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Abstract—Learning 3D skeleton-based representation for ges-
ture recognition has progressively stood out because of its
invariance to the viewpoint and background dynamics of video.
Typically, existing techniques use absolute coordinates to de-
termine human motion features. The recognition of gestures,
however, is irrespective of the position of the performer, and
the extracted features should be invariant to body size. In
addition, when comparing and classifying gestures, the problem
of temporal dynamics can greatly distort the distance metric. In
this paper, we represent a 3D skeleton as a point in the special
orthogonal group SO(3) product space that expressly models
the 3D geometric relationships between body parts. As such, a
gesture skeletal sequence can be described by a trajectory on a
Riemannian manifold. Following that, we propose to generalize
the transported square-root vector field to obtain a time-warping
invariant metric for comparing these trajectories (identifying
these gestures). Moreover, by specifically considering the labeling
information with encoding, a sparse coding scheme of skeletal
trajectories is presented to enforce the discriminant validity of
atoms in the dictionary. Experimental results indicate that the
proposed approach has achieved state-of-the-art performance on
many challenging gesture recognition benchmarks.

Index Terms—3D skeleton representation, gesture recognition,
Riemannian geometry, sparse coding, time-warping invariant
feature

I. INTRODUCTION

HUMAN body gesture recognition is emerging as a key
area of computer vision research and has been widely

utilized in applications such as automated sign language trans-
lation, gaming, human-computer interfaces, and artificial com-
panions. Three-dimensional skeleton data is rapidly gaining
popularity as it simplifies the mission by replacing monocular
RGB cameras with more advanced sensors like the Kinect [1],
which can localize gesture performers directly and produce
human skeleton joint trajectories in the manner of real-time
processing. Compared to RGB input, skeletal data are invariant
to camera viewpoints and robust to a changing environment.
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A great number of 3D skeleton-based models [2] [3] for
gesture recognition have been developed over the past decade,
ranging from hand-crafted features to numerous deep learning
approaches. While considerable progress has been made in
this area, it remains difficult to correctly recognize the human
gesture in unconstrained settings. Two issues need to be
addressed thoroughly:

• One concern in the identification of human gesture is
the depiction of features to reflect the variation of the
human body (skeleton) and its dynamics. Existing meth-
ods commonly use the absolute coordinate (real world) to
derive the characteristics of human motion. Nonetheless,
behaviors are independent of the position of the performer
and the feature should be invariant to the length of the
body part (performer’s size).

• Another problem in gesture recognition is temporal dy-
namics. For instance, even the same gesture executed by
the same person may happen at varying execution speeds
and have different start/end points, and it is yet more com-
plex when one considers different performers. Therefore,
the variation of a category of human behavior can be
very high, and if temporal dynamics are overlooked, it
will certainly deteriorate the accuracy of recognition.

A common way of dealing with the first problem is to
convert all 3D joint coordinates from the world coordinate
system into a performer-centered coordinate system, for exam-
ple, by positioning the hip center at the origin. Nevertheless, its
success depends heavily on the exact location of this particular
point. Another route is to consider the relative geometry
between different body parts (bones) like the Lie Group [4]
that uses rotations and translations (rigid-body transformation)
to represent the body parts’ 3D geometric relationships. The
translation, however, is not a scale-invariant representation as
the size of the skeleton varies from subject to subject. The
researchers picked one of the skeletons from the training sets
as a reference in [4], but in this empiric procedure it is difficult
to normalize the skeletal data to specifically accommodate
scale variations.

A typical treatment for the second issue uses a graphic
model to describe the presence of sub-states (events), where
time series are reorganized by a sequential prototype, and
the temporal dynamics of gestures are learned as a set of
transitions in these prototypes [5]. The hidden Markov model
(HMM) [6] is the representative model. Nonetheless, a HMM’s
input sequences must be segmented in advance, according
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Fig. 1. The figure depicts: (a) an illustration of a 3D skeleton, (b) a representation of bone bm in the local coordinate system of bn, (c) a representation of
bn in the local coordinate system of bm, (d) a pictorial of the warped trajectory α on a manifold according to a reference µ.

to certain unique clustering metrics or discriminative states,
which is a challenging problem in itself. Recently, with the
advancement of deep learning, a lot of researches [7]–[9]
have addressed the issue of temporal dynamics by using
a recurrent neural network (RNN), such as long short-term
memory (LSTM). While LSTM is a strong tool for sequential
data modeling, it is still difficult to learn the details of the
entire sequence with many sub-events (states). In fact, the
most common solution to temporal dynamics is dynamic time
warping (DTW) [4] [10], which needs to choose a nominal
temporal alignment, and then all the sequences of a class are
warped to that alignment. Nonetheless, DTW’s performance
depends heavily on the choice of the reference sequence, and
such a reference is commonly obtained by experience.

In this paper, a novel approach to gesture recognition is
proposed to tackle the above problems. The key contributions
are summed up as follows:

1) We represent a human skeleton as a point in the spe-
cial orthogonal group product space, which is a Riemannian
manifold. This representation is independent of the position
of the performer and can use rotations to explicitly model the
3D geometric relationships between body parts. A gesture (a
skeletal sequence) can then be represented by a trajectory of
these points (see Fig. 1 (d)). The mission of gesture recognition
is formulated as a question of measuring the similarities
between the shapes of trajectories.

2) We expand the representation of the transported square-
root vector field (TSRVF) to compare trajectories in the
SO(3) × · · · × SO(3) product space. So, this time-warping
invariant feature can overcome the temporal dynamic issue of
gesture recognition.

3) We present a sparse coding of skeletal trajectories by
explicitly considering the labeling information for each atom
in order to enforce the discriminant validity of the dictionary.
The comparison of experimental results from many challeng-
ing datasets shows that the proposed method has achieved
state-of-the-art performance.

The remainder of this article is organized as follows. Sec-
tion II reviews related methods. The 3D skeleton representa-
tion of the product space of SO(3)×· · ·×SO(3) is presented

in Section III. The TSRVF’s representation for trajectory
comparison is defined in Section IV. The sparse coding of
skeletal trajectories is given in Section V. In Section VI
experiments and discussions are presented, and conclusions
are drawn in Section VII.

The preliminary work has appeared in [11].

II. RELATED METHODS

Over the past few years, several 3D skeletal human gesture
recognition models have been studied. We provide a cate-
gorized review of the relevant literature that is principally
on handcrafted features, deep neural networks, and manifold-
based models.

A. Approaches with handcrafted features

Conventional approaches for skeleton-based action recogni-
tion usually develop handcrafted features to model the motions
of humans, representative research includes: the histogram of
3D joints (HOJ3D) [12], EigenJoints by principal component
analysis (PCA) [13], discriminative key-frames [14], histogram
of oriented 4D normals (HON4D) [15], sequence of most in-
formative joints (SMIJ) [16], and rotation and relative velocity
(RRV) [10]. Further research attempted to develop a robust
gesture recognition model, such as the actionlets ensemble
[17], the maximum entropy Markov model (MEMM) [18],
latent structural support vector machine (SVM) (pose-based)
[19], HMMs [20] [21], conditional random field (CRF) [22],
latent Dirichlet allocation (LDA) [23], Markov random field
(MRF) [24], and the naive Bayes nearest neighbor (NBNN)
[25]. Due to the space limitation, we only list some represen-
tative methods for using handcrafted features, for more details,
please see the surveys [2] [3] [26].

