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 

Abstract—Digital image watermarking is the process of 

embedding and extracting watermark covertly on a carrier image. 

Incorporating deep learning networks with image watermarking 

has attracted increasing attention during recent years. However, 

existing deep learning-based watermarking systems cannot 

achieve robustness, blindness, and automated embedding and 

extraction simultaneously. In this paper, a fully automated image 

watermarking system based on deep neural networks is proposed 

to generalize the image watermarking processes. An unsupervised 

deep learning structure and a novel loss computation are proposed 

to achieve high capacity and high robustness without any prior 

knowledge of possible attacks. Furthermore, a challenging 

application of watermark extraction from camera-captured 

images is provided to validate the practicality as well as the 

robustness of the proposed system. Experimental results show the 

superiority performance of the proposed system as comparing 

against several currently available techniques. 

 
Index Terms—Image watermarking, robustness, deep learning, 

convolutional neural networks, phone camera scan 

 

I. INTRODUCTION 

IGITAL image watermarking refers to the process of 

embedding and extracting information covertly on a 

carrier image. The data (i.e., the watermark) is hidden into a 

cover-image to create a marked-image that will be distributed 

over the Internet. However, only the authorized recipients can 

extract the watermark information correctly. According to 

user’s demands, the watermark can be in different forms, for 

instances, some random bits or electronic signatures for image 

protection and authentication as well as some hidden messages 

for covert communication [1]. The watermark can be encoded 

for different purposes, such as increasing the perceivable 

randomness for additional security via encryption methods or 

restoring the impact of noise via error correction codes for 

watermark integrity under attacks [2, 3].  

While the primary concentration of a steganographic system 

is the imperceptibility to human vision as well as the 

undetectability to computer analysis, an image watermarking 

system often controls the robustness as its priority. Thus the 

watermark should survive even if the marked-image is 

 
  

 

 

 

degraded or distorted [4]. Ideally, a robust image watermarking 

system keeps the watermark intact under a designated class of 

distortions without the assistance of other techniques. However, 

in practice the robust image watermarking systems often extract 

the watermark approximately under malicious attacks and apply 

various encoding methods for restoration [5, 6].  

Traditional image watermarking schemes manually design 

algorithms for the watermark embedding and extraction. For 

example, the least significant bits (LSB) based strategies place 

the watermark on a cover-image through bits substitutions or 

other mathematical operations [5, 7]. Although the trivial 

replacement enables the invisibility, LSB-based methods are 

less robust and can be easily revealed by statistical analysis. 

More advanced watermarking schemes place the watermark on 

various image domains. For example, Cox et al. [8] embedded 

the watermark on the frequency spectrum for high fidelity and 

high security. Shih and Zhong [9] increased the frequency 

domain capacity while preserving the fidelity. Pevny et al. [10] 

enhanced the security by an embedding scheme that maintains 

the cover image statistics. Zong et al. [11] improved the 

robustness by embedding the watermark into image histogram. 

Incorporating deep neural networks with image 

watermarking has attracted increasing attention during recent 

years. In contrast to significant achievements in steganalysis for 

hidden data reveal [12, 13], very few attempts applying deep 

learning in watermark embedding and extraction are reported. 

Earlier methods [14-16] used neural networks to assign the 

significance for the bits of each pixel instead of manual 

determination. Tang et al. [17] proposed a generative 

adversarial network to determine the embedding position and 

the strength on the cover-image. Kandi et al. [18] used two deep 

autoencoders for non-blind binary watermark extraction in the 

marked-image, where the pixels produced by the first auto-

encoder represent bit zero and the pixels produced by the 

second auto-encoder represent bit one. Baluja et al. [19] applied 

deep autoencoders for blind image watermarking to achieve 

high fidelity as well as high capacity. Li et al. [20] embedded 

the watermark in the discrete cosine domain and used 

convolutional neural networks for extraction. However, due to 

fragility of deep neural networks [21], the robustness issue 

becomes a challenge since inputting a modified image to a pre-
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trained deep learning system can cause failure. Mun et al. [22] 

proposed adversarial networks to solve this issue by including 

attack simulation in the training.  

Developing robust image watermarking systems for 

watermark extraction from camera resamples requires that the 

watermark must simultaneously resist multiple distortions, such 

as geometric distortions, optical tilt, quality degradation, 

compression, lens distortions, and lighting variations [23, 24]. 

Researchers have developed various methods in solving these 

problems. Katayama et al. [25] proposed a sinusoidal 

watermark pattern for robust watermark embedding and a 

visible frame for marked-image rectification. Other methods 

based on the autofocus function of a phone camera have been 

developed, such as embedding the watermark through a 

correlation function, placing the watermark in selected 

positions via spread spectrum, and applying log-polar 

transformation [26-28]. Pramila et al. [24] proposed watermark 

extraction from a camera resample of an image printed on blank 

paper by combining computational photography and robust 

image watermarking, but the nonblind property of the system 

restricts its application range. 

