
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2019 1

Low-Rank Pairwise Alignment Bilinear Network
For Few-Shot Fine-Grained Image Classification

Huaxi Huang, Student Member, IEEE, Junjie Zhang, Jian Zhang, Senior Member, IEEE,
Jingsong Xu, Qiang Wu, Senior Member, IEEE

Abstract—Deep neural networks have demonstrated advanced
abilities on various visual classification tasks, which heavily rely
on the large-scale training samples with annotated ground-truth.
However, it is unrealistic always to require such annotation in
real-world applications. Recently, Few-Shot learning (FS), as an
attempt to address the shortage of training samples, has made
significant progress in generic classification tasks. Nonetheless, it
is still challenging for current FS models to distinguish the subtle
differences between fine-grained categories given limited training
data. To filling the classification gap, in this paper, we address
the Few-Shot Fine-Grained (FSFG) classification problem, which
focuses on tackling the fine-grained classification under the
challenging few-shot learning setting. A novel low-rank pairwise
bilinear pooling operation is proposed to capture the nuanced
differences between the support and query images for learning
an effective distance metric. Moreover, a feature alignment layer
is designed to match the support image features with query
ones before the comparison. We name the proposed model Low-
Rank Pairwise Alignment Bilinear Network (LRPABN), which is
trained in an end-to-end fashion. Comprehensive experimental
results on four widely used fine-grained classification data sets
demonstrate that our LRPABN model achieves the superior
performances compared to state-of-the-art methods.

Index Terms—Few-Shot, Fine-Grained, Low-Rank, Pairwise,
Bilinear Pooling, Feature Alignment.

I. INTRODUCTION

F INE-GRAINED image classification aims to distinguish
different sub-categories belong to the same entry-level

category such as birds [2], [3], dogs [4], and cars [5]. This
problem is particularly challenging due to the low inter-
category variance yet high intra-category discordance caused
by various object postures, illumination conditions and dis-
tances from the cameras, etc. In general, the majority of
fine-grained classification approaches need to be fed with a
large amount of training data before obtaining a trustworthy
classifier [6]–[11]. However, labeling the fine-grained data re-
quires strong domain knowledge, e.g., only ornithologists can
accurately identify different bird species, which is significantly
expensive compared to the generic object classification task.
Moreover, in some fine-grained data sets such as the Wild-
fish [12] and iNaturalist [13], the data distributions are usually
imbalanced and follow the long-tail distribution, and in some
of the categories, the well-labeled training samples are limited,

Huaxi Huang and Junjie Zhang are co-first authors. Corresponding author:
Jian Zhang, email: Jian.Zhang@uts.edu.au.

Huaxi Huang, Jian Zhang, Qiang Wu and Jingsong Xu are with the
Faculty of Engineering and Information Technology, University of Technology
Sydney, Sydney NSW 2007, Australia. Junjie Zhang is with the School of
Computer Science, The University of Adelaide, Adelaide SA 5005, Australia.

The preliminary version of this work is accepted at IEEE ICME 2019 [1].

Alaskan Dog

Husky Dog

Audi A5

Audi S5

Slot
h

Insect

Lion

Piano

Easy to Recognise A Little Hard to Classify

General Object Recognition with Single Sample Fine-grained Object Recognition with Single Sample

Fig. 1. An example of general one-shot learning (Left) and fine-grained one-
shot learning (Right). For general one-shot learning, it is easy to learn the
concepts of objects with only a single image. However, it is more difficult to
distinguish the sub-classes of specific categories with one sample.

e.g., it is hard to collect large-scale samples of endangered
species. How to tackle the fine-grained image classification
with limited training data remains an open problem.

Human beings can learn novel generic concepts with only
one or a few samples easily. To simulate this intelligent
ability, machine few-shot learning is initially identified by
Li et al. [14]. They propose to utilize probabilistic models
to represent object categories and update them with a few
training examples. Most recently, inspired by the advanced
representation learning ability of deep neural networks, deep
machine few-shot learning [15]–[20] revives and achieves
significant improvements against previous methods. However,
considering the cognitive process of human beings, preschool
students can easily distinguish the difference between generic
concepts like the ‘Cat’ and ‘Dog’ after seeing a few exemplary
images of these animals, but they may be confused about fine-
grained dog categories such as the ‘Husky’ and ‘Alaskan’
with limited samples. The undeveloped classification ability
of children in processing information compared to adults [21],
[22] indicates that generic few-shot methods cannot cope with
the few-shot fine-grained classification task admirably. To this
end, in this paper, we focus on dealing with the Few-Shot
Fine-Gained (FSFG) classification in a ‘developed’ way.

Wei et al. [23] recently introduce the FSFG task. Besides
establishing the FSFG problem, they propose a deep neural
network model named Piece-wise Classifier Mapping (PCM).
By adopting the meta-learning strategy on the auxiliary data
set, their model can classify different samples in the testing
data set with a few labeled samples. The most critical issue
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Fig. 2. The framework of LRPABN under the 5-way-1-shot fine-grained image classification setting. The support set contains five labeled samples for each
category (marked with numbers) and the query image labeled with a question mark. The LRPPABN model can be divided into four components: Encoder,
Alignment Layer, Pairwise Bilinear Pooling, and Comparator. The Encoder extracts coarse features from raw images. Alignment Layer matches the pairs of
support and query. Pairwise Bilinear Pooling acts as a fine-grained extractor that captures the subtle features. The Comparator generates the final results.

in FSFG is to acquire subtle and informative image features.
In PCM, the authors adopt the naive self-bilinear pooling
to extract image representations, which widely used in the
state-of-the-art fine-grained object classification [8], [9], [24].
Then with the operation of bilinear feature grouping, the PCM
model can generate low-rank subtle descriptors of the original
image. Most recently, Li et al. [19] propose a covariance
pooling [10] to distillate the image representation of each
category. These matrix-outer-product based bilinear pooling
operations [19], [23] could extract the second-order image
features and contains more information than traditional first-
order features [24], and thus achieve better performance on
FSFG tasks than generic ones.

It is worth noting that both [19] and [23] employ bilinear
pooling on the input image itself to enhance the informa-
tion of original features, which noted as the self-bilinear
pooling operation. However, when a human identifies the
similar objects, she/he tends to compare them thoroughly in
a pairwise way, e.g., comparing the heads of two birds first,
then the wings and feet last. Therefore, it is natural to enhance
the information during the comparing process when dealing
with FSFG classification tasks. Based on this motivation, we
propose a novel pairwise bilinear pooling operation on the
support and query images to extract the comparative second-
order images descriptors for FSFG.

There are a series of works that address the generic few-
shot classification by learning to compare [15]–[17], among
which the RelationNet [17] achieves state-of-the-art perfor-
mance by combining a feature encoder and a non-linear
relation comparator. However, the matching feature extraction
in the RelationNet only concatenates the support and query
feature maps in depth (channel) dimension and fails to capture
nuanced features for the fine-grained classification.