B. Approaches with deep neural networks

Recently, with the development of multi-cores and through-
put GPU devices, much research has concentrated on using
a large amount of data to train deep neural networks [6]–[9],
[27]–[38], where the convolutional neural network (CNN) and
RNN are the most widely used schemes. Specifically, the RNN
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with LSTM carefully designs a series of schemes to memorize
the contextual information obtained from previous sequential
inputs, allowing the long-term temporal dependency to be
monitored. In [7], Du et al. first introduced a bi-directional
LSTMs for action recognition, dividing the entire skeleton into
five groups of joints and feeding each group into a group-
specific LSTM subnetwork. The system then hierarchically
fuses the outputs of these subnetworks and eventually feeds
them into another set of higher-level LSTMs to represent the
global body motions. In [30], a scheme for encoding/decoding
LSTMs was proposed for action recognition. The encoder is
trained on 3D skeleton sequences in an unsupervised manner.
The manifold is then used to regularize the supervised learning
of decoding LSTM for RGB data-based recognition. In [31],
Li et al. employed a Gaussian-like curve to measure the
confidences of the start/end frame of action and used a
combined classification regression LSTM to solve an online
action detection and recognition problem. Zhu et al. [32]
added a group sparse regularization term to an LSTM’s cost
function, which enables the network to automatically learn
the co-occurrence of discriminative skeleton joints. In [8], Liu
et al. implemented a trust gate into the LSTM in order to
learn the reliability of the inputs and accordingly adjust their
confidence in updating the context information. Following
that, in [9], Liu et al. also proposed a global context-aware
attention LSTM that aimed at handling the limitation of LSTM
in perceiving global contextual information. While LSTM is
powerful in modeling sequential data, it still suffers from
remembering the information of an entire sequence with many
time steps (states) [29]. In addition, RNN based models lack
the ability to efficiently learn the spatial relations between the
skeleton joints [39].

CNN-based methods model the skeleton data as a 2D/3D
grid (pseudo-image) with manually designed transformation
rules. For instance, in [29], three clips corresponding to the
three channels of cylindrical coordinates were extracted in
order to represent the skeleton sequence. Based on those clips,
Ke et al. introduced a CNN to learn temporal information and
then used a multi-task learning network (MTLN) to jointly
learn the feature vectors at all the time steps in a parallel way.
Kim et al. [40] proposed a temporal convolutional network
with residual units (Res-TCN) that learns to pay different
levels of attention both spatially and temporally. In [39], a
novel skeletal pseudo-image was proposed by computing the
magnitude and orientation values of the joints. In [35], Li
et al. proposed a hierarchical co-occurrence network (HCN)
that transforms a skeleton sequence into a pseudo-image by
treating the joint coordinates (x, y, z) as the channels (R, G,
B) of a pixel. Besides the independent convolution operation
on each channel of input, an element-wise summation across
channels is used for globally aggregating co-occurrence fea-
tures. Instead of taking the skeleton data as a pseudo-image
or grids, the skeletal sequence in [41] [42] was represented as
a graph in a non-Euclidean space with the joints as vertexes
and their connections in the human body as edges. Then, a
generalized CNN method called spatial-temporal graph con-
volutional network (ST-GCN) [42] was proposed to model the
arbitrary structures of graphs. In this framework, the graph

embedding is computed by a graph convolutional network
(GCN) layer aggregating node information from its neigh-
bors by differentiable aggregation functions. Also, in spatio-
temporal graph convolution (STGC) [41], Li et al. proposed a
graph-based skeleton representation, which is then fed into the
GCN to learn the spatial and temporal patterns automatically.
Papadopoulos et al. [43] extended ST-GCN by introducing the
graph vertex feature encoder (GVFE) and the dilated hierar-
chical temporal convolutional network (DH-TCN). The GVFE
is used to generate graph vertex features, and the DH-TCN is
designed for modeling long-term and short-term dependencies
simultaneously. Compared to ST-GCN [42], this method can
achieve almost the same accuracy on benchmarks but with a
small number of layers and parameters. Due to the success of
GCN, in the attention-enhanced graph convolutional LSTM
network (AGC-LSTM) [37] the graph convolution operation
is introduced to the RNN (LSTM) for better recognition of
skeleton-based actions. AGC-LSTM can learn discriminative
features in spatial configuration and temporal dynamics as well
as model the co-occurrence relationship between spatial and
temporal domains [37].

C. Approaches with manifolds

In this subsection, we focus on the relevant manifold-based
solutions. A representative work is the Lie group in [4], which
used the special Euclidean (Lie) group SE(3) to represent the
3D geometric relationships between body parts. A convenient
way to analyze a Lie group is to embed them into Euclidean
spaces, with the embedding typically achieved by flattening
the manifold via tangent spaces, namely the Lie algebra
se(3) at the tangent space identity I4. In this way, previous
recognition tasks in a curved manifold space are converted
into the classification problems in a common vector space. The
researchers of [4] used DTW and a Fourier temporal pyramid
(FTP) to address the temporal dynamics problem. As discussed
in Section I, DTW’s success depends heavily on the nominal
temporal alignment selection. Also, an FTP is limited by the
time window length and can only use restricted contextual
information [7]. Following the same representation, Anirudh
et al. [44] introduced a system of transported square-root ve-
locity fields [45] to encode the trajectories lying in Lie groups.
Therefore, the distance between two trajectories is invariant to
identical time warping. Because the final feature is a vector
with a high dimension, PCA is used to reduce the dimension.
However, PCA is an unsupervised model, it cannot be boosted
by a labeled learning. According to the square root velocity
(SRV) model [46], in [47], trajectories were transported to a
reference tangent space attached to the Kendall’s shape space
at a fixed point. Nevertheless, in the case where points are
not close to the reference point, this procedure can introduce
distortions. In [48], Ho et al. introduced a general framework
for sparse coding and dictionary learning on Riemannian
manifolds. In comparison to [46], which used the fixed point
for embedding, [48] operated on the tangent bundle, meaning
that each point of the manifold was coded on its attached
tangent space where the atoms are mapped. Following [48],
Tanfous et al. [49] explored sparse coding and dictionary
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learning in the Kendall shape spaces (Kendall-SCDL), aiming
to study the time-varying shapes of 3D skeleton trajectories
for action recognition. However, Kendall-SCDL [49] has a
mandatory step of dictionary initialization that heavily relies
on principal geodesic analysis (PGA) [50] to generate atoms.
Also, Kendall-SCDL is still an unsupervised model. In LieNet
[51], Huang et al. incorporated the Lie group structure into a
deep network architecture to learn more appropriate Lie group
features for 3D action recognition.

Another branch of manifold-based methods uses kernel
functions to embed the Riemannian manifolds into a repro-
ducing kernel Hilbert space (RKHS) [52] [53]. However, the
input manifold of symmetric positive definite (SPD) matrices
is from a covariance descriptor, which is calculated by just a
few skeleton joints due to the computationally intensive kernel
functions. Recently, Kacem et al. [54] proposed modelling
the temporal evolution of the human skeleton as parametrized
trajectories on a Riemannian manifold with Gramian matrices.
And the geometry of the manifold is assumed to be positive-
semidefinite matrices with fixed rank. This method relies on
DTW for sequence alignment, while the resulting distance may
not lead to a positive-definite kernel for classification [55].

III. THE PRODUCT SPACE OF SO(3) FOR 3D SKELETON
REPRESENTATION

Inspired by rigid body kinematics [56], the relative geom-
etry between different body parts [4] is introduced, as this
feature has a view-invariant property that can guarantee the
uniqueness of motion representation and can thus provide a
better reflection of human gestures than that gained from the
use of absolute positions.