In this paper, we develop an automated image watermarking 

system using deep learning networks based on three main 

motivations. First, exploring the fitting ability of deep learning 

models in learning the rules of watermark embedding is helpful 

in developing an automated system. Second, the proposed 

system is tested on the application of watermark extraction from 

camera resamples, providing a potential solution towards this 

challenging issue. Third, image watermarking is viewed from a 

novel perspective – an image fusion task [29, 30] between the 

cover-image and the latent spaces of the watermark, where the 

fused result (i.e., the marked-image) contains the watermark 

while references the visual appearance of the cover-image.  

The remainder of this paper is organized as follows. The 

proposed system is presented in Section 2. Experiments and 

analyses are described in Section 3. The application of 

watermark extraction using a phone camera to scan a screen is 

given in Section 4. Finally, conclusions are drawn in Section 5. 

II. THE PROPOSED SYSTEM 

A. Preliminaries 

Fig. 1 shows a general image watermarking system. The 

watermark w is inserted into the cover-image c to generate a 

marked-image m that will be transported through a 

communication channel. The receiver extracts the watermark 

data w* from the received marked-image m*, which may be a 

modified version of m if some distortions or attacks are 

occurred during transmission. A robust image watermarking 

system intends to secure the integrity of the watermark, i.e., 

minimizing the difference between w and w*.  

Conventional strategies formulate an image watermarking 

task as preserving certain parts from the cover-image for the 

watermark. As given in Eq. (1), w is embedded by taking some 

proportions in a domain of c, 

 

                                   𝑚 =  𝛼𝐷(𝑐) + 𝛽𝑤                                 (1) 

 

where 𝛼  and 𝛽  are the weights which control the watermark 

strength and D(c) denotes an image domain of the cover-image. 

Different optimization schemes can be applied to control the 

embedding and enable the extraction of w* from m* according 

to user’s purposes. Some keys, as in cryptographic systems, can 

also be used in generating, embedding, or extracting the 

watermark for various applications and extra protections [5].   

In contrast, we view image watermarking as an image fusion 

task. Given two input spaces of the watermark and the cover-

image, 𝑊 = 𝑅𝐷1  and 𝐶 = 𝑅𝐷2 . The input watermark space is 

firstly mapped to one of its latent spaces (a feature space 

𝑊𝑓 = 𝑅𝑑1) by a function 𝜇: 𝑊 → 𝑊𝑓, and then the watermark 

embedding is performed by a mapping function 𝜎: {𝑊𝑓, 𝐶} →

𝑀 that fuses the feature space of the watermark and the input 

cover-image space to produce an intermediate latent space 𝑀 =

𝑅𝑑2 . 𝑀  is the space of the marked-image with two main 

constraints. The visual appearance of 𝑀 must be similar to 𝐶, 

while the feature of 𝑀  must correlate to the feature of 𝑊𝑓 . 

Therefore, M has the desired attributes of marked-images. On 

the other hand, watermark extraction is performed by two 

mapping functions, 𝜑: 𝑀 → 𝑊𝑓  that reconstructs the feature 

space 𝑊𝑓  from 𝑀 , and 𝛾: 𝑊𝑓 → 𝑊  that reconstructs the 

watermark data from 𝑊𝑓.  

B. Overall Architecture 

We apply deep neural networks 𝜇𝜃1
, 𝜎𝜃2

, 𝜑𝜃3
 and 𝛾𝜃4

 with 

parameters 𝜃1, 𝜃2, 𝜃3 and 𝜃4 to learn the mapping functions 𝜇, 

𝜎 , 𝜑  and 𝛾 . The architecture of the proposed image 

watermarking system is shown in Fig. 2, where 𝑤𝑖, 𝑤𝑓
𝑖 , 𝑐𝑖, and 

𝑚𝑖  are the examples of the spaces 𝑊, 𝑊𝑓 , 𝐶  and 𝑀. 𝜇𝜃1
 and 

 
Fig. 1. A general image watermarking system. 

 
Fig. 2. The architecture of the proposed system. 
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𝜎𝜃2
 are named as the embedder network, and 𝜑𝜃3

 and 𝛾𝜃4
 are 

named as the extractor network. 

By taking two inputs, the embedder network transforms the 

input spaces 𝑊 and 𝐶 to the intermediate space 𝑀. Instead of 

assigning some unnoticeable portions of the visual components 

as the watermark, 𝜎𝜃2
 learns to replace the visual appearance of 

𝑊𝑓 with 𝐶 while maintaining the characteristics of 𝑊𝑓. Hence, 

the space 𝑀 after the fusion contains the information from 𝑊 

and 𝐶 . On the contrary, the extractor network takes in a 

transformation of 𝑀 and learns to separate and reconstruct 𝑊𝑓 

and 𝑊 . The overall structure of the proposed system is 

compatible with the unsupervised deep autoencoders [31], in 

which an input space can be transformed to a latent space 

containing the most representative features. The original input 

can be recovered from the latent space. Similarly, the proposed 

system transforms two input spaces to a desired latent space and 

reconstruct one of the inputs from the latent space. The recovery 

ability of the autoencoders, that ensures an exact reconstruction 

of the input with appropriate features extracted by the deep 

neural networks, can secure the feasibility of the proposed 

structure. The blindness property is enabled since the 

reconstruction only takes from the latent space, and the fidelity 

is enabled by the constraints placed on the learned latent space. 