To address the above issues, we propose a novel end-

to-end FSFG model that captures the fine-grained relations
among different classes. This subtle comparative ability of our
models is inherently more intelligent than merely modeling the
data distribution [17], [19], [23]. The main contributions are
summarized as follows:
• Pairwise Bilinear Pooling. Existing second-order based

FSFG methods [19], [23] enhance the individual encoded
features by directly applying the self-bilinear pooling
operation. However, such an operation fails to capture
more nuanced relations between similar objects. Instead,
we uncover the fine-grained relations between different
support and query image pairs by using matrix outer prod-
uct operation, which is called pairwise bilinear pooling.
Based on the explicit elicitation of correlative informa-
tion of pair samples, the proposed operation can extract
more discriminate features than existing approaches [1],
[17], [23]. More importantly, we introduce a low-rank
approximation for the comparative second-order feature,
where a set of co-variance low-rank transform matrices
are learned to reduce the complexity of the operation.

• Effective Feature Alignment. The main advantage of
self-bilinear based FSFG methods is the enhancement of
depth information for individual spatial positions in the
image, which is achieved by the matrix outer product
operation on convolved feature maps. Inspired by the
self-bilinear pooling operation, we design a simple yet
effective alignment mechanism to match the pairwise
convolved image features. By exploiting the compact
image features alignment, the ablation study shows that
the proposed alignment mechanism is crucial for the sig-
nificant improvements against the baseline model, where
only the alignment loss is applied [1].

• Performance. By incorporating the feature alignment
mechanism and pairwise bilinear pooling operation,
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Fig. 3. Detailed network architectures used in LRPABN. (a) The Embedding network with Alignment Layer. (b) Low-Rank Pairwise Bilinear Pooling Layer.
(c) The Comparator Network. Ii represents the query image, while Ij is the support image, xi, xj are the embedded image features and bi,j represents the
comparative bilinear feature. yi is the predicted label by the comparator.

the proposed model achieves the state-of-the-art perfor-
mances on four benchmark data sets.

The preliminary version of the proposed model was pub-
lished at IEEE ICME-19 [1]. The differences between the
preliminary version and the new materials are mainly from
three aspects:
• A more advanced pairwise pooling operation with a low-

rank constraint is proposed. Instead of directly oper-
ating the matrix-outer-product as the previous version,
we propose to learn multiple transformations for fusing
the input image features. By applying these transfor-
mations, the proposed model generates more compact
and discriminative bilinear features than previous ones,
which is verified by the coding-pooling theory [25], [26].
Moreover, we introduce a low-rank approximation of the
new bilinear model as our final model to further reduce
the computation complexity.

• A novel alignment mechanism is introduced to encour-
age the input feature pairs of the bilinear operation
are matched. Instead of solely relying on the alignment
losses, we incorporate a feature position re-arrangement
layer with the alignment loss to boost the matching
performance.

• More comprehensive experimental results analysis and
ablation studies are conducted, and the proposed model
achieves superior performances against compared models.

The rest of this paper is organized as follows: Section II

gives a brief introduction of related works on Fine-grained
Object classification, Generic Deep Few-shot Learning as well
as recent progress in Fine-grained Few-shot Learning. Section
III presents the proposed LRPABN method, then Section
IV offers the data sets description, experiment setup, and
experimental results analysis. Section V concludes the whole
paper in the last.

II. RELATED WORK

A. Fine-Grained Object Classification

Fine-grained object classification has been a trending topic
in the computer vision research area for years, and most
traditional fine-grained approaches use hand-crafted features
as image representations [27]–[29]. However, due to the
limited representative capacity of hand-crafted features, the
performance of this type of method is moderate. In recent
years, deep neural networks have developed advanced abilities
in the feature extraction and function approximation [30]–
[36], bringing significant progress in the fine-grained image
classification task [6]–[10], [24], [37], [37]–[48].

Deep fine-grained classification approaches can be roughly
divided into two groups: regional feature-based methods [6],
[7], [37], [37]–[44] and global feature-based methods [8]–[10],
[24], [45]–[48]. In fine-grained image classification, the most
informative information generally lies in the discriminate parts
of the object. Therefore, regional feature-based approaches
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tend to detect such parts first and then fuse them to form a
robustness representation of the object. For instance, Zhang et
al. [39] firstly combine the R-CNN [49] into the fine-grained
classifier with a geometric prior, in which the modified R-
CNN generates thousands of proposals, the most discriminate
ones are then selected for the object classification. In [42],
Peng et al. adopt two attention modules to localize objects
and choose the discriminate parts simultaneously. A spectral
clustering method is then employed to align the parts with
the same semantic meaning for the prediction. However, the
classification performance of these models relies heavily on
the parts localization. Getting a well-trained part detector
needs the input of a large amount of subtle annotated samples,
which is infeasible to obtain. Moreover, the sophisticated
regional feature fusion mechanism leads to the increasing
complexity of the fine-grained classifier.

On the contrary, global feature-based fine-grained meth-
ods [8]–[10], [24], [45]–[48] extract the feature from the whole
image without explicitly localize the object parts. Bilinear
CNN model (BCNN) [8] is the first work that adopts matrix
outer product operation on the original embedded features
to generate a second-order representation for fine-grained
classification. Li et al. [10] (iSQRT-COV) further improve the
navie bilinear model by using covariance matrices over the last
convolutional features as fine-grained features. iSQRT-COV
obtains state-of-the-art performance on both generic and fine-
grained datasets.

However, the feature dimensions of the second-order models
are the square fold of the naive ones, to reduce the compu-
tation complexity, Gao et al. [45] propose a compact bilinear
pooling operation, which applies Tensor Sketch [50] to reduce
the dimensions. Kong et al. [46] introduce a low-rank co-
decomposition of the covariance matrix that fatherly decreases
the complexity, while Kim et al. [51] adopt Hadamard product
to redefine the bilinear matrix outer product and proposes a
factorized low-rank bilinear pooling for multimodal learning.
Furthermore, Gao et al. [48] devise a hierarchical approach
for fine-grained classification using a cross-layer factorized
bilinear pooling operation. Inspired by the flexibility and ef-
fectiveness of the Hadamard product for extracting the second-
order features between visual features and textual features
in VQA tasks [51], in our LRPABN model, we propose to
adopt the factorized bilinear pooling to approximate pairwise
second-order statistics for FSFG task. LRPABN achieves bet-
ter performance compared to the previous models.

B. Generic Deep Few-shot Learning

The majority of deep few-shot learning methods [52], [53]
[15]–[20] follow the strategy of meta-learning [54], [55],
which distills the meta-knowledge from batches of auxiliary
few-shot tasks. Each auxiliary task mimics the target few-shot
tasks with the same support and query images’ split. After
episodes of training on auxiliary tasks, the trained model can
converge speedily to an appreciable local optimum on target
data without suffering from the overfitting.

One of the most representative methods is by learning
from fine-tuning [56], MAML [52] designs a meta-learning

framework that determines the transferable weights for the
initialization of the deep neural network. By fine-tuning the
network with the limited training samples, the model can
achieve reliable performance in a few gradient descent update
steps. Moreover, Sachin et al. [53] propose a gradient-based
method that learns well-initialized weights but also an effective
LSTM-based optimizer. Different from this type of approach,
our model is free from retraining during the meta-testing stage.

Another class of few-shot learning methods follows the
idea of learning to compare [15]–[17], [20], [57]. In general,
these approaches consist of two main components: a feature
embedding network and a similarity metric. These methods
aim to optimize the transferable embedding of both auxiliary
data and target data. Consequently, the test images can be
identified by the simple nearest neighbor classifier [15], [16],
deep distance matrix based classifier [17], or cosine-distance
based classifier [20], [57]. Considering the FSFG task requires
the more advanced information processing ability, we propose
to capture more nuanced features from the images pairs other
than the first-order extraction used in leaning to compare
approaches.