Mathematically, any rigid body displacement can be realized
by a rotation about an axis, paired with a translation parallel to
that axis. This 3D rigid body displacement forms an SE(3),
the special Euclidean group in three dimensions [56]. An
SE(3) can be identified with the space of 4 × 4 matrices in
the form

P (R,~v) =

[
R ~v
0 1

]
, (1)

where R ∈ SO(3) is a point in the special orthogonal group
SO(3), it denotes the rotation matrix, and ~v ∈ R3 denotes the
translation vector.

The human skeleton can be modeled by an articulated
system of rigid segments connected by joints. As such, let
S = (J,B) be a skeleton, where J = {j1, · · · , jN} indicates
the set of body joints, and B = {b1, · · · , bM} indicates the set
of body bones (oriented edges). The relative geometry between
a pair of body parts (bones) can be expressed as a point in
SE(3), as studied in [4]. More specifically, given a pair of
bones bm and bn, their relative geometry can be featured in
a local coordinate system attached to another bone [4]. Let
bi1 ∈ R3 and bi2 ∈ R3 represent the starting and end points of
bone bi, respectively. The local coordinate system of bone bn
is determined by rotating with minimal rotation and translating
the global coordinate system so that bn1 serves as the origin
and bn coincides with the x−axis (Fig. 1 provides an example

for illustration). Then, at time t, the representation of bone bm
in the local coordinate system of bn (see Fig. 1 (b)), the starting
point bnm1(t) ∈ R3 and end point bnm2(t) ∈ R3 are given by

[
bnm1(t) bnm2(t)

1 1

]
=

[
Rm,n(t) ~vm,n(t)

0 1

]
0 lm
0
0
1

0
0
1

 , (2)

where Rm,n(t) and ~vm,n(t) denote the rotation and translation
measured in the local coordinate system attached to bn, and
lm is the length of bm. Likewise, Rn,m(t), ~vn,m(t), and ln
(see Fig. 1 (c)) can be used to represent bone bn in the local
coordinate system of bm. The sizes of bones (body parts) can
be assumed to not vary with time according to the theory of
rigid body kinematics. Therefore, the relative geometry of bm
and bn at time t can be represented by

Pm,n(t) =

[
Rm,n(t) ~vm,n(t)

0 1

]
∈ SE(3),

Pn,m(t) =

[
Rn,m(t) ~vn,m(t)

0 1

]
∈ SE(3).

(3)

There is natural stability and consistency in this relative
geometry. For instance, if a pair of bones undergo the same
rotation, their relative geometry matrix would not be altered.
However, one restriction of this motion feature is that the
translation ~v is relative to the size of the performer (subject).
As we know, in an unconstrained setting, achieving a scale-
invariant skeletal representation is very necessary for the
recognition mission. We delete the translation from motion
representation to eliminate the skeleton scaling variations, then
the relative geometry of bm and bn at time t can be represented
by rotations Rm,n(t) and Rn,m(t) , and expressed as elements
of SO(3). Now, let M denote the number of bones, the corre-
sponding feature for the entire human skeleton is interpreted
by the relative geometry between all pairs of bones, as a
point C(t) = (R1,2(t), R2,1(t), . . . , RM−1,M (t), RM,M−1(t))
on the curved product space of SO(3) × · · · × SO(3), and
the number of SO(3) is 2C2

M , where C2
M is the combination

formula.

IV. THE TSRVF FOR THE PRODUCT SPACE OF
SO(3)-FEATURED TRAJECTORIES

As shown in the last paragraph, on a Riemannian manifold,
a gesture skeleton sequence can be characterized as a trajec-
tory. Consequently, the mission of gesture recognition is to
measure the similarities of trajectory shapes, and a distance
function on the Riemannian manifold is the basis for these
comparability determinations. To address this problem, a few
Riemannian metrics [57] have been proposed, but it is still
difficult to accurately model the temporal dynamics of gesture
trajectories.

A. Representation of trajectories on a Riemannian manifold

Specifically, let α denote a smooth oriented curve (trajecto-
ry) on a Riemannian manifold M , and let M denote the set
of all such trajectories: M = {α : [0, 1] → M |α is smooth}.
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Reparameterizations are operated by increasing diffeomor-
phisms γ : [0, 1] → [0, 1], and the set of all these orientation
preserving diffeomorphisms is denoted by Γ = {γ → [0, 1]}.
Actually, γ plays the role of a time-warping operation where
γ(0) = 0, γ(1) = 1 is used to maintain the end points
of the curve. So, if α in the form of time observations
α(t1), ..., α(tn), is a trajectory on M , the composition α◦γ in
the form of the time-warped trajectory α(γ(t1)), ..., α(γ(tn)),
is also a trajectory that goes through the same sequence of
points as α but at the rate of evolution governed by γ [45].

In order to identify trajectories, a metric is required to
characterize the variance of a class of trajectories and to
quantify the information contained within a trajectory. Calcu-
lating a point-wise discrepancy is a straightforward and simple
solution. As M is a Riemannian manifold, it is possible to use
a natural distance of dm between points on M . Then, for any
two trajectories: α1, α2 : [0, 1]→M , the distance dx between
them can be calculated by

dx(α1, α2) =

∫ 1

0

dm (α1(t), α2(t)) dt. (4)

This quantity gives a natural extension of dm from
M to M [0,1]. Nonetheless, it suffers from the issue that
dx(α1, α2) 6= dx(α1 ◦ γ1, α2 ◦ γ2). For the mission of gesture
recognition, as discussed in Section I, temporal dynamics is
a central problem that needs to be resolved when a trajectory
(gesture) α is observed as α◦γ, at a random temporal evolution
γ. In other words, for arbitrary temporal re-parameterizations
γ1, γ2 and arbitrary trajectories α1, α2, a distance d(·, ·) is
needed that enables

d(α1, α2) = d(α1 ◦ γ1, α2 ◦ γ2). (5)

Thanks to the square root velocity (SRV) framework [46],
the theory of elastic trajectories is especially well adapted to
our target. Inspired by [45], we expand the original Euclidean
metric-based SRV to the manifold space-based TSRVF. In
general, for a smooth trajectory α ∈ M, the TSRVF is a
parallel propagation of a scaled velocity vector field of α to a
reference point c ∈M according to

hα(t) =
α̇(t)α(t)→c√
|α̇(t)|

∈ Tc(M), (6)

where α̇(t) is the velocity vector along the trajectory at time
t, and α̇(t)α(t)→c is its transport from the point α(t) to c
along a geodesic path, and | · | means the norm related to
the Riemannian metric on M and Tc(M) denotes the tangent
space of M at c. In particular, if |α̇(t)| = 0, hα(t) = 0 ∈
Tc(M). Let H ⊂ Tc(M)[0,1] be the set of smooth curves in
Tc(M) obtained as the TSRVFs of trajectories in M , H =
{hα|α ∈ M} [45]. Two trajectories such as α1 and α2, can
be mapped into the tangent space Tc(M), as two equivalent
TSRVFs, hα1 and hα2 . The distance between them can be
determined in the standard vector space by the `2-norm,

dh(hα1 , hα2) =

√∫ 1

0

|hα1(t)− hα2(t)|2dt. (7)

The main motivation for the representation of a TSRVF
actually comes from the following fact. If a trajectory α is

warped by γ, to result in α ◦ γ, the TSRVF of α ◦ γ is given
by

hα◦γ(t) = hα(γ(t))
√
γ̇(t). (8)