A latent space in autoencoders is often learned through a 

bottleneck for the dimensionality compression, while the 

proposed system learns over-complete representations for both 

accurate watermark reconstruction and robustness. 

The entire system is trained as a single deep neural network. 

In this presentation, the samples of space 𝐶 are considered as 

128 × 128 × 3 color images. The watermark is assumed to be 

binary data that could be raw or encoded of 1024-bit 

information (reshaped to 32 × 32). Hence, the presented system 

has a fixed capacity of 1kb. 

C. Invariance Layer 

To tolerate the distortions on the marked-images without 

considering all possible attacks, an invariance layer is 

developed to reject irrelevant information. The invariance layer 

introduces a function 𝜏: 𝑀 → 𝑇 that maps space 𝑀 to an over-

complete transformation space 𝑇. The neurons in this layer are 

activated in a sparse manner not only to allow a possible loss in 

𝑀 for robustness but also to enhance computational efficiency. 

As shown in Fig. 3, it converts a 3-channel instance 𝑚𝑖 of 𝑀 

into an N-channels (N ≥  3) instance 𝑡𝑖  of 𝑇  by a fully-

connected layer, where N is the redundant parameter. 

Increasing N means higher redundancy in 𝑇 , which implies 

higher tolerance of the errors in 𝑀  and thus enhancing the 

robustness. 

Referring to the contractive autoencoder [32], the invariance 

layer employs a regularization term to achieve the sparse 

activation that is obtained by the Frobenius norm of the 

Jacobian matrix of the layer outputs with regards to the training 

inputs. Mathematically, the regularization term P is given as 

 

                                    𝑃 =  ∑ (
𝜕ℎ𝑗(𝑋)

𝜕𝑋𝑖
)2

𝑖,𝑗                                  (2) 

 

where 𝑋𝑖 denotes the i-th input and ℎ𝑗 denotes the output of the 

j-th hidden unit. Similar to the common gradient computation 

in neural networks, the Jacobian matrix can be written as 

 

                                   
𝜕ℎ𝑗(𝑋)

𝜕𝑋𝑖
=

𝜕𝐴(𝜔𝑗𝑖𝑋𝑖)

𝜕𝜔𝑗𝑖𝑋𝑖
𝜔𝑗𝑖                            (3) 

 

where 𝐴 is an activation function and 𝜔𝑗𝑖 is the weight between 

ℎ𝑗  and 𝑋𝑖 . The hyperbolic tangent (tanh) is applied as the 

activation function of the invariance layer for strong gradients 

as well as bias avoidance [33]. With 𝐴 being assigned as the 

hyperbolic tangent, P can be computed as 

 

                         𝑃 = ∑ (1 − ℎ𝑗
2)2 ∑ (𝜔𝑗𝑖

𝑇 )2
𝑖𝑗                           (4) 

 

Minimizing term P alone essentially renders the weights in 

the layer unchangeable to all the inputs X. However, placing it 

as a regularization in the total loss computation enables the 

layer to preserve only useful information while rejecting all 

other noises and irrelevant information to achieve the 

robustness. 

Different from the contractive autoencoder, each channel in 

𝑚𝑖 is treated as a single input in the invariance layer to improve 

the computational efficiency. For example, treating one pixel in 

𝑚𝑖  as an input means 49,152 inputs for a 128 × 128 ×  3 

marked-image. Setting the redundant parameter N as its 

smallest value 3 will imply 147,456 units in the fully-connected 

invariance layer, which requires at least 7,247,757,312 

parameters. This is not practical in most of the current graphic 

computation units and significantly lowers the efficiency. On 

the contrary, treating one channel as an input unit considers 

only 3 input units for the RGB marked-image, which enables 

faster computation as well as a much larger N for higher 

robustness. 

D. Embedder and Extractor Network Structure 

Taking the samples 𝑤𝑖  from the space 𝑊 , 𝜇𝜃1
 with the 

parameter 𝜃1 learns a mapping from 𝑊 to its feature space 𝑊𝑓, 

and 𝛾𝜃4
 learns the reverse mapping of 𝑊𝑓  to 𝑊 with samples 

𝑤𝑓
𝑖 . As shown in Fig. 4, the structures of 𝜇𝜃1

 and 𝛾𝜃4
 are 

symmetric. In 𝜇𝜃1
, the 32 × 32 × 1 binary watermark samples 

 
Fig. 3. The invariance layer. 
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are successively increased into 32 × 32 × 24 and 32 × 32 × 48 

by each of two convolution blocks. The result reshaped to 128 

× 128 × 3 is the feature space sample 𝑤𝑓
𝑖 . Reversely, 𝛾𝜃4

 

reshapes the 128 × 128 × 3 𝑤𝑓
𝑖  back to 32 × 32 × 48, and 

successively decreases it to a 32 × 32 × 1 binary watermark.  

Obviously, the space 𝑊 is increased by 48 times and then 

restored. The purpose of the increment can be summarized into 

two-fold. First, it produces a 𝑤𝑓
𝑖  that has the same size as the 

cover-image sample 𝑐𝑖 to facilitate a concatenation step in 𝜎𝜃2
. 