C. Few-shot Fine-grained Learning

Most recently, Wei et al. [23] propose the first FSFG model
by employing two sub-networks to tackle the problem jointly.
The first component is a self-bilinear encoder, which adopts
the matrix outer product operation on convolved features to
capture subtle image features, while the second one is a
mapping network that learns the decision boundaries of the
input data. Li et al. [19] further replace the naive self-bilinear
pooing as the covariance pooling. Moreover, they design a
covariance metric to generate relation scores. However, self-
bilinear pooling [19], [23] cannot extract comparative features
between pairs of images, and the dimension of pooled features
is usually large. Pahde et al. [58] propose a cross-modality
FSFG model, which embeds the textual annotations and image
features into a common latent space. They also introduce a dis-
criminative text-conditional GAN for the sample generation,
which selects the representative samples from the auxiliary set.
However, it is both computation and time consuming to obtain
rich annotations for the fine-grained samples.

III. METHODOLOGY

In this section, we present the problem formulation of
FSFG first. Then the proposed LRPABN model is introduced,
including the Low-Rank Pairwise Bilinear Polling operation
and Feature Alignment Layer, which are the core parts of
LRPABN. The detailed network architecture of LRPABN is
given at last.

A. Problem Definition

Given a Fine-Grained target data set T :

T =
{
B = {(xb, yb)}

K×C̃
b=1

}
∪
{
N = {(xv)}Vv=1

}
,

yb ∈ {1, C̃}, x ∈ RN ,B ∩N = ∅, V � K × C̃.
(1)
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For the FSFG task, the target data set T contains two parts: the
labeled subset B and the unlabeled subset N , where samples
from each subset are fine-grained images. The model needs
to classify the unlabeled data xv from N according to a few
labeled samples from B, where yb is the ground-truth label of
sample xb. If the labeled data in the target data set contains K
labeled images for each of C̃ different categories, the problem
is noted as C̃-way-K-shot.

In order to obtain an ideal model on such a data set, Few-
Shot learning usually employs a fully annotated data set, which
has similar property or data distribution with T as an auxiliary
data set A:

A =
{
S = {(xi, yi)}Li=1

}
∪
{
Q = {(xj , yj)}Jj=1

}
,

yi, yj ∈ {1, C}, x ∈ RN ,S ∩ Q = ∅,A ∩ T = ∅,
(2)

where xi/yi and xj/yj represent images and their correspond-
ing labels. In each round of training, the auxiliary data set A
is randomly separated into two parts: support data set S, and
query data set Q. With setting L = K × C̃, we can mimic
the composition of the target data set in each iteration. Then
A is employed to learn a meta-learner F, which can transfer
the knowledge from A to target data T . Once obtained meta-
learner, it can be fine-tuned with labeled target data set B, and
finally, classify the samples from N into their corresponding
categories [1], [15], [17]–[20], [23].

B. The proposed LRPABN

The whole framework of LRPABN is shown in Figure 2,
and detailed architecture is given in Figure 3. Different from
traditional few-shot embedding structures [15]–[17], we add
the Low-Rank Pairwise Bilinear Pooling to construct the fine-
grained image feature extractor. Moreover, we modify the non-
linear comparator [17] and apply it to the fine-grained task.
As the Figure 2 shows, given the support set consisting of
five classes with one image per class, an Encoder that is
trained with the auxiliary data A can extract the first-order
image features from the raw images, then the Alignment
Layer coordinates the embedded feature in support set with
the query image feature in pairs. Next, the Low-Rank Bilinear
Pooling is used to generate the comparative second-order
image representation from the embedded feature pairs. Finally,
the Comparator assigns the optimal label to the query from
support labels in consonance with the similarity between the
query and different support classes.

Pairwise bilinear pooling layer aims to capture the nuanced
comparative features of image pairs by employing the bilinear
pooling operation, which plays a crucial role in determining
the relations between support and query pairs. However, it is
natural that if a couple of inputs are not well-matched, the
pooled features cannot result in the maximum classification
performance gain. Therefore, we introduce an alignment layer
which consists of a Multi-Layer Perceptron (MLP) and feature
alignment losses to guarantee the registration of the pairs.

1) Pairwise Bilinear Pooling Layer: The Bilinear CNN [8]
for the image classification can be defined as a quadruple:

B-CNNs = (EI ,EII , fb, C),
E : I −→ X ∈ Rc×h×w,

fb(I,EI ,EII) =
1

hw

hw∑
i=1

fα,if
T
β,i,

(3)

where EI and EII are encoders for each input stream, fb
is the self-bilinear pooling operation, and C represents the
classifier. I ∈ RH×W×C is the input image with H height,
W width, and C color channels. Through encoder E, the
input image is transformed into a tensor M ∈ Rh×w×c,
which has c feature channels, and h,w indicate the height
and width of the embedded feature map. Given two encoders
EI : I −→ Xα ∈ Rc1×h×w and EII : I −→ Xβ ∈ Rc2×h×w,
fα,i ∈ Rc1×1 and fβ,i ∈ Rc2×1 denote feature vectors at
specific spatial location i in each feature map Xα and Xβ ,
where i ∈ [1, hw]. The pooled feature is a c1× c2 vector. C is
a fully-connected layer trained with cross-entropy loss.

Different from the conventional self-bilinear pooling oper-
ates on pairs of embedded features from the same image, in
our pairwise bilinear pooling layer, the input pair is generated
from the different source sets, i.e., IA ∈ S and IB ∈ Q. With
the encoder Ẽ, the pairwise bilinear pooling fpb can be defined
as:

fpb(IA, IB, Ẽ) = Ẽ(IA)Ẽ(IB)T ,
Ẽ : I −→ X ∈ Rc×hw.

(4)

It is worth noting that in the pairwise bilinear pooling, we
only have one shared embedding function Ẽ. Different from
the self-bilinear pooling that operates on the same input
image, pairwise bilinear pooling uses a matrix-outer-product
on two different samples. Equation (4) is the pairwise bilinear
pooling used in our previous work [1]. However, the pooled
pairwise feature is a c1 × c2 vector, which results in a square
growth of the original feature dimension. For example, with
an embedding network AlexNet [59], c1 = c2 = 512, the
pairwise bilinear pooling generates a 512 × 512 = 262,144-d
representation. As reported in [45], in such a high-dimensional
feature space, less than 5% of dimensions are informative.
Moreover, recent research [26] also indicates that the matrix-
outer-product based bilinear pooling suffers from redundancy
and burstiness issues because of the rank-one property of
bilinear features. The dimensionality of matrix-outer-product
based bilinear features incites the heavy computational loads
as well as burstiness phenomenons.

To overcome this shortcoming of previous proposed pair-
wise bilinear pooling, inspired by the Factorized Bilinear
Pooling [51] applied in the visual-question-answer task, we
further propose a low-rank pairwise bilinear pooling oper-
ation. For the given XA =

[
xA1 ,x

A
2 , · · · ,xAhw

]
and XB =[

xB1 ,x
B
2 , · · · ,xBhw

]
from Equation (4), where xj ∈ Rc×1

stands for any spatial feature vector in X , j ∈ [1, hw]. The
low-rank pairwise bilinear can be formulated as:

zj =
(
xAj
)T
Wix

B
j , (5)
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where Wi ∈ Rc×c is a projection matrix, xAj and xBj are
the feature vectors from XA and XB in the same position
j, separately. Equation (5) fuses these feature vectors into
a common scalar zj . Given a set of projection matrices
W = [W1,W2, · · · ,Wn] ∈ Rc×c×n, the redefined bilinear
feature of any position j is zj = [z1, z2, · · · , zn]T . n is
the dimension of this bilinear feature. Then the comparative
bilinear representation for the original pairs can be represented
as Z = [z1, z2, · · · , zhw]. It is worth noticing that Equation (4)
is different from Equation (5), which adopts projection matrix
Wi in learning the bilinear feature. Moreover, in Equation (5),
the dimension of comparative bilinear feature is n that can be
far smaller than c× c in Equation (4). In this way, the model
gets a low-rank approximation for the original comparative
bilinear feature.