As such, for any α1, α2 ∈ M and γ ∈ Γ, the distance dh
satisfies

dh(hα1◦γ , hα2◦γ) =

√∫ 1

0

|hα1
(s)− hα2

(s)|2ds

= dh(hα1
, hα2

),

(9)

where s = γ(t). The concerned reader is redirected to [45]
[46] for the proof of the equality. From the geometric point
of view, this equality means that the action of Γ on H under
the `2 metric is by isometries. This helps us to establish a
fully invariant distance to time-warping and use it to properly
register trajectories [45]. Furthermore, for statistical analyses
such as sample means and covariances, this invariability of
execution rates is important. So we define the equivalence class
[hα] (or the notation [α]) to denote the set of all trajectories
equal to a given hα ∈ H (or α ∈M ), as

[hα] = {hα◦γ |γ ∈ Γ} . (10)

Definitely, such an equivalent class [hα] (or [α]) is asso-
ciated with a category of gesture. Under this scheme, the
process of the comparison of two trajectories is done by com-
paring their equivalence classes. In other words, an optimal
reparameterization γ∗ needs to be obtained to minimize the
cost function dh(hα1

, hα2◦γ). Let H/ ∼ be the corresponding
quotient space that can be bijectively identified with the set
M/ ∼ using [hα] 7→ [α]. The distance ds onH/ ∼ (orM/ ∼)
is the shortest dh distance between equivalence classes in H
[45], given by

ds([α1], [α2]) ≡ ds([hα1
], [hα2

]) = inf
γ∈Γ

dh(hα1
, hα2◦γ)

= inf
γ∈Γ

(∫ 1

0

|hα1
(t)− hα2

(γ(t))
√
γ̇(t)|2dt

)1/2

.
(11)

In practice, the minimization over Γ is solved for using
dynamic programming. In this paper, we give a brief overview
of SRV and TSRVF. Interested readers are refer to the papers
[45] [46].

B. The TSRVF on product space of rotation group

One may find that the reference point c is an important
parameter of a TSRVF, which should remain unchanged
throughout the whole cycle of computation. Because the
choice of c could potentially affect the outcome, a point is
usually a good candidate for c if most trajectories pass near it.
In this paper, the Karcher mean [58] as the Riemannian center
of mass is employed, as it is equally distant from all points,
thereby minimizing the possible distortions.

Given a set of {αi(t)t=1,..,n}mi=1 of sequences (trajectories)
of gestures (or actions), its Karcher mean µ(t) is computed
using TSRVF representation with respect to ds in H/ ∼,
defined as

hµ = arg min
[hα]∈H/∼

m∑
i=1

ds([hα], [hαi ])
2. (12)

Authorized licensed use limited to: Oulu University. Downloaded on June 25,2020 at 04:57:20 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.3003783, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 6

As a consequence, each trajectory is recursively aligned to
the mean µ(t), so another product of the Karcher mean com-
putation is the set of aligned trajectories {α̃i(t)t=1,...,n}mi=1.
Then, the shooting vector vi(t) ∈ Tµ(t)(M) is calculated for
each aligned trajectory α̃i(t) at time t so that a geodesic goes
from µ(t) to α̃i(t) in unit time with the initial velocity vi(t),
as

vi(t) = exp−1
µ(t)(α̃i(t)). (13)

Finally, we combine the shooting vectors as V (i) =
[vi(1)T vi(2)T ... vi(n)T]T, which is the feature representation
of a trajectory αi.

V. SPARSE CODING OF 3D SKELETAL TRAJECTORIES

From the above we can conclude that the feature of a
trajectory (gesture sequence) is situated in a high dimensional
space. The PCA, such as that of the applied methods of [45]
[46], is a common solution to reduce dimensions. Nonetheless,
PCA is an unsupervised learning model without knowing label
information. Compared to component analysis techniques, a
sparse coding representation with labeled training is more
capable of capturing underlying associations between the input
data and their labels. To the best of our knowledge, few
manifold representation-based models considered the connec-
tion between labels and dictionary training. In this paper,
we aim to associate label information with each dictionary
atom to enforce the discriminability in sparse codes during
the dictionary learning.

Specifically, given a set of observations (feature vectors of
gestures) Y = {yi}Ni=1, where yi ∈ Rn, let D = {di}Ki=1 be
a set of vectors in Rn denoting a dictionary of K atoms, the
learning of dictionary D for sparse representation of Y can be
described as

< D, X >= arg min
D,X
‖Y − DX‖22 s.t. ∀i, ‖xi‖0 ≤ S,

(14)
where X = [x1, ..., xN ] ∈ RK×N means the sparse codes
of observation Y , and S is a sparsity constraint factor. The
building of D is accomplished by minimizing the reconstruc-
tion error ‖Y −DX‖22, and satisfying the sparsity constraints.
The K-SVD [59] algorithm is a widely used approach to (14).

In this paper, the classification error and regularization of
label consistency are introduced into the objective function

< D,W,A,X >= arg min
D,W,A,X

‖Y − DX‖22

+ β‖L−WX‖22 + τ‖Q−AX‖22 s.t. ∀i, ‖xi‖0 ≤ S,
(15)

where W ∈ RC×K represents the parameters of classifier, and
C corresponds to the number of categories. L = [l1, ..., lN ] ∈
RC×N denotes the class labels of observation Y , and li =
[0, ..., 1, ..., 0]T ∈ RC is a label vector corresponding to an
observation yi, where the nonzero position (index) shows the
category of yi. The additional term ‖L−WX‖22 is then used
to denote the classification error for label information.

The final term is ‖Q − AX‖22, where Q = [q1, ..., qN ] ∈
RK×N and qi = [0, ..., 1, ..., 1, ..., 0]T ∈ RK is a sparse code
referring to an observation yi for classification. The aim of
setting nonzero elements is to enforce the “discriminative”

of sparse codes. It is noted that the nonzero elements of
qi occur at those indices where the corresponding dictionary
atom dn shares the same label with the observation yi. The
A denotes a K ×K transformation matrix, which is used to
convert the original sparse code x into a discriminative one.
Thereby, the term ‖Q−AX‖22 reflects the discriminative sparse
code error, which enforces that the transformed sparse codes
AX approximates the discriminative sparse codes Q. This
operation forces the signals from the same category to have
similar sparse representations. The regularization parameters
β and τ govern the relative contributions of the corresponding
terms. Equation (15) can be rewritten as

< D,W,A,X >=

arg min
D,W,A,X

∥∥∥∥∥∥
 Y√

βL√
τQ

−
 D√

βW√
τA

X

∥∥∥∥∥∥
2

2

s.t. ∀i, ‖xi‖0 ≤ S.

(16)
Here, we set Y ′ = (YT,

√
βLT,

√
τQT)T, D′ =

(YT,
√
βWT,

√
τAT)T. Then, the optimization of Equation

(16) is equivalent to solving (14) (replace Y and D with Y ′
and D′ respectively). This is just the problem that K-SVD [59]
handles. In this paper, a similar initialization and optimization
solution of K-SVD to that described in [64] is adopted. In
our experiments, the maximum iteration is set to 60, and the
sparsity factor S = 50 is used. The β and τ are both set to
1.0.