Second, the increment in the latent space 𝑤𝑓
𝑖  introduces some 

redundancy, decomposition, and perceivable randomness to 𝑤𝑖, 

which not only helps robustness but also provides additional 

security. A few 32 × 32 binary watermark samples and their 

corresponding 128 × 128 × 3 samples from 𝑊𝑓 are shown in 

Fig. 5. 

To partition the patterns in the binary watermark into 

different channels, the inception residual block [34] is adopted 

as the convolution block in the proposed system. It consists of 

a 1 × 1, a 3 × 3, a 5 × 5 convolution, and a residual connection 

that sums up the features and the input itself, so that various 

perception fields are included in the feature extraction. In the 

proposed structure, each convolution has 32 filters, and the 5 × 

5 convolution is replaced by two 3 × 3 convolutions for 

efficiency. These 32-channel features are concatenated along 

the channel dimension to form a 96-channel feature, and a 1 × 

1 convolution is applied to convert the 96-channel feature back 

to the original input channels for the summation in the residual 

connection. Fig. 6 presents a convolution block f, where 𝐹1, 𝐹2, 

and 𝐹3 denote the height, width, and the channel of the block 

input, respectively. 

By taking the samples 𝑤𝑓
𝑖  from the space 𝑊𝑓 along with the 

samples  𝑐𝑖  from the space 𝐶 , the 𝜎𝜃2
 with the parameter 𝜃2 

learns to fuse these two spaces to obtain the marked-image 

space 𝑀. Reversely, 𝜑𝜃3
 learns to detect and extract 𝑊𝑓 from 

the transformation space 𝑇  of 𝑀 . As shown in Fig. 7, the 

convolution block f is firstly used to extract 𝑤𝑓
𝑖  features that are 

concatenated along the channel dimension with the cover-

image sample  𝑐𝑖. Another convolution block takes the 128 × 

128 × 6 concatenation and fuses it to generate the space 𝑀. To 

achieve the fidelity, 𝑀  contains the feature of 𝑊𝑓  while 

referencing the visual contents of 𝐶 . On the other hand, 𝜑𝜃3
 

takes in the 128 × 128 × N transformation sample 𝑡𝑖 produced 

by the invariance layer and maps it back to 𝑤𝑓
𝑖  by two 

convolution blocks.  

Instead of using the space 𝑊𝑓, the proposed structure fuses 

 
 

Fig. 5. Samples of the space 𝑊 and 𝑊𝑓. First row: samples from 𝑊, 

and second row: their corresponding samples from 𝑊𝑓. 

 
 

Fig. 7. 𝜎𝜃2
 and 𝜑𝜃3

. 

 
 

Fig. 6. A convolution block  f. 

 
 

Fig. 8. Samples of the space 𝐶, 𝑀 and 𝑊𝑓 . First row: samples from 𝐶, 

second row: samples from 𝑀, and third row: the corresponding original 

and extracted samples from 𝑊𝑓. 

 
 

Fig. 4. 𝜇𝜃1
 and 𝛾𝜃4

. 
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the feature space of 𝑊𝑓 obtained through the convolution block 

f into the space 𝐶  with the main purpose of controlling the 

appearance of the space 𝑀. Visually, the intermediate latent 

space 𝑀 should primarily rely on the components of 𝐶, so the 

input sample 𝑐𝑖 is directly exploited in the structure. In contrast, 

the information of 𝑤𝑓
𝑖  should not be displayed on 𝑚𝑖, and hence 

the feature of 𝑚𝑖 is designed to be correlated to the feature of 

𝑤𝑓
𝑖 . This indirect fusion enables the fidelity in the proposed 

system. In summary, space 𝑀 borrows the visual contents from 

𝐶 and preserves the features from 𝑊𝑓. Various samples of 𝐶, 𝑀 

and 𝑊𝑓 are shown in Fig. 8. Human vision can hardly tell the 

differences between marked- and cover-images in the spatial 

domain, while the convolution blocks in 𝜑𝜃3
 are able to find 

and extract 𝑤𝑓
𝑖 . 

E. System Objective 

The proposed system intends to learn the mapping functions 

𝜇, 𝜎, 𝜑, 𝛾 and 𝜏, using the neural networks 𝜇𝜃1
, 𝜎𝜃2

, 𝜑𝜃3
, 𝛾𝜃4

 

and 𝜏𝜃5
 parametrized by 𝜃1 , 𝜃2 , 𝜃3 , 𝜃4  and 𝜃5  given the data 

samples including 𝑤𝑖 ∈ 𝑊 and 𝑐𝑖 ∈ 𝐶. The proposed system is 

trained as a single deep neural network with a few constraints. 

Like the autoencoders, the system maps the space 𝑊 to itself. 