In Equation (5), the learned projectionW requires c×c×n
parameters, where c = 64 and n = 512 in our implementation,
i.e., 2,097,152 parameters in total, which requires a large
amount of memory footprint, inference time, and computa-
tional complexity. To solve this problem, we present a low-
rank approximation of Wi:

zj =
(
xAj
)T
Wix

B
j

=
(
xAj
)T
UiV

T
i xBj

= UTi x
A
j ◦ V Ti xBj ,

(6)

where Ui ∈ Rc×1 and Vi ∈ Rc×1, ◦ denotes the Hadamard
product. Equation (6) is the final form of low-rank pair-
wise bilinear pooling, which applies projection matrix and
matrix factorization to approximate a full low-rank bilinear
model (Equation (5)). In Equation (6), it needs 2nc parame-
ters to generate the pairwise bilinear feature. Therefore, the
spatial complexity of the required parameters is reduced from
O(nc2) to O(nc). It is worth noting that there are two low-
rank approximations applied in the final form of our newly
proposed model LRPABN. One is to tackle the information
redundancy and burstiness issue of the matrix-outer-product
based bilinear pooling (Equation (4) to (5)), the other is to
apply the low-rank matrix factorization to approximate the
learned transformations (Equation (5) to (6)). The proposed
LRPABN is different from [48], [51], where [51] adopts the
factorized bilinear pooling to fuse the multi-modal features,
and [48] operates on convolutional features of the same image.
Our method conducts on pairs of support and query images.
To our best knowledge, LRPABN is the first work that extracts
the low-rank bilinear feature from pairs of distinct images for
FSFG tasks.

Theoretically, the previous proposed model [1] belongs to
the category of matrix-outer-product bilinear pooling, which
has been proved as a similarity-based coding-pooling [25],
[26]. As [26] (Corollary 2) indicates that such bilinear pooling
has the unstable dictionary, which is determined by the input
pairs, therefore it is inconsistent for all data. This local
dictionary can not capture the global geometry of the whole
data space, which results in burstiness issues. However, the
newly proposed low-rank pairwise bilinear model (6) is a
type of factorized bilinear coding (Equation (24) in [26]),
which learns a global dictionary from the entire data space

in a scalable way, thus achieves better performance than the
previous one.

2) Feature Alignment Layer: The self-bilinear pooling op-
erates on the same image, which means in any spatial location
of the embedded feature pairs, the operating features are
entirely aligned. However, since the proposed pairwise bilinear
pooling operates on different inputs, the encoded features may
not always be matched. To overcome this obstacle, in our
previous work [1], we devise two alignment losses to match
the input pairs in the embedding space simultaneously during
the training stage, which aims at encouraging the embedding
network to generate well-matched features in the testing stage.
However, it may be hard to obtain the desired embedding
network that fully aligns feature pairs by merely adopting the
alignment losses.

Therefore, we design a new feature alignment mechanism
inspired by the PointNet [60]. Given a position transform
function T and the encoded feature X = [x1,x2, · · · ,xhw],
the transformed feature can be computed as follows:

X ′ = XT,
s.t. TTT = I,

(7)

where T ∈ Rhw×hw and I is an identity matrix. The
transformed feature is noted as X ′ = [x′1,x

′
2, · · · ,x′hw],

in which only the positions of the original feature vectors
are rearranged. The transform matrix can be learned with a
shallow neural network. Moreover, to ensure the effectiveness
of the alignment, we further design two feature alignment
losses as follows:

Alignloss1(IA, IB, Ẽ) =MSE(Ẽ(IA), Ẽ(IB)T), (8)

where Ẽ is the feature encoder. The first Alignloss1 loss is
a rough approximation of two embedded image descriptors
that minimizing the Euclidean distances of two transformed
features.

Alignloss2(IA, IB,O) =MSE(O(IA),O(IB)T),

O(I) =
c∑
1

Ẽ(I), Ẽ : I −→ X ∈ Rc×hw.
(9)

The second Alignloss2 loss is a more concise feature
alignment loss. Inspired by the pooling operation, we sum all
the embedded features (X ∈ Rc×hw) along with the channel
dimension (Rc) first. And then, we measure the MSE of
summed features. By training with the proposed alignment
losses, we encourage the model to automatically learn the
matching features to generate a better pairwise bilinear feature.
It is worth noting that the alignment mechanism utilizes
feature position rearrangement matrix T on one image features
(Ẽ(IB)) to match the target feature (Ẽ(IA)). IB can be either
the support or query image, and in our implementation, we
choose the support image as IB. Under the supervision of
alignment losses, the model can generate more compactly
matched feature pairs compared to the previous method.
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3) Comparator: As Figure 2 indicates, after passing
through the above layers, the pairwise comparative bilinear
features are sent to a comparator. This module aims to learn the
relations between the query images and support classes. In the
one-way-K-shot setting, the support classes are represented by
a single image, where for C̃-way-K-shot setting, the support
classes are computed as the sum value of embedded features of
K images in each class, i.e., for each query image, the model
generates C̃ comparative bilinear features corresponding to
each class. For a pair of query image i and support class j,
the comparative bilinear feature can be represented as Zi,j ,
where Z = [z1, z2, · · · , zhw], the relation score of i and j is
computed as:

ri,j = C(Zi,j),
j = 1, 2, . . .W ; i = 1, 2, . . . ,K × C̃,

(10)

where C is the comparator, and ri,j is the relation score of
query i and class j.

4) Model Training: The training loss L in our bilinear
comparator is the MSE loss, which regresses the relation score
to the images label similarity. At a certain iteration during the
episodic training, there exists m query features and n support
class features in total, L is thus defined as:

L =

m∑
i=1

n∑
j=1

(ri,j − δ (yi = yj))
2
, (11)

where δ (yi = yj) is the indicator, it equals to one when
yi = yj and zeroes otherwise. The LRPABN has two optional
alignment losses Alignloss1 and Alignloss2 . We back-propagate
the gradients when the alignment losses are computed imme-
diately. That is, during the training stage, the model will be
updated twice in one iteration.

C. Network Architecture

The detailed network architecture is shown in Figure 3.
It consists of three parts: Embedding Network, Low-rank
Bilinear Pooling Layer, and Comparator Network.