VI. EXPERIMENTS

In this section, the proposed 3D skeletal gesture recog-
nition model is evaluated in comparison to the state-of-the-
art methods using six public benchmarks, including sign
language gestures: ChaLearn 2014 gesture [60]; controlled
activities: MSR Action3D [61], UTKinect-Action3D [12], and
Florence 3D Action [63]; more natural daily activities: MSR-
DailyActivity3D [62]; and a large-scale dataset with different
view-variations: NTU RGB+D [33]. The basic information of
these datasets is summarized in Table I.

A. Experimental settings

In order to testify the effectiveness of the proposed method,
30 state-of-the-art algorithms, simply categorized into three
groups, are compared.

The first group is a group of the methods most related to
ours, including five Lie group representation-based algorithms:
Lie group using DTW [4] (Lie group-DTW), Lie group with
TSRVF [45] (Lie group-TSRVF), Lie group with TSRVF
and using PCA for dimensionality reduction [44] (Lie group-
TSRVF-PCA), Lie group with TSRVF and K-SVD for sparse
coding [59] (Lie group-TSRVF-KSVD), and the Lie group
with deep learning (LieNet) [51], as well as two TSRVF-
related methods, the body part features with SRV and k-
nearest neighbors clustering [47] (SRV-KNN), and TSRVF on
Kendall’s shape [5] (Kendall-TSRVF). In addition, two recent
manifold-based methods, namely the Kendall-SCDL [49] and
Gramian matrices [54], are compared.
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TABLE I
THE BASIC INFORMATION OF THE SIX BENCHMARK DATASETS.

Dataset Instances # Classes # Subjects # Protocols
ChaLearn 2014 gesture [60] 13 585 20 27 Training: 7 754; validation: 3 362; testing: 2 742.
MSR Action3D [61] 567 20 10 Cross-Subject.
UTKinect-Action3D [12] 200 10 10 Leave-One-Sequence-Out.
MSR-DailyActivity3D [62] 320 16 10 Cross-Subject.
Florence 3D Action [63] 215 9 10 Leave-One-Subject-Out.
NTU RGB+D [33] 56 880 60 40 Cross-Subject and Cross-View.

vattene vieni qui            perfetto furbo che due palle

go away               come here                perfect                  clever                  that sucks

fame               tanto tempo      buonissimo messid'accordo sono stufo

hungry          a long time ago        very good                 agreed I've had enough

ok                 cosa ti farei            basta                   prendere          non ce ne piu

OK           what would you do?      enough         want to be beaten?       no more

che vuoi d’accordo sei pazzo combinato freganiente

what do you want?   getting along       you are crazy       what you did?         I don’t care

Fig. 2. 20 gesture frames (with meanings in Italian and English) sampled from the ChaLearn 2014 [60] dataset.

The methods in the second group are based on classic
feature representations, like HOJ3D [12], EigenJoints [13], ac-
tionlet ensemble (Actionlet) [17], HON4D [15], discriminative
key-frames (Key-frames) [14], RVV with DTW (RVV-DTW)
[10], and spatio-temporal naive Bayes nearest-neighbor (ST-
NBNN) [25].

The last group includes fourteen deep learning methods,
the HMM with a deep belief network (HMM-DBN) [6] and
its extension (HMM-DBN-ext) [27], and four RNN-based ap-
proaches, namely LSTM [65], Deep LSTM [33], hierarchical
RNN (HBRNN) [7], and spatio-temporal LSTM with trust
gates (ST-LSTM-TG) [8], as well as eight CNN-based models:
ModDrop (CNN) [28], Res-TCN [40], SkeleMotion [39],
Clips-CNN-MTLN [29], STGC [41], GVFE and DH-TCN
modules [43] incorporated with an ST-GCN [42] (GVFE + ST-
GCN w/ DH-TCN), HCN [35], and AGC-LSTM [37] (please
note that AGC-LSTM is a hybrid CNN-RNN architecture).
These baseline results are collected from their original reports.
Please note that several of the compared methods, like HMM-
DBN-ext utilize both RGB-D and skeletal data, while the
proposed method is based only on the 3D skeleton.

To analyze the effectiveness of the TSRVF on a product
space of SO(3) × · · · × SO(3) (SO3-TSRVF), we report its
discriminative output without any further steps (such as PCA
or sparse coding) on six datasets. We aim to compare the
ability of dictionary learning. We also present the results of the
classical coding, such as K-SVD [59] (SO3-TSRVF-KSVD)
and the proposed sparse coding scheme (SO3-TSRVF-SC). For
a fair comparison, we follow the same identification system
as in [4] [5] [44] [45] [49] [59], in other words, an one-vs-

TABLE II
A COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON CHALEARN 2014 [60] DATASET (BEST:
BOLD, SECOND BEST: UNDERLINED). * THE METHODS USE SKELETON

AND RGB-D DATA.

Methods Accuracy
Lie group-DTW [4] 79.2
Lie group-TSRVF [45] 91.8
Lie group-TSRVF-PCA [44] 90.4
Lie group-TSRVF-KSVD [59] 91.5
EigenJoints [13] 59.3
ModDrop (CNN) [28]* 93.1
HMM-DBN [6] 83.6
HMM-DBN-ext [27]* 86.4
LSTM [65] 82.0
Ours (SO3-TSRVF) 92.1
Ours (SO3-TSRVF-KSVD) 92.8
Ours (SO3-TSRVF-SC) 93.2

all linear SVM classifier (with the parameter C set to 1.0) is
employed.

B. ChaLearn 2014 gesture dataset

The ChaLearn 2014 [60] is a gesture dataset with multi-
modality data, including RGB, depth, human body masks,
and 3D skeletal joints from 27 subjects. This dataset collects
13 585 gesture video segments (Italian cultural gestures) from
20 classes. Fig. 2 displays frames sampled from each category
of gesture. We adopt the evaluation protocol provided by the
dataset which assigns 7 754 gesture sequences for training,
3 362 sequences for validation, and 2 742 sequences for testing.
To the best of our knowledge, ChaLearn 2014 is one of
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Fig. 3. A confusion matrix of the proposed method on ChaLearn 2014 [60]
gesture dataset.

TABLE III
A COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON MSR ACTION3D [61] DATASET (BEST:
BOLD, SECOND BEST: UNDERLINED). * THE METHODS USE SKELETON

AND RGB-D DATA.

Methods Accuracy
Lie group-DTW [4] 92.5
Lie group-TSRVF [45] 87.7
Lie group-TSRVF-PCA [44] 88.3
Lie group-TSRVF-KSVD [59] 87.6
SRV-KNN [47] 92.1
Kendall-TSRVF [5] 89.9
Kendall-SCDL [49] 94.2
EigenJoints [13] 82.3
Actionlet [17]* 88.2
HOJ3D [12] 78.9
HON4D [15]* 88.9
Key-frames [14] 91.7
RVV-DTW [10] 93.4
ST-NBNN [25] 94.8
HMM-DBN [6] 82.0
LSTM [65] 88.9
HBRNN [7] 94.5
ST-LSTM-TG [8] 94.8
Ours (SO3-TSRVF) 93.4
Ours (SO3-TSRVF-KSVD) 93.7
Ours (SO3-TSRVF-SC) 94.6

the largest gesture datasets, so the aim of this challenge is
to evaluate the proposed method for sign gestures based on
the given test and training sequences. Table II demonstrates
the detailed comparison with other methods. It can be seen
that the proposed method achieves the highest recognition
accuracy as 93.2%. The experimental results show the efficacy
of SO3-TSRVF compared to Lie group-based approaches. It
is noted that Lie group-DTW [4] only gets 79.2%, which is
due to the performance of DTW being highly dependent on
the reference sequences for each category and that empirical
choice becomes complicated as the size of the dataset grows
bigger. It can also be observed that the accuracy of LSTM
[65] is 11 percentage points lower than the proposed method.
Despite the fact that LSTM is designed for perceiving the
contextual information, modeling the sequence with temporal
dynamics is still difficult, particularly when the size of the
training data is small. It is important to mention that ModDrop
[28] was placed first in the Looking at People Challenge [60],
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Fig. 4. A confusion matrix of the proposed method on MSR Action3D [61]
dataset.

which uses the ChaLearn 2014 dataset as the benchmark.
Please note that, without using RGB-D and audio data, our
system could achieve a higher score than ModDrop.