Hence, the ground truth of 𝑊  is 𝑊  itself, and the distance 

between the input 𝑤𝑖  and the system output 𝑤𝑖
∗  must be 

minimized. What dissimilar to the autoencoders is that the 

intermediate latent space 𝑀 in the proposed system is an image 

that looks similar to the input space 𝐶, but contains features 

extracted from 𝑊. For this purpose, the system minimizes the 

distance between the generated samples of the intermediate 

latent space 𝑚𝑖  and the samples of the input space 𝑐𝑖 , while 

maximizes the correlation between the samples from the feature 

space of 𝑊𝑓  and the samples from the feature space of 𝑚𝑖 . 

Denoting the parameters to be learned as 𝜗 =
[𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5] , the empirical risk 𝐿(𝜗)  of the proposed 

system can be expressed as  

 

  𝐿(𝜗) =
1

𝐵
∑ [||𝑤𝑖

∗ − 𝑤𝑖||1 + ||𝑚𝑖 − 𝑐𝑖||1 + 𝜓(𝑚𝑖 , 𝑤𝑓
𝑖)𝐵

𝑖=1 ]  (5) 

                                                            

where B is the number of training examples and 𝜓 is a function 

computing the correlation as given below.  

 

 

          𝜓(𝑚𝑖 , 𝑤𝑓
𝑖) =

1

2
(||𝑔(𝑓1(𝑤𝑓

𝑖)),  𝑔(𝑓1(𝑚𝑖))||1 

                                +||𝑔(𝑓2(𝑤𝑓
𝑖)),  𝑔(𝑓2(𝑚𝑖))||1)               

(6) 

 

where 𝑔 denotes the Gram matrix of all possible inner products. 

Besides 𝑤𝑓
𝑖 , the convolutional block f in 𝜎𝜃2

 also extracts 

features from 𝑚𝑖, and the correlation between these features is 

maximized by minimizing the distance between the Gram 

matrices. To highlight the overall performance rather than a few 

outliers, the mean absolute error is selected to compute the 

distance. 

Along with the regularization 𝑃  computed by Eq. (4), the 

structural risk of the proposed model can be represented as 

𝐿(𝜗) + 𝜆𝑃, where 𝜆 is the weight controlling the strength of the 

regularization term. The objective of the system is to learn the 

parameter 𝜗∗ that minimizes the structural risk.  

 

                              𝜗∗ = argmin𝜗𝐿(𝜗) + 𝜆𝑃                           (7)  

 

In the gradient flow during the backpropagation in the 

training, the term ||𝑤𝑖
∗ − 𝑤𝑖||1 is applied by all the components 

of the proposed structure in their weights updates, while only 

the embedder network (𝜇𝜃1
 and 𝜎𝜃2

) applies term ||𝑚𝑖 − 𝑐𝑖||1 

and 𝜓(𝑚𝑖 , 𝑤𝑓
𝑖) to their weight updates. 

III. EXPERIMENTS AND ANALYSES 

A. Training and Testing 

By providing a fixed watermarking capacity of 1,024 bits, the 

proposed system is trained using ImageNet [35] (rescaled to 

128 ×  128) as the cover-image and the binary version of 

CIFAR [36] (32 × 32) as the watermark. Both datasets include 

more than millions of images to introduce a large scope of 

instances to the system. The ADAM [37] optimizer that applies 

a moving window in gradient computation is adopted for its 

ability of continuous learning after large epochs. Fig. 9 shows 

the value of the terms in the empirical risk and of the structural 

risk during 200 epochs. At the training and testing, both T1 and 

T2 in 𝐿(𝜗)  converge smoothly below 1.5% and 𝐿(𝜗) + 𝜆𝑃 

converges below 3%. Term T1 has slightly more errors because 

there are some modifications on the marked-image to indicate 

the watermark features. 𝜆 is set to be 0.01 in this case, and all 

the layers in the system apply the rectified linear unit (ReLU) 

as the activation function except that 𝑚𝑖 and 𝑤𝑖
∗ use sigmoid to 

limit the output range into (0, 1) and the invariance layer uses 

hyperbolic tangent. 

The testing is performed on 10,000 image samples from the 

Microsoft COCO dataset [38] as the cover-image, and 10,000 

images of the testing division of the binary CIFAR as the 

watermark. To demonstrate that the proposed system 

generalizes the watermarking rules without over-fitting to the 

training samples, both the testing cover-images and testing 

watermarks are not used in the training. The peak signal-to-

noise ratio (PSNR) and bit-error-rate (BER) are also 

respectively used to quantitatively evaluate the fidelity of the 

marked image and the quality of the watermark extraction in the 

testing. The PSNR is defined as 

 

 
 

Fig. 9. The empirical risk and the structural risk during 200 epochs. 
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                             𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
max (𝑐𝑖)2

𝑀𝑆𝐸(𝑐𝑖,𝑚𝑖)
)                      (8) 

 

where MSE is mean squared error. The BER is computed as the 

percentage of error bits on the binarization of watermark 

extraction 𝑤𝑖
∗. In the testing, the BER is zero, indicating that the 

original and the extracted watermarks are identical. The testing 

PSNR is 39.72 dB, meaning a high fidelity of the marked-

images, so that the hidden information cannot be noticed by 

human vision. A few testing examples with various image 

content and color are presented in Fig. 10. The residual error 

showing the absolute difference in each RGB channel between 

the marked- and the cover-images is also displayed, which 

demonstrates that the watermark is dispersed over the marked 

image. This provides extra security to the marked-image. Even 

when the cover-image is leaked, its subtraction from the 

marked-image would not reveal the watermark. After the pixel 

values are rescaled between 0 and 255, the mean of the absolute 

difference for each RGB channel is computed. The averages 

over the testing set yield 2.57, 2.10, and 1.63, respectively. The 

average maxima of the RGB absolute differences are 14.11, 

24.79, and 17.08, respectively. These numbers indicate that 

there are only slightly spiky modification to enable the 

extraction, but on average the watermark insertion does not 

alter the channels significantly. 