Embdeeding Network: For a fair comparison with the
state-of-the-art generic few-shot and FSFG approaches, we
adopt the same encoder structure in [15]–[19]. It consists of
four convolutional blocks, where each block contains a 2D
convolutional layer with a 3× 3 kernel and 64 filters, a batch
normalization layer, and a ReLU layer. Moreover, for the first
two convolutional blocks, a 2×2 max-pooling layer is added.
For simplicity, we integrate the feature alignment layer into
the embedding network as the first-order feature extractor,
indicated in Figure 3.(a). Unlike the alignment mechanism
used in [42], [60], we devise a simple two layers MLP with
the Regulation (7). As our alignment mechanism is inspired
by PointNet [60], which originally adopts a deeper network
to learn the transformation matrix T. However, in FSFG, we
find that a shallow MLP network is more efficient in learning a
good transformation T. Besides, two optional alignment losses
(8), (9) are applied in the alignment layer to generate the well-
matched pairwise features.

Low-rank Bilinear Pooling Layer: For the Low-Rank
Pairwise Bilinear Pooling layer in Figure 3.(b), we use a

TABLE I
THE CLASS SPLIT OF FOUR FINE-GRAINED DATA SETS, WHICH IS THE

SAME AS PCM [23]. Ctotal IS THE ORIGINAL NUMBER OF CATEGORIES IN
THE DATA SETS, CA IS THE NUMBER OF CATEGORIES IN SEPARATED
AUXILIARY DATA SETS AND CT IS THE NUMBER OF CATEGORIES IN

TARGET DATA SETS.

data set CUB Birds DOGS CARS NABirds

C total 200 120 196 555
CA 150 90 147 416
CT 50 30 49 139

convolutional layer with 1 × 1 kernel followed by the batch
normalization and a ReLU layer. The Hadamard product and
normalization layers are appended to generate the comparative
bilinear features.

Comparator Network: The comparator is made up of two
Fully Connected (FC) layers. A ReLU, as well as a Sigmoid
nonlinearity layer, are applied to generate the final relation
scores, as Figure 3.(c) shows.

IV. EXPERIMENT

In this section, we evaluate the proposed LRPABN on four
widely used fine-grained data sets. First, we give a brief intro-
duction to these data sets. Then we describe the experimental
setup in detail. Finally, we analyze the experimental results of
the proposed models and compare them with other few-shot
learning approaches. For a fair comparison, we conduct two
groups of experiments on these data sets, for the first group,
we follow the setting, which Wei et al. [23] and [1] used,
while for the second group, we follow the newest settings in
the recent few-shot methods [19], [20].

A. Datasets

There are four data sets used to investigate the proposed
models:
• CUB Birds [2] contains 200 categories of birds and a

total of 11,788 images.
• DOGS [4] contains 120 categories of dogs and a total of

20,580 images.
• CARS [5] contains 196 categories of cars and a total of

16,185 images.
• NABirds [3] contains 555 categories of north American

birds and a total of 48,562 images.
In Section III-A, we randomly divide these data sets into two
disjoint sub-sets: the auxiliary data set A, and the target data
set T . For the first group of experiments, we use the splits
of PCM [23], as shown in Table I. For the second group, we
adopt the data set splits of Li’s [19], [20], as indicated in
Table II. Both of these methods do not use the NABirds data
set. Thus, for this data set only, we do our splits.

B. Experimental Setup

In each round of training and testing, for the one-shot image
classification setting, the support sample number in each class
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equals 1 (in both B and S, K = 1). Therefore, we use
the embedded features of these support samples as the class
features, i.e., Ẽ(IB). For the few-shot setting, we extract the
class features by summing all the embedded support features
in each category. In our experiments, we compare the below
FS as well as FSFG approaches:

The state-of-the-art methods:
• RelationNet [17], a state-of-the-art generic few-shot

method proposed in CVPR 2018. It uses a mini-network
to learn the similarity between the query image and the
support class.

• DN4 [20], the newest generic few-shot method pub-
lished in CVPR 2019. By using a deep nearest neighbor
neural network, DN4 can aggregate the discriminative
information of local features and thus improve the final
classification performance.

• PCM [23], the first FSFG model published in IEEE
TIP 2019. It adopts a self-bilinear model to extracts the
fine-grained features of the image and achieves excellent
performance on several FSFG tasks.

• CovaMNet [19], a newest FSFG model published in
AAAI 2019. It replaces the bilinear pooling with co-
variance bilinear pooling and achieves state-of-the-art
performance on FSFG classification.

The PABN models [1], our previous work for FSFG
tasks that uses pairwise bilinear pooling (4) without feature
alignment transform function (7):
• PABNw/o, this model does not use alignment loss on

embedded pair features.
• PABNniv and PABNcpt are the models that adopt

the alignment loss Alignloss1 and Alignloss2 for fea-
ture alignment, separately. As Section III-B2 dis-
cussed, Alignloss1 loss is a naive alignment loss where
Alignloss2 is a more compact loss.

The PABN+ models, these models apply the proposed
alignment layer into PABN models, which aims to investigate
the effectiveness of the proposed feature alignment transform
function (7):
• PABN+niv and PABN+cpt are the models that adopt

the alignment loss Alignloss1 and Alignloss2 in the
alignment layer (7).

• PABN+cons adopts Cosine loss on the embedded features
in the alignment layer (7).

The LRPABN models, we replace the naive pairwise
bilinear pooling (4) with the proposed low-rank bilinear
pooling (6), and apply the proposed novel feature alignment
layer (7) into the LRPABN models:
• LRPABNniv and LRPABNcpt, which use the alignment

loss Alignloss1 and the loss Alignloss2 in the alignment
layer, respectively.

In the first experiment, the LRPABN models are compared
with RelationNet, PCM, and our previous proposed PABN
models. We follow the data splits (Table I) of PCM and PABN.
All of these approaches do not contain the validation data set.

In the second experiment, besides the RelationNet, PABN+
models, and the proposed LRPABN models, we compare the
newest state-of-the-art few-shot method DN4 and the newest

TABLE II
THE CLASS SPLIT OF FOUR FINE-GRAINED DATA SETS WHICH IS THE SAME

AS [19], [20]. Ctotal IS THE ORIGINAL NUMBER OF CATEGORIES IN THE
DATA SETS, CA.Train IS THE NUMBER OF TRAINING DATA CATEGORIES
IN THE AUXILIARY DATA SETS, CA.V al IS THE NUMBER OF VALIDATION

DATA CATEGORIES IN SEPARATED AUXILIARY DATA SETS AND CT IS THE
NUMBER OF CATEGORIES IN TARGET DATA SETS.

data set CUB Birds DOGS CARS NABirds

C total 200 120 196 555
CA.Train 120 70 130 350
CA.V al 30 20 17 66
CT 50 30 49 139

FSFG approach CovaMNet. To fair compare, we use the same
data splits (Table II) and the training strategy of DN4 and
CovaMNet.

For all the comparing methods, we conduct both 5-way-
1-shot and 5-way-5-shot classification experiments. In the
training stage of the first group of experiments, both 5-way-
1-shot and 5-way-5-shot experiments have 15 query images,
which means there are 15 × 5 + 1 × 5 = 80 images and
15× 5+5× 5 = 100 images in each mini-batch, respectively.
For the testing stage, we follow the RelationNet [17] that have
one query for 5-way-1-shot and five queries for 5-way-5-shot
in each mini-batch. In both the training and testing stages of
the second group of experiments, we randomly select 15 and
10 queries from each category for the 5-way-1-shot and 5-
way-5-shot settings, which is the same setting with [19], [20].