The confusion matrix is shown in Fig. 3 to present the
accuracy of the proposed method for individual gestures.
As can be seen, for most categories, the proposed method
achieves high precision. There is some confusion between
similar gestures with very small values, like the tanto tempo
(a long time a go) and vieni qui (come here) gestures, as well
as the furbo (clever) and buonissimo (very good) gestures.

C. MSR Action3D dataset

The MSR Action3D [61] is a dataset that is widely used
to evaluate action recognition efficiency. MSR Action3D is
very challenging where actions are highly similar to each
other (e.g., hammer and hand catch) and have a typical
large temporal misalignment. This dataset consists of 567 pre-
segmented action instances, and 10 individuals executing 20
action classes. The MSR Action3D dataset is so popular that
many researchers have reported their results using it. The
same evaluation protocol is adopted for a fair comparison,
namely the Cross-Subject testing as defined in [61], where
half of the subjects are used for training (subjects numbers
1, 3, 5, 7, 9) and the rest are used for testing (2, 4, 6,
8, 10). We compare the proposed method with the state-
of-the-art methods, the recognition accuracies on the MSR
Action3D dataset are recorded in Table III. We can see that the
proposed method achieves better performance than both Lie
group-based and classical feature representation approaches.
Again, the performance of the proposed sparse coding is
superior to K-SVD coding-based methods. The accuracy of
the proposed method is only 0.2% lower than the ST-LSTM-
TG [8]. This shows that our approach performs a bit worse
than the deep learning model with an ample size of data for
training network parameters, while the score of ST-LSTM-
TG on the UTKinect-Action3D [12] dataset is lower than
ours (see Table IV). Also, the performance of the proposed
method is slightly lower than the ST-NBNN [25]. In fact, the
ST-NBNN is based on naive-Bayes nearest-neighbor (NBNN)
distance matrices, and a specifically-designed tensor SVM
is introduced to improve classification accuracy. However,
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TABLE IV
A COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON UTKINECT-ACTION3D [12] DATASET
(BEST: BOLD, SECOND BEST: UNDERLINED). * THE METHODS USE

SKELETON AND RGB-D DATA.

Methods Accuracy
Lie group-DTW [4] 97.1
Lie group-TSRVF [45] 94.5
Lie group-TSRVF-PCA [44] 94.9
Lie group-TSRVF-KSVD [59] 92.7
SRV-KNN [47] 91.5
Kendall-TSRVF [5] 89.8
Gramian matrix [54] 96.5
Kendall-SCDL [49] 97.5
EigenJoints [13] 92.4
HOJ3D [12] 90.9
HON4D [15]* 90.9
ST-NBNN [25] 98.0
ST-LSTM-TG [8] 97.0
Ours (SO3-TSRVF) 96.8
Ours (SO3-TSRVF-KSVD) 97.2
Ours (SO3-TSRVF-SC) 97.5
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Fig. 5. A confusion matrix of the proposed method on UTKinect-Action3D
[12] dataset.

as mentioned when discussing the experimental settings, we
only employ the linear SVM for classification, as with many
comparative methods [4] [5] [44] [45] [59]. Actually, as
reported in [25], with the same setting namely the NBNN
with weight learning using linear SVM (NBNN+SVM) yields
a worse score (92.4%) than ours. It is worth mentioning that
the authors of [49] also offered the accuracy of Kendall-SCDL
with the Bi-LSTM classifier (for both temporal modeling and
classification). For a fair comparison, we only report the results
of Kendall-SCDL with a linear SVM classifier in Table III (and
in Tables IV and V). In Fig. 4, the accuracy of each action in
the form of a confusion matrix is given. It can be found that
the proposed method works very well on the MSR Action3D
dataset.

D. UTKinect-Action3D dataset

The multi-modal human action dataset UTKinect-Action3D
[12] is a difficult benchmark due to its high intra-class
variations. Another challenge of this dataset is the variations
in the viewpoint, and there are occlusions caused by the

TABLE V
A COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON FLORENCE 3D ACTION [63] DATASET
(BEST: BOLD, SECOND BEST: UNDERLINED).

Methods Accuracy
Lie group-DTW [4] 90.9
Lie group-TSRVF [45] 89.5
Lie group-TSRVF-PCA [44] 89.7
Lie group-TSRVF-KSVD [59] 89.6
SRV-KNN [47] 87.0
Gramian matrix [54] 88.1
Kendall-SCDL [49] 92.3
DBN-HMM [6] 87.5
LSTM [65] 86.2
Ours (SO3-TSRVF) 90.8
Ours (SO3-TSRVF-KSVD) 91.9
Ours (SO3-TSRVF-SC) 93.5

absence of some body-parts in the sensor’s field of view. This
dataset uses Kinect to capture 10 classes of actions. Each
action is carried out twice by 10 subjects. As a consequence,
a total of 200 action instances are collected in 20 videos.
The available modalities are RGB images, depth maps, and
skeletal joints. We obey the Leave-One-Sequence-Out Cross
Validation setting of [12] that selects each sequence as the
testing sample; in turn, regards other sequences as training
samples and computes the average recognition rate (20 rounds
of testing). Table IV reports the comparisons of the proposed
method with some representative state-of-the-art methods. It
is noticeable that the proposed method can yield superior
performance over the deep learning model ST-LSTM-TG [8].
This is not surprising because a large number of sequences
are required for training such an RNN-based network, but
compared to a dataset like MSR Action3D [61], the size
of UTKinect-Action3D is rather small. It can be seen that
our solution outperforms all approaches except the ST-NBNN
[25]. This indicates that our method, using relative geometry
(rotations), can handle viewpoint variations very well. In the
last subsection, we discussed that the ST-NBNN may benefit
from the tensor SVM classifier. As reported in [25], the
recognition accuracy of NBNN+SVM on UTKinect-Action3D
is only 94%. It is noted that the Gramian matrix [54] reported
its scores not only with full body but also with the body
parts fusion (BP fusion). Obviously, using a late fusion of
classifiers (based on the body parts) would be beneficial and
boost performance. For a fair comparison, the result of the
Gramian matrix with the full-body (the whole skeleton) is
given in Table IV (and in Table V). In addition, the confusion
matrix of the proposed method is shown in Fig. 5. Clearly,
in all the cases, a good accuracy score is achieved for all
activities.

E. Florence 3D Action dataset

We also test the proposed method on the popular Florence
3D Action dataset [63]. The Florence 3D Action dataset
collected nine classes of action. Each action is carried out
for two or three times by 10 subjects. As a result, a total
of 215 action sequences are captured. This dataset includes
two inputs: RGB frames and the 3D coordinates of skeleton
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TABLE VI
A COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON MSR-DAILYACTIVITY3D [62] DATASET
(BEST: BOLD, SECOND BEST: UNDERLINE). * THE METHODS USE

SKELETON AND RGB-D DATA.