B. Synthetic Images 

To further validate that the watermark embedding and 

extraction rules are learned without over-fitting, the proposed 

system is exposed to some extreme cases with synthetic images. 

In particular, the synthetic situations that are not included 

during the training process are analyzed, and the results 

involving blank and random generated images and watermarks 

are presented. 

Fig. 11 shows the results of embedding watermarks into 

synthetic blank cover-images of red, green, and blue, where the 

residual errors are increased tenfold. Although the blank cover-

images are not included in the training, the proposed system 

provides promising results. The residual errors display more 

green color and the blank green marked image displays 

relatively more noticeable noises than those in other colors, 

implying that the proposed system modifies the green color 

slightly more. Applying blank cover-images is known to be 

extremely difficult in conventional watermarking methods due 

to the lack of psycho-visual information. However, instead of 

assigning some unnoticeable portions of visual components as 

the watermark, the proposed deep learning model learns to 

apply the correlation between the features of space 𝑊𝑓 and the 

features of the fused space 𝑀. 

Fig. 12 presents the result of embedding a randomly 

generated binary image into a natural cover-image, as well as 

the result of embedding a testing binary watermark into a 

random color-spotted cover-image. For random watermarks, 

10,000 randomly generated bits are tested on 10,000 cover-

images from the testing dataset and the average BER is 0.36%, 

which indicates that applying random binary stream as the 

watermark does not cause problems to the proposed system. 

 
 

Fig. 10. A few testing examples. First column: the watermark, second 

column: the cover-image, third column: the marked-image, and fourth, fifth, 

and sixth columns: the absolute differences of R, G, and B channels between 

the marked- and the cover-images. 

 

 
 

Fig. 11. Embedding watermarks into blank cover-images. First column: the 

watermark, second column: the blank cover image, third column: the extracted 

watermark, forth column: the marked-image, and fifth and sixth columns: the 

residual errors. 

 

 
 

Fig. 12. With noise images. First column: the watermark, second column: 

the cover-image, third column: the extracted watermark, fourth column: 

the marked-image, and fifth and sixth columns: the residual errors. 

 

 
 

Fig. 13. Visual comparison. First row: marked-images, second row: 

distorted marked-images, where the distortions from left to right 

respectively are histogram equalization, Gaussian blur, random noise, salt-

and-pepper noise, and cropping, third row: original watermarks, and fourth 

row: watermark extractions from the distorted marked-images. 
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When it comes to embedding watermarks into random cover-

images, a test of embedding 10,000 watermarks from the testing 

dataset into 10,000 randomly generated cover-images yields a 

higher average BER of 11.98%. Although the general shape is 

still recognizable, there are obvious distortions on the 

watermark extraction. However, in practical applications, 

embedding a watermark into random noises means that the 

appearance of the marked-media is noisy and meaningless, so 

the encryption methods mapping a watermark into random 

patterns could be used instead. 

C. Robustness 

The robustness of the proposed system against different 

distortions applied to the marked-image is evaluated by 

analyzing the distortion tolerance range. Fig. 13 shows some 

visual comparison between the marked-images and their 

distortions, as well as between the original watermarks and the 

watermark extractions from the distorted marked-images. 

Quantitatively, distortions with swept-over parameters that 

control the attack strength are applied on the marked-images 

produced from the testing dataset. The watermark extraction 

BER caused by each distortion under each parameter is 

averaged over the testing dataset. Some distortions with swept-

over parameters versus the average BER are plotted in Fig. 14. 

Since the proposed system is designed against image-

processing attacks and the input to the system is assumed to be 

pre-processed to rectify the geometric distortions such as 

rotation, scaling and translation, the responses of the proposed 

system against some challenging and common image-

processing attacks are discussed here.  

The extracted watermarks respectively have 10.6%,  7.8%,  

32.2%, 11.6%, 46.2%, and 12.3% average BER when the 

distortions are a Gaussian blur with mean 0 and variance 85%, 

a cropping discarding 65% percent of the marked image, a 

Gaussian additive noise mean 0 and variance 20%, a JPEG 

compression with quality factor 10, a 20% random noise, and a 

90% salt-and-pepper noise. The proposed system shows high 

tolerance range on these challenges especially for cropping, 

salt-and-pepper noise, and JPEG compression. The attacks that 

randomly fluctuate the pixel values through image channels 

show higher BER including Gaussian additive noise and 

random modificative noise. However, a 20% Gaussian additive 

noise or a 20% random modificative noise destroys most of the 

contents on the marked-image as shown in Fig. 15, and the 

proposed system responds acceptable performances given a 

decent distortion parameter, such as 16% BER on 10% 

Gaussian noise. 

