation before and after the meal. By analysing these results, the nutrient intake of the meal
can be estimated.

a nutrient intake calculator that links the consumed volume,
food type and recipe. Experimental results demonstrate very
strong correlation coefficients between the software prediction
and the ground truth (r > 0.91 for calories and all nutrient
types; p < 0.001), and very small mean relative errors (< 20%
for calories and all the nutrient types). To the best of our
knowledge, this outperforms previous studies.

Fig. 1 presents an outline of the proposed system. The
inputs of the system are the RGB-D image pairs captured
before and after the meal. The outputs of the system are the
estimated food segmentation, recognition and volume, for the
cases of before and after the meal, along with the nutrient
intake estimations.1

Our contributions are summarised as follows:
1) We propose the first AI-based, fully automatic pipeline

system to assess nutrient intake for hospitalised patients.
2) We have built a new database that contains food images

with associated recipes and nutrient information. The
database has been collected in real hospital scenarios.

3) We have designed and developed an innovative series
of AI algorithms that can provide good performance on
small quantity training data. The newly developed algo-
rithms include, for instance, the Multi-Task Contextual
Network (MTCNet) for food segmentation, and few-shot
learning based classifier for food recognition. Extensive
experiments have been conducted to demonstrate the
advantages of these proposed methods.

II. RELATED WORK

A. Assessment of nutrient intake in hospitalised patients

Weighing the food before and after each meal is currently
the most accurate method to monitor nutrient intake [6].
However, this is not adaptable to large samples or multicentre
studies, due to the complexity of its implementation . As it is

1The food category name of the system is in German.

highly accurate, this method has increasingly often been taken
as a reference method in studies assessing nutrients [6]–[10].

Visual estimation is a method that approximately estimates
the percentage of the food intake by visually observing food
left and comparing this with a reference scale. This eliminates
the manual operation in the food weighing approach. For
hospitalised patients, visual estimation scales that have been
used include a 4-point scale (all, 1/2, 1/4, none) [8] and a
3-point scale (all, k> 50%, < 50%) [9]. Although such a
method has been widely used because of its simplicity [19],
studies have indicated that the estimation of food intake is
often inaccurate, which commonly results in overestimation
of 15% [19].

Instead of observing the test meal, more recent approaches
- known as digital photography - estimate food intake on the
basis of the food images captured before and after the meals,
using either cameras [6] or smartphones [10]. The visual
assessment can then be performed remotely by professional
healthcare staff under free-living conditions. Despite the clear
progress with respect to visual estimation, methods based on
digital photography are still either semi-automated or non-
automated, and are subject to human estimation.

It is worth mentioning that all these approaches assume that
all the involved food types are correctly recognised, which is
however too optimistic in real applications.

B. Food Database

Currently, most of the food databases are built for the
food recognition task, and usually annotate the food images
with image-level labels. The first published food recognition
database is the Pittsburgh Fast Food Image Dataset (PFID)
[20], which contains 101 fast food categories. After this,
the larger Food101 [21] database is presented, and contains
101,000 images belonging to 101 food classes. A large-scale
food image database [22], involving 158,000 images from 251
fine-grained food categories, has recently been proposed and
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used for the “IFOOD2019” food classification challenge [23].
Furthermore, because meals are characterized by occlusions of
ingredients, and high intra-class and low inter-class variability
between food classes, the recipes that include food ingredients
can be used for better understanding of the food categories.
So far, the largest image-recipe database is Recipe1M+ [24],
which contains more than 1 million cooking recipes and 13
million food images in total.

Databases for food detection/segmentation are distinct from
food recognition databases and require additional annotation
of food location on the images. UEC Food 256 [25], which in-
cludes 256 Asian food categories with 31,651 images, provides
both image-level labels and the corresponding food bounding
box for each image. On the other hand, the UNIMIB2016
database [26] includes 1027 food images with 73 food cate-
gories and annotates the food locations with pixel-level food
segmentation map.

However, there are very few databases built for food volume
estimation. The annotations required in such databases are
image level labels, the pixel-level food segmentation map,
along with the food volume ground truth. One such database
is the MADiMa2017 database [27], which involves 234 food
items from 80 central European meals. The image labels
and the food locations are annotated using a pixel-level food
semantic segmentation map, while the volume ground truth of
each food item is built using online AutoCAD.

For nutrient calculation, the USDA nutrient database [28]
is the one most commonly used to translate the food type and
volume to nutrient content. However it may not include all the
target food types of an AI-based system and cannot easily be
used outside of the US.

To summarise, the complexity of the sophisticated anno-
tation requirements intrinsically limits the quality and the
size of the food images database for assessment of nutrient
intake. This further impedes the use of some advanced AI
algorithms that rely on a large amount of data. Thus, it is
clearly desirable to develop dedicated algorithms adapted to
the limited available databases.