Methods Accuracy
Lie group-DTW [4] 90.3
Lie group-TSRVF [45] 88.9
Lie group-TSRVF-PCA [44] 90.3
Lie group-TSRVF-KSVD [59] 89.5
Kendall-TSRVF [5] 70.0
Actionlet [17]* 85.5
HON4D [15]* 80.0
Key-frames [14] 73.8
Ours (SO3-TSRVF) 89.7
Ours (SO3-TSRVF-KSVD) 90.5
Ours (SO3-TSRVF-SC) 91.2

joints. The challenges of this dataset are the similarity between
action classes and the high intra-class variations as the same
action can be done by different hands. Due to a few skeletal
joints (the skeletons are composed of 15 joints), some types
of action are hard to distinguish, such as drink from a bottle,
answer phone and read watch. To test the proposed method,
we follow [63] and employ the same Leave One Subject Out
experimental protocol. A complete comparison with previous
studies is reported in Table V. Our approach achieved a
classification accuracy of 93.5%, which is the highest score
of all the comparative algorithms.

F. MSR-DailyActivity3D dataset

The MSR-DailyActivity3D dataset [63] is designed to cover
daily activities that are recorded using a Kinect V1. The
captured skeletons of MSR-DailyActivity3D are noisier than
other datasets. In particular, many activities involve human-
object interactions, such as the use laptop and play guitar,
where joints are occurred by objects, thus the resulting es-
timations of joints are almost random. Another challenging
part here is each subject performs an activity twice, once in
a standing position and once in a sitting position. To evaluate
the performance of the proposed method on such natural daily
activities, we report the results on MSR-DailyActivity3D. This
dataset collects 16 types of activity from 10 subjects. Each
of the subjects performs an activity twice, so there are 320
sequences in total. We follow the dataset’s evaluation protocol
and apply the Cross-Subject setting to evaluate the proposed
method. Namely, half of the subjects (IDs 1, 2, 3, 4, 5) are used
for gathering training data, while the other half are used for
gathering testing data. We summarize the classification accura-
cy results in Table VI. It can be seen that the proposed method
achieved the highest score in all comparative methods. In fact,
the existing approaches use either joint positions or the angles
between bones to represent a human skeleton. In our work, we
model each skeleton as the relative 3D rotations between all
pairs of bones. Compared to the absolute coordinates or the
angles of connected bones, our method considers any possible
or latency relationships between bones (they may or may not
be directly connected). For example, the relationship between
the two hands is important for recognizing classes such as read

TABLE VII
A COMPARISON OF RECOGNITION ACCURACY (%) WITH EXISTING

SKELETON-BASED METHODS ON NTU RGB+D [33] DATASET (BEST:
BOLD, SECOND BEST: UNDERLINED).

Methods Accuracy
Cross-Subject Cross-View

Lie group-DTW [4] 50.1 52.8
LieNet [51] 61.4 67.0
Kendall-SCDL [49] 73.9 83.0
HOJ3D [12] 32.4 22.3
HON4D [15] 30.6 7.3
HBRNN [7] 59.1 64.0
Deep LSTM [33] 60.7 67.3
ST-LSTM-TG [8] 69.2 77.7
Res-TCN [40] 74.3 83.1
SkeleMotion [39] 76.5 84.7
Clips-CNN-MTLN [29] 79.6 84.8
STGC [41] 74.9 86.3
GVFE + ST-GCN [42] w/ DH-TCN [43] 79.1 88.2
HCN [35] 86.5 91.1
AGC-LSTM [37] 87.5 93.5
Ours (SO3-TSRVF) 61.5 69.2
Ours (SO3-TSRVF-KSVD) 69.0 78.4
Ours (SO3-TSRVF-SC) 74.7 86.3

book and use laptop. However, it is difficult for conventional
methods to capture the dependency between the two hands
since they are not connected physically. In particular, using
only the rotations makes the skeletal representation scale-
invariant, this is an important advantage when dealing with
the noisy skeletons extracted with an RGB-D senor. Besides,
to further limit the effect of noises, we follow [4] [44] and use
the interpolation algorithm to perform the temporal smoothing
on trajectories (please refer to [4] for the details).

G. NTU RGB+D dataset

The NTU RGB+D [33] (in total, 56 880 video clips) is
currently one of the largest datasets with 3D skeletons, and
it is the most widely used for testing indoor-captured action
recognition. In order to provide a fair comparison with recent
action/gesture recognition methods, we report the scores of
the proposed approach on this dataset since most of the recent
work has been evaluated on it. NTU RGB+D contains 60
action categories, and 40 subjects (performers) have attended
the data collection. The skeletons were detected by the Kinect
V2, and there are 25 joints for each subject. Each video has
no more than two subjects. More specifically, NTU RGB+D
includes single-actor actions, which are from class 1 to 49,
and two-actor actions, which are from class 50 to 60. In
video capturing, each action is recorded simultaneously by
three cameras at the same height but with different horizontal
angles: -45◦, 0◦, and +45◦. As such, as something not merely
provided the common Cross-Subject protocol, the authors of
NTU RGB+D also recommended the Cross-View evaluation.
Namely, in the Cross-View protocol, the training set contains
37 920 clips that were captured by cameras #2 and #3, and
the validation set contains 18 960 clips from camera #1. In the
Cross-Subject protocol, the training set contains 40 320 clips
performed by 20 subjects, and the remaining 16 560 clips from
the remaining 20 subjects are used for validation. We follow
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TABLE VIII
THE COMPUTATIONAL EFFICIENCY OF EACH STEP IN THE PROPOSED
METHOD (PROCESSING A SEQUENCE OF THE FLORENCE 3D ACTION

DATASET [63]).

Pipeline Steps Implementation Time (sec)
Feature extraction MATLAB 0.116
Karcher mean (Eq. (12)) MATLAB, C++ 1.564
Shooting vector (Eq. (13)) MATLAB 0.037
Dictionary learning (Eq. (15) ) MATLAB 0.249
Classification MATLAB 0.001
In total 1.967

this convention and report the recognition accuracy of the two
protocols.

The results for this dataset are presented in Table VII.
Obviously, our approach (SO3-TSRVF-SC) outperforms other
manifold-based models (Lie group-DTW [4], LieNet [51], and
Kendall-SCDL [49]) for both protocols Cross-View and Cross-
Subject. This could prove our method’s ability to handle large-
scale datasets compared to conventional manifold approaches.
It is noted that our method obtained better scores than ap-
proaches based on the RNN. Although the proposed method
is not based on deep learning, our performance is competitive
with the Cross-View protocol, even when compared to the
dominant CNN-based models. More specifically, our method is
superior (or equal) to the Res-TCN, SkeleMotion, Clips-CNN-
MTLN, and STGC, with the exception of [43] [35] [37]. The
authors of [37] also provided the score by the late fusion of
joint-based (full-body) and part-based AGC-LSTM. However,
most of the compared methods only use full-body joints. For
a fair comparison, the result of the joint-based AGC-LSTM is
reported in Table VII. In our method, we explicitly model the
3D geometric relationships between bones using the relative
rotations-based SO(3). This feature has natural stability and
consistency. For example, if a pair of bones undergo the same
rotation, their relative geometry matrix is not altered. Also,
this feature can be invariant to the subject’s orientation in the
scene. The evolution results of the Cross-View challenge have
demonstrated the efficiency of our method (SO3-TSRVF),
which outperforms all other manifold-related models. For
instance, it exceeds LieNet [51]. As reported in [49], using
the raw data of Kendall’s shape space representations (without
sparse coding SCDL), the classification accuracy is 56.5%,
obviously inferior to ours. Also, the performance of SO3-
TSRVF is better than an RNN-based HBRNN and Deep
LSTM. Compared to the absolute locations of the skeleton,
the relative rotations provide a more meaningful description,
and the Cross-View testing could clearly benefit.