For fair comparisons, we select the optimal models using
the same validation strategies as [17] for the first group of
experiments and [19], [20] for the second group of experi-
ments, separately. In the first group, we randomly sample and
construct 100,000 episodes to train the LRPABN and PABN+
models. In each episode, there only contains one learning task,
while in the second group, we randomly select 10,000 episodes
for training, and in each episode, 100 tasks are randomly
batched to train the models. For LRPABN models, we set the
dimension of the pairwise bilinear feature as 512, where the
feature dimension of PABN and PABN+ is 64 × 64 = 4096.
In training, the learning rate of parameters is decayed by 0.5
every 10,000 epochs using the StepLR schedule in PyTorch.
We resize all the input images from all data sets to 84 × 84.
All experiments use Adam optimize method with an initial
learning rate of 0.001, and all models are trained end-to-end
from scratch.

C. Results and Analysis

To the best of our knowledge, there are only a few methods
proposed for FSFG image classification [1], [19], [23], [58],
[61]. [58] uses larger auxiliary data set than our methods, and
[61] is only applied for image retrieval tasks. It is unfair to
compare these methods directly. Therefore we compare our
LRPABN with PCM [23], PABN [1], and CovaMNet [19].
We also compare our methods with the state-of-the-art generic
few-shot learning method RelationNet [17] and DN4 [20]. The
original implementation of RelationNet does not report the
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TABLE III
FEW-SHOT CLASSIFICATION ACCURACY (%) COMPARISONS ON FOUR FINE-GRAINED DATA SETS. THE SECOND-HIGHEST-ACCURACY METHODS ARE

HIGHLIGHTED IN BLUE COLOR. THE HIGHEST-ACCURACY METHODS ARE LABELED WITH THE RED COLOR. ‘-’ DENOTES NOT REPORTED. ALL RESULTS
ARE WITH 95% CONFIDENCE INTERVALS WHERE REPORTED.

Methods
CUB Birds CARS DOGS NABirds

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PCM [23] 42.10±1.96 62.48±1.21 29.63±2.38 52.28±1.46 28.78±2.33 46.92±2.00 - -

RelationNet 63.77±1.37 74.92±0.69 56.28±0.45 68.39±0.21 51.95±0.46 64.91±0.24 65.17±0.47 78.35±0.21

PABNw/o 65.99±1.35 76.90±0.21 55.65±0.42 67.29±0.23 54.77±0.44 65.92±0.23 67.23±0.42 79.25±0.20

PABNniv 65.04±0.44 76.46±0.22 55.89±0.42 68.53±0.23 54.06±0.45 65.93±0.24 66.62±0.44 79.31±0.22

PABNcpt 66.71±0.43 76.81±0.21 56.80±0.45 68.78±0.22 55.47±0.46 66.65±0.23 67.02±0.43 79.02±0.21

PABN+niv 66.68±0.42 76.83±0.22 55.35±0.44 67.67±0.22 54.51±0.45 66.60±0.23 66.60±0.44 81.07±0.20

PABN+cpt 65.44±0.43 77.19±0.22 57.36±0.45 69.30±0.22 54.66±0.45 66.74±0.22 67.39±0.43 79.95±0.21

PABN+cos 66.45±0.42 78.34±0.21 57.44±0.45 68.59±0.22 54.18±0.44 65.70±0.23 66.74±0.44 80.58±0.20

LRPABNniv 64.62±0.43 78.26+0.22 59.57±0.46 74.66±0.22 54.82±0.46 66.62±0.23 68.40±0.44 80.17±0.21

LRPABNcpt 67.97±0.44 78.04±0.22 63.11±0.46 72.63±0.22 54.52±0.47 67.12±0.23 68.04±0.44 80.85±0.20

TABLE IV
FEW-SHOT CLASSIFICATION ACCURACY (%) COMPARISONS ON FOUR FINE-GRAINED DATA SETS. THE HIGHEST-ACCURACY AND

SECOND-HIGHEST-ACCURACY METHODS ARE HIGHLIGHTED IN RED AND BLUE, SEPARATELY. ALL RESULTS ARE WITH 95% CONFIDENCE INTERVALS
WHERE REPORTED.

Methods
CUB Birds CARS DOGS NABirds

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

RelationNet 59.82±0.77 71.83±0.61 56.02±0.74 66.93±0.63 44.75±0.70 58.36±0.66 64.34±0.81 77.52±0.60

CovaMNet 58.51±0.94 71.15±0.80 56.65±0.86 71.33±0.62 49.10±0.76 63.04±0.65 60.03±0.98 75.63±0.79

DN4 55.60±0.89 77.64±0.68 59.84±0.80 88.65±0.44 45.41±0.76 63.51±0.62 51.81±0.91 83.38±0.60

PABN+niv 63.56±0.79 75.23±0.59 53.39±0.72 66.56±0.64 45.64±0.74 58.97±0.63 66.96±0.81 80.73±0.57

PABN+cpt 63.36±0.80 74.71±0.60 54.44±0.71 67.36±0.61 45.65±0.71 61.24±0.62 66.94±0.82 79.66±0.62

PABN+cos 62.02±0.75 75.35±0.58 53.62±0.73 67.15±0.60 45.18±0.68 59.48±0.65 66.34±0.76 80.49±0.59

LRPABNniv 62.70±0.79 75.10±0.61 56.31±0.73 70.23±0.59 46.17±0.73 59.11±0.67 66.42±0.83 80.60±0.59

LRPABNcpt 63.63±0.77 76.06±0.58 60.28±0.76 73.29±0.58 45.72±0.75 60.94±0.66 67.73±0.81 81.62±0.58

results on four fine-grained data sets. For fair comparisons,
we use the open-source code of the RelationNet1 to conduct
the FSFG image classification on these data sets.

In the first group of experiments, we compute both one-
shot and five-shot classification accuracies on the four data
sets by averaging on 10,000 episodes in testing. We show the
experimental results of 10 compared models in Table III. As
the table shows, the proposed LRPABN models achieve sig-
nificant improvements on both 1-shot and 5-shot classification
tasks on all data sets compared to the state-of-the-art FSFG
methods and generic few-shot methods, which indicates the
effectiveness of the proposed framework.

More specifically, the LRPABN, PABN+, and PABN mod-

1https://github.com/floodsung/LearningToCompare FSL

els [1] both obtain around 10% to 30% higher in classification
accuracy than PCM [23], which demonstrates that the com-
parative pairwise bilinear feature outperforms the self-bilinear
feature on FSFG tasks. Besides, the pairwise bilinear feature-
based approaches achieve better classification performances
than RelationNet [17] that validates the extraction of second-
order image descriptors surpasses the naive concatenation of
feature pairs [17] for FSFG problems.

From Table III, compared to PABN models, PABN+ and
LRPABN models obtain a definite classification performance
boost. For instance, the PABN+niv gains 1.64% and 0.37%
improvements over PABNniv in one-shot and five-shot setting
on CUB Birds data, while LRPABNcpt achieves 1.26% and
1.23% improvements over PABNcpt in one-shot and five-shot
setting on CUB Birds data set. These results demonstrate

https://github.com/floodsung/LearningToCompare_FSL


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2019 10

TABLE V
ABLATION STUDY OF LRPABN WITH DIFFERENT COMPONENTS. THE RESULTS ARE REPORTED WITH 95% CONFIDENCE INTERVALS. MODEL SIZE
INDICATES THE NUMBER OF PARAMETERS FOR EACH MODEL, AND THE INFERENCE TIME IS THE TESTING TIME FOR EACH INPUT QUERY IMAGE.