C. AI-based dietary image processing

Traditional food segmentation methods are based on re-
gion growing and merging algorithms, along with handcrafted
features, e.g. [29], [30], which are subsequently improved
to employ a border detection network [31]. Although such
methods are fast and easy to implement, they are limited in
some complex scenarios, such as noisy background, similar
food items and imperfect light conditions. More recently,
a fully convolutional network (FCN) has been applied for
food-nonfood segmentation [32], which performs better than
traditional methods. However, it is not adapted to applications
requiring food-food segmentation.

Food recognition at the early stage relies on the hand-
craft features (e.g. colour, texture and SIFT) [13], [30] and
traditional classifiers, such as SVM and ANN [13], [30].
The performance of the food recognition has recently been
significantly improved by CNN-based approaches [14], [15],
[23], which have demonstrated an accuracy of 90.27% on

Fig. 2. Statistics of the number of images contained in one category. 521
fine-grained food categories are included in the database. There are fewer
than 5 image samples for most categories.

the Food101 database [14] and 94.4% top3 accuracy in the
IFOOD2019 challenge [23]. However, these existing CNN-
based methods require a large amount of training data to
achieve high accuracy, which is costly and impractical for
a given application that may only provide limited data size.
Although a nearest neighbour-based method that uses few
training samples is being investigated for personalised food
recognition [33], its performance still largely depends on the
original base classifier that requires a large amount of training
data.

Most of the approaches for estimating food volume are
based on geometry [18], [34], and require multiple RGB
images and a reference object as input for 3D food model
construction, and these are not robust to low texture food and
large view changes. Food volume can also be estimated using
the CNN-based regression method [35], while the performance
depends heavily on the quantity of the training data. With the
development of high-quality depth sensors or stereo cameras
on smartphones, depth maps can be utilised for estimating
food volume with no need for reference object or extensive
training data [27], [36], [37]; this provides more stable and
more accurate results than with geometry-based approaches
[18], [27], [34].

III. DATA SET

For the design, development and evaluation of various
components of the proposed system, a dedicated and novel
database, named “Nutrient Intake Assessment Database”
(NIAD), was compiled, which contains RGB-D image pairs
of 322 real world meals, including 1281 food items associated
to 521 food categories in total. All the meals -as well as
the associated portion size, nutrient information, recipes and
menus- were provided by the central kitchen of Bern Univer-
sity Hospital. During a 2-month procedure for data collection,
images of 1∼15 meals involving 3∼36 food categories were
captured each day.
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(a) (b)

(c)

(d)

(e)

Fig. 3. Plates used in Bern Hospital Kitchen; (a): plates for main course,
vegetable, side dish; (b): salad bowl; (c): soup bowl; (d): dessert bowl; (e):
other packaged containers.

A. Data capture

The image data was captured using the Intel RealSense
RGB-D sensor, which outputs aligned RGB and depth images
simultaneously. The distance from the camera to the food tray
was randomly selected between 35cm and 50cm during image
capture. The resolution of each acquired RGB-D image pair
is 480 × 640 (Height×Width).

To ensure that the database is highly diverse, the acquisition
of the image pairs was conducted in two stages. Firstly, 153
RGB-D image pairs were captured from 153 food trays only
before each meal; then another 507 RGB-D image pairs were
captured from the remaining 169 food trays, before, during and
after each meal. Note that the purpose of capturing the image
pairs during the meal is to mimic the possible scenario of
patients with little appetite in the real hospital. While capturing
all these 660 RGB-D image pairs, the weight of each plate
inside the food tray was recorded using scales with the unit
of gram. This will hereafter be used to annotate the nutrient
intake ground truth.

B. Data Annotation

To create the ground truth for the food image analysis and
the assessment of nutrient intake, we annotated the captured
data in both image level and nutrient level.

1) Food image annotation: The pixel-level ground truth
semantic segmentation map of each food tray image was
annotated using an in-house developed image annotation tool
(Appendix A contains information regarding the tool). Ac-
cording to the menus provided by the hospital kitchen, the
segmented food items were annotated into 7 hyper categories
(main course, side dish, vegetable, sauce, soup, salad and
dessert), corresponding to 521 fine-grained categories (belong-
ing to 139 main courses, 86 side dishes, 42 vegetables, 46
soups, 32 salads, 96 sauces and 80 desserts), which are further
used for the refined recognition. It is worth mentioning that,
although there is a large number of food categories (521) in the
dataset, most of these only correspond to few image samples
(< 5), as summarized in Fig. 2.