D.  Comparison 

The proposed system is analytically compared against 

several state-of-the-art image watermarking methods that 

incorporate deep neural networks as shown in Table I. Kandi et 

al. [18] proposed to use convolutional neural networks for 

image watermarking. It applies two deep autoencoders to 

rearrange a cover-image to a marked-image. To indicate a 

watermark in the marked-image, the pixels produced by the first 

auto-encoder represent bit zero and the pixels produced by the 

second represent bit one. However, the method is a non-blind 

scheme although achieving robustness. Embedded by 

increasingly changing an image block to represent a watermark 

bit, the system in [22] is trained to extract the watermark bits 

from their corresponding blocks with attack simulation and 

achieves both blindness and robustness. However, it requires to 

include the distortions in the training phase for robustness. In 

 
 

Fig. 14. Distortions with swept-over parameters versus average BER. 

TABLE I 

COMPARISON BETWEEN THE PROPOSED SYSTEM AND STATE-OF-THE-ART 

IMAGE WATERMARKING METHODS APPLYING DEEP NEURAL NETWORKS 
 

Method 

Function of the 

deep neural 

network 

Blind Robust Concentration 

 

[17] Embedding no no Undetectability 

[18] 

 

Embedding and 

extraction 

no yes Robustness 

[19] 

 

Embedding and 

extraction 

yes no Capacity 

 

[20] Extraction yes no Undetectability 

[22] 

 

Extraction yes yes Robustness 

Ours 

 

Embedding and 

extraction 

yes yes Robustness 

 

 

 
Fig. 15. Sample distortions. Left: the marked-image, 

middle: after 20% Gaussian additive noise, and 

right: after 20% random modificative noise. 
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reality, we have no way to predict and enumerate all kinds of 

attacks. To overcome this, our proposed system not only applies 

deep neural networks to learn the rules of both embedding and 

extraction, but also intends to achieve blindness and robustness 

simultaneously without the requirement of the attacks’ prior 

knowledge, and hence has a wider range of applications. 

The proposed system is also quantitatively compared against 

several related competitors that are blind and robust image 

watermarking systems. The selection of the competitors 

considers variation and their concentrations. Mun et al. [22] 

applied convolutional neural networks, and Zong et al. [11], 

Zareian and Tohidypour [39], and Ouyang et al. [40] used 

manually-designed, traditional, and robust methods 

respectively with different image domains including histogram 

domain adopting statistical image features, frequency domain, 

and log-polar domain with summarized image features. All the 

selected competitors focus on the robustness against image-

processing attacks. The testing is performed on the same cover-

image sets as well as the same watermarks reported in the 

references. As the proposed system focuses on common image-

processing attacks, the crucial results focusing on this category 

are presented in Table II, where “/” denotes not applicable, S&P 

denotes the salt-and-pepper noise, and GF denotes Gaussian 

filtering.  

The proposed system shows advantages by covering more 

distortions in image-processing attacks and obtaining a lower 

BER under the same distortion parameters. For instance, 

traditional methods such as manipulating the image histogram 

cannot tolerate the histogram equalization attack. In addition, 

the proposed method has a higher tolerance range; for example, 

[22] and [40] can only extract the watermark with a high JPEG 

quality of 80 to 90, while the proposed method covers as low as 

10. Although the method in [39] focusing on the compression 

has higher performance on the JPEG, the proposed method 

outperforms the competitors in all other listed distortions. 

Remarkably, the competitors tolerate cropping 20% to 30%, 

while the BER is as high as 7.8%% even if 66% of the marked-

image is cropped. Finally, under a similar PSNR, the proposed 

method shows its advantages by simultaneously achieving the 

highest robustness and the highest capacity. 

IV. AN APPLICATION: WATERMARK EXTRACTION USING A 

PHONE CAMERA TO SCAN A SCREEN 

To the best of our knowledge, all the methods solving the 

problem of watermark extraction from camera resample focus 

on printed papers up to now [23-28]. Applying deep neural 

networks for watermark extraction from camera resamples of a 

screen remains unexplored. Although the paper printings 

sometimes bring noises such as printing quality and bending, 

the watermark extraction from the resamples of a screen 

presents a much more challenging task. Besides the noises 

brought by the camera including geometric distortion, optical 

tilt, quality degradation, compression, lens distortions, and 

lighting variation, it introduces much more possible noises from 

the screen, such as the Moire pattern (i.e., the RGB ripple), the 

refresh rate of the screen, and the spatial resolution of a monitor 

(see the examples of camera resamples in Fig. 16). Developing 

a blind image watermarking system that is simultaneously 

robust to all of these distortions is extremely difficult. Since our 

proposed watermarking system is designed to reject all 

irrelevant noises instead of focusing on certain types of attacks, 

its application to deal with this problem seems feasible. The 

outlined process of this application is shown in Fig. 16.  