Methods
CUB data set

1-shot (%) 5-shot (%) Model Size Inference Time (10−3 s) Bilinear Feature Dim

PABNcpt [1] 66.71±0.43 76.81±0.21 375,361 8.65 4096

PABN+cpt 65.44±0.43 77.19±0.22 505,682 8.94 4096

PABNnew 67.39±0.43 78.87±0.21 2,373,819 78.40 512

LRPABN 66.56±0.43 77.60±0.22 213,930 2.23 512

LRPABNonly cpt 66.72±0.44 77.98±0.21 213,930 2.23 512

LRPABNcpt 67.97±0.44 78.04±0.22 344,251 2.53 512

DN4 [20] 60.02±0.85 79.64±0.67 112,832 15.20 -

TABLE VI
DISCUSSION ABOUT INPUT IMAGE SIZE FOR FSFG.

Methods

CUB data set

1-shot (%) 5-shot (%) Image Size

PCM:AlexNet [23] 42.10±1.96 62.48±1.21 224 × 224

LRPABNcpt:AlexNet 59.34±0.48 69.08±0.24 224 × 224

LRPABNcpt:AlexNet 66.19±0.46 75.05±0.23 448 × 448

LRPABNcpt:Conv4 67.97±0.44 78.04±0.22 84 × 84

DN4:Conv4 [20] 60.02±0.85 79.64±0.67 84 × 84

that the effectiveness of the proposed feature alignment layer.
It can be observed from Table III that LRPABN models
achieve the best or second-best classification performance
on nearly all data sets compared to other methods under
various experimental settings. For CARS data, the LRPABNcpt
obtains 5.67%, 6.31%, 6.83% significant improvements over
PABN+cos, PABNcpt and RelationNet on 1-shot-5-way task,
while achieves 5.36%, 5.88%, 6.27% improvements against
PABN+cpt, PABNcpt and RelationNet on 5-shot-5-way setting,
which validates the effectiveness of our low-rank pairwise
bilinear pooling. It is worth noting that the dimension of
the pairwise bilinear feature in LRPABN is 512, where the
corresponding feature dimension of PABN and PABN+ is
4096. LRPABN models adopt the low-rank factorized bi-
linear pooling operation, which can learn a set projection
transform functions fusing the feature pairs, as discussed in
Equation (6). Each of the projection function represents a
pattern of coalescing the image pairs in feature channels over
all the matching positions. Meanwhile, the naive pairwise
bilinear pooling in the PABN and PABN+ approaches only
applies the matrix outer product on feature pairs once to
merge them. Therefore, the LRPABN models can obtain more
types of feature extraction than PABN and PABN+ models,
which in turn achieves better performance with smaller feature
dimensions.

For a further analysis of our models, we conduct an addi-
tional experiment on these four data sets comparing the LR-

PABN models with DN4 and CovaMNet. In this experiment,
we also compare the PABN+ models. Moreover, we use the
same setting to rerun the RelationNet on four data sets as
the baseline method. We follow the same data set split with
DN4 and CovaMNet, the original papers of these two papers
do not report the results on CUB Birds (CUB-2011) [2] and
NABirds [3], so we use the open released codes of DN42 and
CovaMNet3 to get the results. During the test, 600 episodes
are randomly selected from the data.

Table IV presents the average accuracies of different models
on the novel classes of the fine-grained data sets. Both the
one-shot and five-shot classification results are reported. As
the table shows, the proposed LRPABN models get steadily
and notably improvements on almost all fine-grained data sets
for different experimental settings. More detailed, compared
with CovaMNet, our proposed models achieve plainly growth
performances on CUB Birds, CARS, and NABirds data sets
on both one-shot and five-shot setting. Especially for NABirds
data, the LRPABNcpt obtains 7.70% and 5.99% gain over
CovaMNet for one-shot and five-shot setting, respectively.
These results again firmly prove that the proposed pairwise
bilinear pooling is superior compared to the self-bilinear
pooling operation. Meanwhile, the feature alignment layer
further boosts the final performance.

For the comparisons against the DN4 method, from Ta-
ble IV, LRPABN models obtain the highest accuracy on one-
shot setting on CUB Birds, CARS, NABirds data sets, and
get second best results on DOGS data, where DN4 performs
poorly in one-shot tasks on almost all data sets. For the five-
shot setting, DN4 achieves the highest classification accuracy
on all four data sets, while LRPABNcpt achieves the second-
highest performance on CUB Birds, CARS, and NABirds.
We are surprised to observe that in the one-shot-five-way
task on the NABirds data, LRPABNcpt gains 15.92% over
DN4. Nevertheless, DN4 gets 15.36% boosts over LRPABNcpt
under the five-shot-five-way setting on the CARS data set.
That is, the proposed LRPABN method holds a tremendous
advantage over DN4 for one-shot classification tasks but
slightly inferior to DN4 for five-shot classification.

2https://github.com/WenbinLee/DN4
3https://github.com/WenbinLee/CovaMNet

https://github.com/WenbinLee/DN4
https://github.com/WenbinLee/CovaMNet
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Fig. 4. Some visual classification results of comparing methods over CUB Birds data set. All the approaches use the same data batch under the five-way-
one-shot setting, and for each class, we randomly select five query images as the testing data. We adopt five colors to label the support classes separately. As
to the query images, we label the images with the color corresponding to the class label predicted by different models.

The reason for this is that DN4 uses a deep nearest neighbor
neural network to search the optimal local features in the
support set as the support classes’ feature for a given query
image. For the target query features (e.g., a set of local
features), the algorithm selects the top k nearest local features
in the whole support data set according to the cosine similarity
between query local features and support local features. That
is, the more image in the support classes, the better the class
feature will be generated. Thus, for five-shot classification,
the DN4 outperforms LRPABN, where under the one-shot
setting, DN4 has smaller support features to extract a good
representation of the class feature. More importantly, our
model is more efficient than DN4. Specifically, under the C-
way-K-shot setting, in the inference stage, for each query
image, DN4 has h2 × w2 × K × C × Ocos computations to
predict its label, while LRPABN only needs h×w×C×Ocomp
computations. h and w denote the height and width of the
feature map, Ocos means the cosine similarity computation
used in DN4, and Ocomp represents the comparator compu-
tation in LRPABN. Since h × w × K × Ocos � Ocomp,
DN4 is much slower than LRBPAN during both training and
testing, as seen from Table V, DN4 costs 15.20 ×10−3 s

for each query, while LRPABN only needs 2.23 ×10−3 s,
which is approximately seven times faster. Moreover, without
considering the computation load, our initial low-rank pairwise
bilinear model PABNnew (Equation (5)) can also achieve the
comparable performance against DN4 under both one-shot
and five-shot setting, i.e., 78.87% for PABNnew compared
to 79.64% for DN4 under the five-shot settings. On the
other hand, in many practical scenarios, such as endangered
species protection, we may only get a one-labeled sample.
With higher accuracy under the one-shot setting, our method
can achieve more reliable performances compared to DN4
under such circumstances. It indicates the practical value of
our models. Considering the proposed LRPABN summing the
image features in each category as the class feature, how
to generate a good representation of category would further
improve the classification performance of our methods.

The classification examples of LRPABN, PABN+, and Rela-
tionNet models are shown in Figure 4. We select LRPABNcpt
and PABN+cpt as the representative of LRPABN and PABN+
approaches. To investigate the low-rank approximation, we
set low-rank comparative feature dimensions as 512 and 128
for LRPABN-512 and LRPABN-128 models separately. By
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Fig. 5. The pairwise bilinear feature dimension selection experiment. In each sub-figure, the horizontal axis denotes the dimension of the pairwise bilinear
feature and the vertical axis represents the test accuracy rate. 5a is the one-shot experiment and 5b is the five-shot experiment on CUB data set.