In addition to food segmentation, we also dedicatedly seg-
mented plates and classified the plate types into five (5) cate-
gories: main plate, salad bowl, soup bowl, dessert bowl, and

other packaged containers, as exemplified in Fig. 3. It should
be emphasised that the use of such plate segmentation maps
can greatly improve the performance of the proposed system in
three aspects: 1) allowing the use of a novel multi-task learning
approach to improve the accuracy of food segmentation; 2)
providing the contextual information to further refine the food
semantic segmentation map in the post-processing stage; 3)
enabling estimation of the depth of plate surface, in order to
correctly calculate the food volume. All these benefits will be
demonstrated in Section V.

2) Nutrient annotation: For images captured before the
meals, the nutrient content of each food item is annotated using
the weight and nutrient information provided by the hospital
kitchen. For the images captured during and after meals, two
annotation strategies are applied - depending on how the food
is served: 1) when one food item is served in one plate, the net
weight of the food is calculated by subtracting the weight of
the empty plate from the recorded plate weight. The nutrient
is annotated according to the weight difference with respect to
the empty plate and using the nutrient content per 100 grams
given by the recipes; 2) when more than one food items are
served in one plate, the iterated plate weight difference and
the visual estimation approach [38] are adopted for nutrient
annotation. This procedure gives almost identical results to
the weighted food method (r = 0.99; p < 0.001) and can
be obtained even by untrained annotators. Fig. 4 exemplifies
one of the typical meals in the database, including the images
captured before, during and after meals, together with the
annotations.

IV. METHODOLOGY

The overall architecture of the proposed methodology is
illustrated in Fig. 5. In the following sub-sections, the four
main stages involved in the proposed system are described in
detail.

A. Food segmentation

A Multi-Task Contextual Network (MTCNet) is newly pro-
posed for image segmentation, which takes the colour image
as input, and outputs the segmentation maps of the food type2

and the plate type simultaneously, as described in Fig. 6. This
network employs a pyramid feature map fusion architecture
[39], [40] that features a large receptive field, and is thus
able to overcome the problem of confusing the food type -as
commonly occurs in semantic segmentation algorithms [41],
[42]. In addition, the contextual relation between the food and
plate type is enhanced by a newly proposed Contextual layer
(CTLayer), which further improves segmentation accuracy.
These two advantages are both experimentally demonstrated
in Section V. In the current section, we focus on elaborating
the detailed configuration of the proposed network.

Firstly, an initial feature map with size of 60 × 80 × 2048
(Height×Width×Channel) is generated using a pretrained di-
lated ResNet50 [43], [44]. By applying the “average pooling”
on this feature map with 4 different pulling sizes, 4 pyramid

2All the “food type” in this section indicate “hyper food type”.
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Before meal

During meal

After meal

Main course: 140g

Side dish: 150g

Vegetable: 100g

Salad: 40g

Sauce: 30g

Dessert: 120g

Main course: 82g

Side dish: 130g

Vegetable: 90g

Salad: 15g

Sauce: 12g

Dessert: 78g

Main course: 62g

Side dish: 30g

Vegetable: 20g

Salad: 3g

Sauce: 7g

Dessert: 6g

Nutrient Recipes

Nutrient content / 100g

Main course: Kalbsgeschnetzteltes
Calories: 94kcal

CHO: 0g

Protein: 19g

Fat: 2.2g

Salt: 0.7g

Fiber: 0 g

Side dish: Bratkartoffeln
Calories: 117kcal

CHO: 16g

Protein: 2.2g

Fat: 4.4g

Salt: 0.6g

Fiber: 2.2 g

Vegetable: Brokkoli

…

Salad: Endiviensalat

…

Sauce: Salatsauce French

…

Dessert: Schokoladencreme

…

Color image Depth image Food segmentation map Plate segmentation map Food weight Nutrient information

Segmentation annotation Weight annotation

Main course

Vegetable

Side dish

Dessert

Sauce

Salad

Main plate

Dessert bowl

Packaged 

containes

Salad bowl

Fig. 4. One typical meal in the NIAD database. The food items are segmented into 7 hyper categories, while the plates are classified into 5 types during the
food image annotation. The nutrient ground truth is annotated according to the recorded weight and nutrient information provided by the hospital kitchen.

After meal

Before meal
Food Segmentation Food item recognition Consumed volume estimation Nutrient intake calculation 

Daily 

Menu

Recipes

Calories: 633kcal

CHO: 46g

Protein: 22g

Fat: 39g

Salt: 2g

Fiber: 6g

3D surface

Main course: 

94ml

Sauce: 39ml

Side dish: 105ml

…

Food seg.

Plate seg.