In addition, with the Cross-View and Cross-Subject protocol-
s, the SO3-TSRVF after a sparse coding with labeled learning,
is remarkably boosted (by 13% and 17%). This demonstrates
the efficiency of our model on the large-scale dataset that the
resulting codes are more discriminative than the original data.

H. Computational efficiency

The computational efficiency of the proposed method was
evaluated on a PC with Intel Core i7 CPU and 16 GB RAM.

TABLE IX
A COMPARISON OF REPRESENTATIONAL DIMENSION WITH

STATE-OF-THE-ART MANIFOLD-BASED METHODS ON MSR ACTION3D
[61] DATASET.

Methods Accuracy (%) Dimension
Lie group-DTW [4] 92.5 155 952
Lie group-TSRVF [45] 87.7 155 952
Lie group-TSRVF-PCA [44] 88.3 250
SRV-KNN [47] 92.1 60 000
Ours (SO3-TSRVF) 93.4 77 976
Ours (SO3-TSRVF-SC) 94.6 50 (sparsity)

Our method has been implemented in MATLAB and C++. In
Table. VIII, we report the average processing time of each
step performed on the Florence 3D Action dataset, where the
average length of sequences is 35 frames. It is noted that only
the temporal alignment (Eq. (11)) is a C++ implementation
of the dynamic programming algorithm, while other steps
are implemented in MATLAB. As presented in Table VIII,
during the training, the average time of the proposed method
required to process a (skeletal) sequence is 1.967 seconds.
In the same experimental setting, Lie group-DTW [4] spends
more than six seconds classifying an action. This is not
surprising since Lie group-DTW relies on the time-consuming
steps of DTW and FTP, which sum up to costing around
five seconds per sequence. There is no dictionary learning
procedure in the Lie group-TSRVF [45], its representational
dimension is 38 220, which is 764 times over the dimension
of our SO3-TSRVF-SC (with sparsity S = 50), please see the
following analysis of the models’ representational dimension
for details. The computational complexity of the (training)
linear SVM is O(dn), where n and d are the number and
dimension of samples, respectively. Moreover, if the samples
have extremely sparse feature vectors with the sparsity S, the
computational complexity turns to O(Sn) [66]. SO3-TSRVF-
SC only spends 0.001 seconds for the classification, while the
same step of the Lie group-TSRVF costs about 0.8 seconds.
As a result, the whole computational cost of Lie group-
TSRVF is higher than that of our method. The computational
time of Lie group-TSRVF-PCA [44] and Lie group-TSRVF-
KSVD [59] are similar to ours. However, their performances
are obviously inferior to the SO3-TSRVF-SC, as shown in
Table V where their accuracies are nearly 4 percentage points
lower than our method. As noted in SRV-KNN [47], its
processing speed is faster than the proposed method, but the
classification performance of SO3-TSRVF-SC surpasses SRV-
KNN by 6.5%. Because the implementations of the Gramian
matrix [54] and Kendall-SCDL [49] are not publicly available,
we cannot present their computational costs. Nevertheless,
as reported for the Kendall-TSRVF [5], where the model is
also based on the Kendall’s shape space, its average time
of processing a skeletal sequence is 2.85 seconds (on a 3.1
GHz CPU machine). As we know, deep learning methods can
reduce the need for feature engineering. However, they require
a long time to train a huge amount of network parameters. For
example, LSTM [65] needs more than two hours to accomplish
the training on the Florence 3D Action dataset (215 action
sequences).
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Obviously, in the proposed method, the dominant cost
comes from the computation of the Karcher mean. The multi-
kernel GPU can be utilized to speed up our model via paral-
lelized processing on sequences since the computational time
of the Karcher mean depends on the number of sequences.
After having obtained the Karcher mean, in the testing stage,
the processing time required to classify a sequence is less than
half a second, which points to a real-time system potential. To
evaluate the observational latency of the proposed method, we
report how the accuracy depends on the duration of obser-
vation. Here, this latency is analyzed on the MSR Action3D
dataset [61], where the accuracy is computed by processing
only a fraction of the sequence, such as observing 25%,
50%, and 75% of the frames (skeletons). Correspondingly,
the classification accuracies are 59.7%, 86.4%, and 92.6%.
The results have shown that an accuracy close to the best is
obtained by processing just 75% of the sequences. We can
also notice that even only half of the sequence is sufficient to
guarantee an accuracy over 85%.

As we know, the key target of coding is to reduce the
complexity of search and retrieval in the latent spaces. In
this paper, we propose a sparse coding scheme to learn a
dictionary with the discriminative and representative atoms.
Here, to further verify the efficiency of our coding method,
we compare the representational dimension with the state-
of-the-art methods. As mentioned at the end of Section IV,
in our model, the feature representation of a video sequence
is the combined shooting vectors (SO3-TSRVF) of a skeletal
trajectory. Because a shooting vector of SO(3) is in a tangent
space R3, the Euclidean representation of a human skeleton
is in the space R6C2

M (please see the end of Section III). If
a video sequence has N frames (a trajectory with N points),
then the eventual dimension of our feature vector is 6C2

M×N .
Let us take the MSR Action3D [61] dataset for example,
each skeleton has 19 bones and 20 joints, so M = 19.
Following the setting of [4] [44], all the (action) sequences in a
dataset are interpolated to have the same length N , which has
been set to 76 for the MSR Action3D dataset. Therefore, the
representational dimension of SO3-TSRVF is 77 976. Because
the Lie algebra se(3) is in the space R6, the dimension of Lie
group-based models is 155 952, which is twice that of SO3-
TSRVF. As noted in Section V, the sparsity constraint factor
of the proposed sparse coding is set to 50, which means the
representational dimension of our SO3-TSRVF-SC is much
smaller than the SO3-TSRVF and Lie group-based methods.
However, as reported on all the above datasets, the classifica-
tion results of SO3-TSRVF-SC are always better than others.
It can be concluded that the redundancy data can be reduced
by our method to a discriminative sparse code with a low
computational cost. Also, on MSR Action3D [61] dataset, we
summarize the representational dimension (with classification
accuracy) of state-of-the-art manifold-based methods in Table
IX. Clearly, our method archived the highest score with the
smallest representational dimension. These results proved that
our method can learn meaningful relations between bones and
discard the redundancies efficiently.

VII. CONCLUSION

A new human gesture recognition method is proposed
in this paper. We represented a 3D human skeleton as a
point in the product space of the special orthogonal group
SO(3), due to this, a human gesture can be described as
a trajectory in the Riemannian manifold space. In order to
consider re-parametrization invariance properties for trajectory
analysis, we generalize the TSRVF to obtain a time-warping
invariant metric for comparing trajectories. Furthermore, a
sparse coding scheme of skeletal trajectories is proposed
by carefully considering the labeling information with each
atom to enforce the discriminant validity of the dictionary.
Experiments show that the proposed method has achieved
state-of-the-art performances. Possible directions for future
work include researching end-to-end deep network architecture
in the manifold space in order to address the issues of 3D
skeletal gesture recognition.
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