(a) By RelationNet (b) By LRPABN-Dim-128 (c) By PABN+ (d) By LRPABN-Dim-512

Fig. 6. Visualization of the comparative feature generated by different fusion mechanism in 2D space using t-SNE [62]. Each dot represents a query image that
is numeric and marked with different colors according to the real labels. For each class, we randomly select thirty query images to conduct this experiment.
The visualization is based on the CUB data set under the 5-way-5-shot setting. (a) shows the result conducted by RelationNet, (b) shows the result conducted
by LRPABNcpt, and the dimension of the comparative bilinear feature is 128, denoted as LRPABN-Dim-128, (c) shows the result conducted by PABN+cpt

model and (d) shows the result conducted by LRPABNcpt, and the dimension of the comparative bilinear feature is 512, denoted as LRPABN-Dim-512.

sending a fixed testing batch through the model, which consists
of one support sample and five query samples for each of
five classes, the prediction of LRPABN-512 only contains
six mislabels in the entire 25 queries, while the prediction
of LRPABN-128, PABN+ and RelationNet have 7, 8 and 10
wrong labels separately. That validates the effectiveness of
the LRPABN models. We also find that in some classes like
Nighthawk and Harris Sparrow, the high intra-variance and
low inter-variance confuse all the models.

D. Ablation studies

Following the data split used in [1], [23], we conduct
several experiments to investigate the different components of
the proposed model, the experimental results are shown in
Table V. We analysis our methods from various aspects:

Low-Rank Pairwise Bilinear Pooling: First, we replace
previous pairwise bilinear pooling (Equation (4)) with Equa-
tion (5) as PABNnew. As seen in Table V, PABNnew outper-
forms PABNcpt on both 1-shot and 5-shot tasks with a lower
dimension, which indicates the effectiveness of our proposed
initial Low-Rank pairwise pooling (Equation (5)). However,
using Equation (5), the model needs to learn a n × c × c
transformation tensor W (discussed in Section III-B), which
significantly increases the model size and inference time.

Thus, we employ Equation (6) to approximate the transforma-
tion tensor as LRPABN. We observe that this approximation
achieves superior performance against our previous PABNcpt
with a reduced model size as well as a shorter bilinear feature
dimension. Specifically, as observed in Table V, the proposed
LRPABN costs 2.23 ×10−3 s to identify a query image with
a 213K model size, while the previous ICME model PABNcpt
requires 8.65 ×10−3 s and 375K parameters. Moreover, the
inference time of LRPABN is 2.23×10−3 s, while PABNnew
costs 78.40 ×10−3 s for each query image. That is, our final
low-rank pairwise pooling model LRPABN is more advanced
than previous PABN models and much more efficient than
PABNnew model.

Alignment Mechanism: To investigate the effectiveness of
the proposed alignment mechanism. We compare PABNcpt
and PABN+cpt. Besides, we adopt the proposed alignment loss
Alignloss2 in Equation (9) into LRPABN as LRPABNonly cpt.
As seen from Table V, cooperating with the position transform
function T, PABN+cpt and LRPABNcpt outperform PABNcpt
and LRPABNonly cpt, respectively. For instance, under the
5-shot setting, the classification accuracy of PABN+cpt is
77.19% compared to 76.81% of PABNcpt.

Input Image Size: It is reported that a higher resolution
of the input image can capture a more discriminative feature
for Fine-grained classification [8]–[10]. However, few-shot
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learning models [15]–[17] usually adopt a low input resolution,
e.g., 84 × 84. For a fairness comparison with generic few-shot
learning approaches, in Section IV-B, we set the input image
size to 84 × 84. To further investigate the affects of input
size, we follow [23] to replace the shallow embedding network
Conv4 [15]–[17] with AlexNet [59] as LRPABNcpt:AlexNet.
Moreover, we choose two resolutions for the input images,
which are widely used in Fine-grained classification. As Ta-
ble VI shows, with AlexNet, a higher resolution 448 × 448
brings a significant performance boost compared to lower input
size 224 × 224, which validates that a higher input resolution
can generate a more subtle comparative feature for FSFG. We
also observe that the accuracy of the AlexNet-based methods
performs worse than Conv4-based methods. A high input
resolution always accompanied by a deep embedding network
like AlexNet to extract the informative feature. However,
training a deeper embedding network with limited labeled
samples is easier to lead the over-fitting problem.

Bilinear Feature Dim: For the feature dimension selec-
tion, we change the number of dimensions as 16, 32, 64,
128, 256, 512, 1024, and 2048 for both 1-shot and 5-shot
classification tasks on CUB Birds data. The model we used
for this experiment is LRPABNcpt. The results are shown in
Figure 5, it can be observed that as the feature dimension gets
large, the test accuracy gradually improves to a peak first,
then it goes through a drastic drop. For the 1-shot setting, the
performance changes smoothly when the dimension is below
1024. For the 5-shot task, the variation of performance is
relatively oscillatory, yet it can grow fast and steadily, with the
dimension increasing. Moreover, we find that even with a very
compact low-rank approximation (i.e., the dimension is 16),
the model can still achieve a decent classification performance,
which fatherly verifies the stability of the proposed method.
When the dimension goes too large, the model performs
poorly, and this may be caused by the increased complexity
of the framework can not model the data distribution well
with few training samples. As [45] discussed, for self-bilinear
features, less than 5% of dimensions are informative. For
FSFG, the best feature dimensions for LRPABN are 256 and
512 in the experiments, which are around 5% to 10% of the
entire self-bilinear feature dimension.

t-SNE visualization: The t-SNE [62] visualization for
different comparative features is presented in Figure 6. We
randomly select five support images and thirty query images
per category from CUB Birds data to conduct the five-way-
five-shot tasks. The original comparative feature dimension of
RelationNet is 128 × 3 × 3. We use the convolved feature
before the first fully-connected layer in classifier as the final
comparative feature with dimension size 576. The comparative
feature of PABN+ is 64 × 64 = 4096, and we choose
LRPABNcpt with comparative dimension 128 and 512 sepa-
rately (denoted as LRPABN-Dim-128 and LRPABN-Dim-512)
for comparison. As the figure shows, the learned LRPABN-
Dim-512 feature, which can be grouped into five classes cor-
rectly, outperforms others, the discriminative performance of
LRPABN-Dim-128 and PABN+ are similar, which outperform
RelationNet’ feature. The intuitive visualization results among
the above methods again validate the superior capacity of the

proposed low-rank pairwise bilinear features for FSFG tasks.

V. CONCLUSION

In this paper, we propose a novel few-shot fine-grained
image classification method, which is inspired by the advanced
information processing ability of human beings. The main
contribution is the low-rank pairwise bilinear pooling oper-
ation, which extracts the second-order comparative features
for the pair of support images and query images. Moreover,
to get a more precise comparative feature, we propose an
effective feature alignment mechanism to match the embedded
support image features with query ones. Through comprehen-
sive experiments on four fine-grained datasets, we verify the
effectiveness of the proposed method. As the future work, we
will investigate more sophisticated alignment mechanisms that
applies the feature transformation to support and query images
jointly.
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