Few-shot learning

Deep CNNs

Food classifier

Main course: Schweinsbratwurst

Sauce: Salatsauce italienisch

…

Fig. 5. Overview of the proposed system. Four main steps are sequentially performed on the RGB-D image pairs captured before and after the meal to assess
the nutrient intake: food segmentation, food item recognition, consumed volume estimation and nutrient intake calculation.

feature maps are generated with sizes of 15 × 20 × 2048,
8 × 10 × 2048, 3 × 4 × 2048, 1 × 1 × 2048, respectively.

Then, for both “food” and “plate” segmentation branches,
the pyramid feature maps of each level are fused and concate-
nated with the initial feature maps (from ResNet50) through
a convolutional layer and an up-sampling layer (which resizes
the feature map using interpolation). Like the strategy used in
[40], the convolutional layers we used here are all with 1 × 1
kernel size and 512 output channels (which equals to 1/4 of the
initial channels), in order to maintain the relative weight of the
initially encoded features. Finally, two deconvolutional layers
with the same kernel size of 8× 8 are applied for both “food”
and “plate” predictions, with channel numbers of 8 (food
type+1 for background) and 6 (plate type+1), respectively,
corresponding to 2 outputs with sizes of 480 × 640 × 8 and
480×640×6. Note that the final “food” prediction - indicating
image segments of each food item and the corresponding
hyper food category - has incorporated the contextual relation
between the food and the plate provided by a CTLayer - which
is basically a convolutional layer adopted upon the “plate”
prediction, with 3 × 3 kernel size and 8 output channels.

All the above mentioned convolutional/deconvolutional lay-
ers are followed by batch normalisation layers and RELU
activation layers except the two prediction layers, each of
which is followed by a “softmax” layer.

B. Food item recognition

Using the approach introduced in section IV-A, the hyper
food semantic segmentation has been predicted. In this section,
the fine-grained food categories are recognised by further
processing the predicted hyper food segments. Since the fact
that the limited image samples of each fine-grained food
category hinders the use of typical networks [14], [15], we
have designed a novel few-shot learning-based classifier that
requires only few annotated samples of each category.

1) Model: The few-shot learning-based classifier is trained
within the framework of meta-learning [17]. The key idea is
to learn the transferred knowledge among a large number of
similar few-shot tasks, which can be further used for the new
tasks [17], [45], [46]. Each few-shot task includes a support
set and a query set. The former is built by randomly choosing
C categories from the whole training set, with K annotated
samples of each, while the latter consists of another n samples
randomly selected from the same C categories. This kind of
few-shot task is usually designated as a “C-way, K-shot” task.

We present the support set as S = {(xi, yi)}m=C×Ki=1 and
the query set as Q = {(xj, yj)}nj=1, respectively, where xi/j
indicates the image sample and yi/j ∈ {1, . . . ,C} is the
associated annotated category. It should be noted that the
support set and query set share the same category label space,
i.e. {1, . . . ,C}, which is part of the whole database.
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Fig. 6. Architecture of food segmentation network. “Conv” and “DeConv”
mean convolutional layer and deconvolutional layer, respectively, while “Up”
indicates up-sampling layer

Similar to [17], [45], [46] the few-shot classifier we pro-
posed consists of two modules: 1) feature embedding network
fθ , which translates the image samples to the feature vectors,
where θ represents the weights of the network; 2) feature dis-
tance function that evaluates the similarity of feature vectors.
As in [17], we fix the feature distance function with squared
Euclidean distance.

The training loss of each iteration is computed using the
negative log-probability of the samples in query:

J(θ) = −
n∑
j=1

log(pθ (yj = ŷj |xj)) (1)

where pθ (yj = ŷj |xj) indicates the probability of the sample
yj belonging to its ground truth category ŷj ∈ {1, . . . ,C}:

pθ (yj = ŷj |xj) =
exp(−d( fθ (xj), cŷj ))∑
ŷ
′
j

exp(−d( fθ (xj), cŷ′j ))
(2)

where d is the function to calculate the squared Euclidean
distance between the two inputs, ŷ

′
j means all the categories

involved in the few-shot task except ŷj , and cŷj is the mean
feature vector of samples belonging to the category ŷj in the
support set:

cŷj =
1
K

∑
yi ∈ŷj

fθ (xi) (3)
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Fig. 7. Parallel feature embedding network for few-shot learning. The
transferred weights of the ResNet are fixed during network training.

When testing, we compare the embedded feature vector of
the under-test sample with all mean feature vectors of the
candidate food categories included in the training set. The
prediction yt is the category that exhibits the nearest squared
Euclidean distance from the testing sample, which can be
expressed as:

yt ← arg min
yh
[d( fθ (xt ), cyh )], yh ∈ Cm

h (4)

where Cm
h

is the set of candidate fine-grained categories be-
longing to the mth hyper category, and the value of m is given
by the prediction from the semantic segmentation described
in the previous sub-section. Taking the hyper category of
“main course” as an example, which corresponds to the case
of m = 1, the candidate set is therefore denoted as C1

h
-

that involves 139 fine-grained categories in total. To improve
recognition performance, Cm

h
can be further slimmed down

by introducing the “daily menu” that only includes a few food
categories (∼7 per hyper category) served at a given date, with
a compromise of updating the proposed system every day.