First, an information provider prepares the data by encoding 

through some error correction coding (ECC) techniques. Then, 

the marked-image can be obtained by fusing the encoded 

watermark and the cover-image using the trained embedder 

network. The marked-image that looks identical to the cover-

image is distributed online and displayed on the user’s screen. 

Finally, the user scans the marked-image to extract the hidden 

watermark by the trained extractor network in our proposed 

system.  

The distortions occurred in the application can be divided 

into two categories: projective and image-processing 

distortions. The geometric and projective distortions will be 

rectified by image registration techniques, and the major 

function of the proposed system in this application is to 

overcome the pixel-level modifications coming from image-

processing distortions, such as the compression, lighting 

variations, the Moire pattern, and the interpolation errors from 

the rectification. The autofocus function of a smartphone is 

utilized. 

To simulate a realistic situation, a prototype is developed for 

TABLE II 

QUANTITATIVE COMPARISON BETWEEN THE PROPOSED SYSTEM AND SOME 

BLIND AND ROBUST COMPETITORS. 
 

Method 

BER ( % ) under the distortions 
PSNR 

(dB) 

Capacity 

(bits) HE 
JPEG 

10 

Cropping 

20% 

S&P 

5% 

GF 

10% 

 

[11] / 17.50 7.06 3.51 6.33 46.63 25 

 

[22] / / 6.61 7.98 4.81 38.01 1 / block 

 

[39] / 2.15 / 4.94 0.21 41.00 256 

 

[40] / / 7.51 9.41 27.91 36.77 24 

 

Ours 0.43 8.16 0 0.97 0 39.93 1,024 

 

 

 
Fig. 16. Process of the application. 
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a user study, and a 32 × 16 information is used for its clear 

structure. The user interface (UI) and the sample information 

are shown in Fig. 17. Reed Solomon (RS) code [41] is adopted 

as the ECC to protect the information under some BER. 

RS(32,16) is applied to protect each row of the 32 ×  16 

information, so the encoded information will be a 32 ×  32 

watermark satisfying the fixed watermarking capacity of the 

proposed system. In the watermark, each row is a codeword 

consisting of a data of length 16 and a parity of length 16, and 

hence can correct up to an error of length 8. Therefore, inside 

this watermark of length 1,024, up to 256 errors can be 

corrected if there are no more than 8 errors in each row. 

Applying half of the bits as the parity, the watermarking 

payload is 512 bits. As shown in the UI, the prototype only 

analyzes the region of interest (ROI) in a camera view and 

hand-taken pictures can hardly be parallel to a screen. Therefore, 

there exist some geometrical, affine, and perspective distortions, 

which the proposed system does not concentrate on. Therefore, 

the image registration technique in [42, 43] is adopted to rectify 

these distortions before inputting a picture to the proposed 

system for an extraction. To simplify the prototype as shown in 

Fig. 18, four corners of the largest contour inside the ROI are 

used as the reference points. The contoured content is mapped 

on the bird view plane, and the watermark is extracted from the 

rectification. 

Five volunteers were asked to take a few pictures of some 

marked-images displayed 425px × 425px on a 2,560 × 1,440 

screen by the camera of a mobile phone. Two rules were given 

to the users. First, the entire image should be placed as large as 

possible inside the ROI. As a prototype for demonstration, this 

rule facilitates our segmentation that the largest contour inside 

the ROI is the marked-image, so that this application can focus 

on the test of the proposed system instead of some complicated 

segmentation algorithms. In addition, placing the image largely 

in the ROI helps with the capture of desired details and features 

for the watermark extraction. Second, the camera should be 

kept as still as possible. Although the proposed system tolerates 

some blurring effects, it is not designed to extract watermark in 

high-speed motion. Fig. 19 presents a few extractions and their 

corresponding ROIs, where the BERs from left to right are 

3.71%, 4.98%, 1.07%, 4.30%, and 8.45%, respectively. It can 

be observed that the closer the picture is taken, the lower the 

error is. The more parallel between the camera and the screen, 

the lower the error is. The angle tolerance between the camera 

and the screen is around 30°. The flashlight brings more errors 

since it may over- and underexpose some image areas. The 

flashlight may be turned off in this application since the screen 

has backlit. There are 20 images in the user’s test, and the 

average BER is 5.13%.  

For visual comparison, the displayed sample watermark 

extractions are the raw result before error correction. After 

executing RS(32,16), all the watermark extractions in the 

testing cases can be restored to the original information in Fig. 

17 without error. In these tests, the proposed system extracts the 

watermark within a second as it only applies the trained weights 

in the extractor network on the marked-image rectification. 

V. CONCLUSIONS 

This paper introduces an automated image watermarking 

system using deep convolutional neural networks. The 

proposed blind image watermarking system achieves its 

robustness property without requiring prior knowledge of 

possible distortions on the marked-image. The proposed system 

constructs an unsupervised deep neural network structure with 

a novel loss computation for automated image watermarking. 

Experimental results along with a challenging application of 

watermark extraction from camera resampled marked-images 

have confirmed the superiority performance of the proposed 

system. By exploring the ability of deep neural networks in the 

task of fusion between the cover-image and the latent spaces of 

the watermark, the proposed system has successfully developed 

an image fusion application on image watermarking.  
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