2) Network architecture: In order to benefit from the so-
phisticated networks while avoiding over-fitting during train-
ing, a novel feature embedding network is proposed combining
two parallel branches, as shown in Fig. 7. The upper branch ap-
plies the sophisticated ResNet50 architecture with transferred
weights from ImageNet, which are fixed during training, while
the lower branch utilises the widely used four convolutional
blocks (4CONV) architecture [17], [45], [46] to prevent over-
fitting. Each convolutional block contains a 64-filter 3 × 3
convolution, batch normalisation, a RELU activation layer and
a max-pooling layer. Note that the kernel size and the stride
of the first max-pooling layer are both 4, while that of the rest
three layers are 2. Finally, the output feature vector with length
of 1024 is obtained by adding the features extracted from both
branches after a dense layer and a flatten layer, respectively.

3) Consumed volume estimation: The consumed volume
of each food item is derived by simply subtracting the food
volumes before and after the meal, which can be retrieved
from the previously available food segmentation map and the
depth map, associated with three stages: 1) 3D food surface
extraction; 2) plate surface estimation; 3) volume calculation
of each food item.

To calculate the volume of each food item, both the 3D food
surface and the entire plate surface (which includes the area
covered by food) are required. The depth image of the food



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

area is firstly translated into a 3D point cloud and divided into
triangular surfaces using the Delaunay triangulation method
[18], which can be used to construct the 3D food surface.
The plate surface estimation requires the previously built 3D
plate model and the plate position, including location and
orientation. The location of the plate is estimated using the
plate segmentation map. The plate orientation is set as the
normal vector of the tray plane, which is estimated using the
RANSAC [47] algorithm. Finally, the volume of each food
item is calculated by simply integrating the height difference
between the food surface and the plate surface along the
normal vector of the food tray.

This method is sufficiently accurate to estimate the con-
sumed volume, provided that the food is served with a normal
plate (i.e. those shown in Fig. 3(a)-(d)). However, for packaged
containers (shown in Fig. 3(e)), several additional heuristic
methods are required. For instance, although it is difficult to
identify the consumption of the sauce that is in the packaged
containers (from Fig. 4 before and after meal), application
of a heuristic rule can lead to a reasonable estimation. This
might be that sauce consumption is proportional to salad
consumption.

4) Nutrient calculation: To calculate the nutrient content
of each food item, we firstly translate the food volume to the
weight using (5):

weight = ρ · volume (5)

where ρ is the density that is trained using linear regression
for each fine-grained food category. Using the calculated
weight associated with the nutrient recipes as provided by the
central kitchen and the previously recognised food category,
the nutrient content of each food item can be known for
both before and after meal. The consumed nutrient content of
each food item is simply calculated by subtracting the nutrient
content after the meal from that before the meal.

V. EXPERIMENTAL RESULTS

A. Food segmentation

In the experiments, the 5-fold cross validation evaluation
strategy is adopted. For each fold, around 64 meals 3 are used
for testing, while the residual meals are split into training set
and validation set with a ratio of 7:1.

The segmentation network is trained with the “Adadelta”
optimiser and the categorical cross entropy loss. The loss
weight of the “plate” and “food” segmentation branch are set
as 0.6 and 1.0, respectively. The initial epoch number is set as
100, and the training process terminates when the validation
loss stops decreasing for 10 epochs. The batch size is set as 4.
To increase the image variability, we augment the input images
by applying left-right and up-down flips during training.

Three kinds of metrics are utilised here to evaluate the
semantic food segmentation performance, including: 1) the
Intersection of Union (IoU) and mIoU, where IoU is evaluated
for each hyper food category and mIoU is the average of all the
individual IoUs, 2) the pixel level accuracy metric, and 3) the

3The first 4 folds have 64 meals for testing, while the last fold has 66
testing meals.

(a)  Color image (b) Ground truth (c) Result of [16] 

Sauce Side dish Main course Soup SaladDessert Vegetable

(d) Result of MTCNet

Fig. 8. Food segmentation results using MTCNet, which outperform that
obtained by [16].

region-based F-score metric, which evaluates the worst (Fmin)
and the average (Fsum) segmentation performance [27], [31].
Note that all the evaluations introduced above are only applied
on the food areas in the images captured before the meal, and
for all metrics a higher value indicates better performance..

The top part of Table I (first four rows) compares the
metrics evaluated for the proposed MTCNet and our pre-
vious method [16] based on SegNet [41], with or without
CRF post-processing [48] for each. It can be found that the
proposed MTCNet performs significantly better for all the
metrics, especially after applying the CRF. This can be visually
demonstrated as exemplified by two typical cases in Fig. 8,
where the network in [16] wrongly predicts the meat as “main
dish” (see the first row) and fails to distinguish the small
vegetable area from the “side dish” (see the second row), since
the receptive field is so small that the network overlooks the
details in small regions. Nevertheless, both cases are correctly
predicted using the proposed MTCNet, in which the pyramid
feature encoding module provides a larger receptive field.

The second part of Table I (the last three rows) shows
the evaluation results by applying the ablation study for the
proposed MTCNet without CRF post-processing, in order
to demonstrate the usefulness of different newly proposed
components in our network. It can be seen that, after removing
the CTLayer, all the metrics decrease with respect to those
evaluated from the original MTCNet (the 3rd row in Table I).
The performance further degrades after removing the “plate
branch”, validating the importance of the multi-task learning
strategy in the network. More performance degradation can be
found by removing the PreTrained weights in ResNet50, while
training the network from scratch, demonstrating the necessity
of the pretrained network when dealing with a small database
[49].

B. Fine grained recognition of food items

For the food recognition experiments, 60 meals are selected
for testing, and the remaining 262 meals are allocated for
training. Here we ensure that all the food categories in the
testing set have corresponding samples in the training set.
In other words, food categories that only correspond to one
sample in the database will not be chosen as testing meals.

The fine-grained food classifier is trained with the 10-way,
1-shot few-shot tasks, and there is 1 sample in the query set
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TABLE I
SEGMENTATION RESULTS

METHOD
IOU(%) Pix. Acc.

(%)
F-score (%)

Main
course

Side
dish

Vegetable Salad Sauce Soup Dessert mIoU Fmin Fsum

Network in [16] 48.41 40.74 41.91 80.70 55.52 75.33 67.41 58.53 74.51 61.43 83.27
Network in [16]+CRF 51.47 43.30 45.87 85.14 64.36 84.29 78.00 64.63 77.03 66.59 86.57

MTCNet 61.00 50.14 60.83 86.67 69.03 87.00 78.98 70.52 82.15 74.67 88.76
MTCNet+CRF 61.46 50.91 63.51 88.40 77.76 89.46 84.75 73.75 83.50 78.96 89.88

No CTLayer 60.26 47.67 58.61 86.19 67.65 85.18 76.91 68.92 80.80 74.05 88.65
No plate branch 59.76 48.99 56.94 86.02 67.16 85.64 76.09 68.65 80.96 72.27 87.60

No PreTrain 53.58 42.35 51.17 86.07 62.83 80.44 77.92 64.90 76.39 65.51 86.37

TABLE II
FOOD ITEM RECOGNITION

METHOD Feature
embedding

Daily
Menu

Main
course

Side
dish

Vegetable Salad Sauce Soup Dessert Mean acc.

Prototypical Net 4CONV N 45.10 37.25 60.00 64.70 40.00 44.44 59.09 50.07
Proposed ParallelNet N 60.78 56.86 84.00 82.35 57.50 51.80 72.27 66.50

Prototypical Net 4CONV Y 84.31 80.39 96.00 94.11 72.50 85.19 84.09 85.22
Proposed ParallelNet Y 98.39 92.15 100.0 100.0 75.00 88.89 90.91 92.19

Fig. 9. Image samples generated by GAN. The samples marked with green
rectangle are real samples, while the samples in the gray box are the associated
fake samples generated by GAN.

TABLE III
ABLATION STUDY OF GAN-BASED DATA AUGMENTATION

METHOD Feature
embedding

Augmentation Mean
acc.

Prototypical Net 4CONV Standard 47.58
Prototypical Net 4CONV GAN 50.07

Proposed ParallelNet Standard 63.90
Proposed ParallelNet GAN 66.50

for each task. The training and testing images are resized into
128 × 128. During training, around 10% food categories of
the training set are split to a validation set. The network is
trained using the “Adam” optimiser with learning rate of 1e-4
and weight decay of 1e-5. The batch size is set as 16 and the
network is trained for 20k iterations.

Data augmentation is one of the most commonly used strate-
gies during the CNN model training [50]–[52]. Standard data

TABLE IV
COMPARISON BETWEEN STANDARD IMAGE CLASSIFICATION PARADIGM

AND META-LEARNING BASED APPROACH

METHOD Feature
embedding

Mean
acc.

Standard classifier 4CONV 40.52
Prototypical Net 4CONV 47.58

augmentation strategies, including flips, rotations, translations
and Gaussian noise, can improve the generalization ability of
the CNN model [52]. Recently, the Generative Adversarial
Networks (GAN)-based approach has been investigated for
data augmentation [53], [54]. The GAN-based approach gives
more promising results than the standard approach. In our
experiments, the training data is augmented using a GAN-
based approach [53], which generates 8 fake samples for each
original training sample, as exemplified in Fig. 9.

The performance of the proposed method is compared with
the prototypical net [17], which is a standard few-shot learning
baseline and has a similar architecture to the proposed method,
except for the feature embedding network. The code of the
prototypical net used in our experiments is from the official
release of [17], and it is trained using the same setup with the
proposed method. The usage of “daily menu” is quantitatively
evaluated during the experiments.

Table II lists the evaluated recognition accuracies obtained
by both the proposed method and the prototypical net, without
and with the “daily menu” mentioned in Section IV. As a
benefit of the novel ParallelNet, the proposed method offers
much greater accuracy with respect to the baseline. It is also
found that the use of “daily menu” can dramatically boost the
performance.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Bland-Altman plot of (a) calories; (b) CHO; (c) protein; (d) fat; (e) fibre and (f) salt intake. The horizontal axis of each plot indicates the ground
truth value, while the vertical axis denotes the difference between the predictions of our algorithm and the ground truth. The middle lines indicate the mean
difference (bias) between proposed algorithm and ground truth, while the dash lines mean the 95% limits of agreement.

Table III presents the ablation study on the usage of GAN-
based data augmentation. Comparison of the results indicates
that the GAN-based data augmentation strategy outperforms
the standard one by ∼ 3% for both the prototypical net [17]
and the proposed network on our database.

To show the advantage of the meta-learning based frame-
work with only a few training samples, the standard image
classification procedure and meta-learning based approach are
compared (see Table IV). The “Standard classifier” applies
the same feature embedding network architecture as in the
prototypical net [17], while an additional dense layer with
the “softmax” activation is implemented for the food category
prediction. From the results in Table IV, the meta-learning
based approach is ∼ 7% more accurate than the standard clas-
sifier. This demonstrates that the meta-learning based approach
performs well on our database.

C. Assessment of nutrient intake

In this section, we use the same training and testing dataset
as that for the food recognition task, which involves 60 meals
for testing and 262 meals for training. For each testing meal,
the images captured before, during and after the meal are
included, leading to two meal intake pairs which are the
“before-during” pair and “before-after” pair. Thus, 120 meal
pairs in total are used in this section for assessing nutrient
intake.

To evaluate the nutrient intake estimation through the entire
pipeline, the following steps are conducted: 1) the semantic
segmentation network is retrained using the training set de-
fined in this section, which is then applied to the testing images
with CRF post-processing, 2) the corresponding food items in

the two images for each meal pair are matched according to
the information of the hyper food category output from the
step 1, 3) the fine-grained categories are recognised using the
proposed few-shot food classifier trained with GAN-based data
augmentation and 4) the volume and nutrient intake of each
meal pair are calculated using the method described in Section
IV.C and D. Note that the first three steps require processing
the RGB images using machine learning algorithms, while the
last step mainly focuses on processing the depth image.

Table V presents the evaluated mean absolute error (MAE),
mean relative error (MRE) and correction coefficient [55] of
the predicted calories and 5 different types of nutrient intake,
for the cases of “with” and “without” the daily menu. Whilst
the case of without daily menu already shows good accuracies,
the use of daily menu further boosts the performance - as
“very strong” correlation (r > 0.9, p < 0.001) between the
prediction and ground truth can be found for all the nutrient
types, and the MREs are all lower than 20%. Note that due to
the absence of identical evaluation data, the strict quantitative
comparison between the proposed method and other state of
arts is not possible. However, according to the results reported
by several similar studies (a CHO MRE of ∼25% with the
AI-based approach [56] and r = 0.6489 for intake calories
estimation with traditional digital photography approach by
professional health care staff [6]), the proposed approach is
expected to have better performance in terms of accuracy and
efficiency.

To intuitively demonstrate the performance of the nutrient
intake assessment, Bland-Altman plots [57] for all the nutrient
types are illustrated in Fig. 10(a)-(f), respectively. For each
plot, the horizontal axis indicates the ground truth value of the
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TABLE V
NUTRIENT INTAKE ESTIMATION

With daily menu Without daily menu
MAE(SD) MRE (%) Correlation

coefficient**a
MAE(SD) MRE (%) Correlation

coefficient**a

Calories 47.59 (43.55) kcal 14.84 0.923 77.75(93.31) kcal 18.52 0.824
CHO 5.33 (5.28) g 18.16 0.937 6.96(7.75) g 19.12 0.914
Fat 2.53 (2.89) g 19.86 0.927 5.53(7.26) g 27.70 0.682

Protein 2.87 (2.74) g 17.00 0.921 3.67(4.13) g 19.34 0.889
Salt 0.42 (0.49) g 17.72 0.941 0.70(1.13) g 20.20 0.808

Fiber 0.75 (0.76) g 19.42 0.910 1.01(1.11) g 21.99 0.883

a 0-0.19: very weak; 0.20-0.39: weak; 0.40-0.59: moderate; 0.60-0.79: strong; 0.80-1.0: very strong
** p < 0.001

nutrient intake, while the vertical axis denotes the errors, i.e.,
the difference between the prediction and the ground truth. The
middle line in each plot shows the mean error (i.e. bias), while
the two dashed lines represents the 95% limits of agreement.

To figure out the impact of different processing steps on the
overall pipeline error reported in Table V, two control variate
experiments were conducted: 1) food segmentation ground
truth was applied during evaluation, so that the pipeline error
was attributed to the recognition and the volume estimation
and 2) both food segmentation and recognition ground truths
were applied during evaluation, so that the pipeline error was
only attributed to the volume estimation. Both experiments
were conducted with the daily menu information, and the
evaluated results are reported in Table VI and Table VII,
respectively. Both tables show very small differences from
Table V, indicating the outstanding performance of the algo-
rithms designed for both food segmentation and recognition,
and in good agreement with the experimental results reported
in Sections V A and B. It can also be concluded that the
volume estimation accounts for most of the errors in the
whole pipeline (ca. 15%), which may be because of the
following two aspects: 1) the accuracy of the 3D surface
construction algorithm is compromised in case of specular
reflection, e.g. when there is strong light reflected from the
liquid surface; 2) the food density inhomogeneity that imposes
errors when converting the volume to the weight. Despite
these intrinsic and practically inevitable errors, the proposed
pipeline approach still offers unprecedented accuracy of the
food nutrient intake estimation, thanks to the dedicated NIAD
database and proposed AI algorithms.

VI. CONCLUSION

In this paper, we have presented the design, development
and evaluation of a novel AI-based automatic system for
estimating nutrient intake for hospitalised patients in a pipeline
manner. Several novel approaches are put forward, such as
the new multimedia-nutrient combined database that collected
data in the real hospital scenario, the dedicated designed MTC-
Net for food segmentation and the newly proposed few-shot
learning classifier for food recognition. We demonstrated the
prominent performance of the proposed algorithms comparing
with the state-of-art in all the aspects, along with the feasibility

TABLE VI
NUTRIENT INTAKE ESTIMATION WITH CORRECT

SEGMENTATION‡

MAE(SD) MRE (%) Correlation
coefficient**

Calories 46.05 (43.26) kcal 14.64 0.928
CHO 5.33 (5.24) g 18.09 0.935
Fat 2.30 (2.58) g 17.93 0.943

Protein 2.69 (2.61) g 16.16 0.929
Salt 0.42 (0.50) g 17.27 0.944

Fibre 0.64 (0.57) g 17.56 0.939

‡ with daily menu
** p < 0.001

TABLE VII
NUTRIENT INTAKE ESTIMATION WITH CORRECT

SEGMENTATION AND RECOGNITION‡

MAE(SD) MRE (%) Correlation
coefficient**

Calories 43.95 (42.24) kcal 14.06 0.931
CHO 5.05 (5.09) g 16.64 0.942
Fat 2.05 (2.53) g 15.65 0.948

Protein 2.42 (2.44) g 14.59 0.941
Salt 0.39 (0.49) g 15.41 0.950

Fiber 0.52 (0.48) g 14.23 0.959

‡ with daily menu
** p < 0.001

of building an accurate nutrient intake assessment system with
only small quantity training data.

Although the proposed software has been developed and
evaluated using the images captured by the PC driven depth
camera, it can easily be transferred to the smartphone -
equipped with depth sensor for ultimate convenience.

APPENDIX A
ANNOTATION TOOL FOR FOOD SEGMENTATION

The dataset has been annotated using an in-lab developed
segmentation tool. The tool implements the SLIC algorithm
[58] which generates superpixels based on the pixels’ colour
and spatial similarity, effectively color segmenting the image.
Several parameters of the algorithm can be tuned using the
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Parameters of SLIC

Image labels

Selected area

Annotated areas

Apply the selected label 

on the selected area

Parameters of brush-tool

Fig. 11. The interface of the in-lab developed segmentation tool.

user interface (GUI), such as the size and number of the
segments, their compactness etc. (see Fig. 11). Each segment
can then be selected and annotated as one of those predefined
by the user labels. Additionally the user can select or de-select
pixels by using a brush-tool of varying size, which allows
more detailed selection. The selected pixels can once again be
labeled. Finally any selected area can at anytime be un-labeled,
in case of a mistake.
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