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GAC-GAN: A General Method for
Appearance-Controllable Human Video

Motion Transfer
Dongxu Wei, Xiaowei Xu, Haibin Shen, and Kejie Huang

Abstract—Human video motion transfer has a wide range
of applications in multimedia, computer vision and graphics.
Recently, due to the rapid development of Generative Adversarial
Networks (GANs), there has been significant progress in the
field. However, almost all existing GAN-based works are prone
to address the mapping from human motions to video scenes,
with scene appearances are encoded individually in the trained
models. Therefore, each trained model can only generate videos
with a specific scene appearance, new models are required to
be trained to generate new appearances. Besides, existing works
lack the capability of appearance control. For example, users have
to provide video records of wearing new clothes or performing
in new backgrounds to enable clothes or background changing
in their synthetic videos, which greatly limits the application
flexibility. In this paper, we propose GAC-GAN, a general method
for appearance-controllable human video motion transfer. To en-
able general-purpose appearance synthesis, we propose to include
appearance information in the conditioning inputs. Thus, once
trained, our model can generate new appearances by altering the
input appearance information. To achieve appearance control, we
first obtain the appearance-controllable conditioning inputs and
then utilize a two-stage GAC-GAN to generate the corresponding
appearance-controllable outputs, where we utilize an ACGAN
loss and a shadow extraction module for output foreground
and background appearance control respectively. We further
build a solo dance dataset containing a large number of dance
videos for training and evaluation. Experimental results show
that, our proposed GAC-GAN can not only support appearance-
controllable human video motion transfer but also achieve higher
video quality than state-of-art methods.

Index Terms—Motion Transfer, Video Generation, Image Syn-
thesis, Generative Adversarial Networks (GANs).

I. INTRODUCTION

HUMAN video motion transfer (HVMT) aims at synthe-
sizing a video that the person in a target video imitates

actions of the person in a source video, which is of great benefit
to applications in scenarios such as games, movies and robotics.
For example, the animation of virtual characters plays a key
role in VR/AR games and movies. Based on HVMT techniques,
we can animate the virtual game roles or movie actors freely
to perform user-defined mimetic movements, thus rendering
plausible visual results [48], [47]. Moreover, the animated
visual data can be further utilized as simulated training data to
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train robotic agents that work for real-world situations, where
real experiences may be hard to obtain [46].

With the recent emergence of Generative Adversarial Net-
works (GANs) [1] and its variant conditional GANs (cGANs)
[2], there are many GAN-based works [15], [16], [17], [18],
[19] that achieve great success in HVMT. For ease of discus-
sion, we decompose the video scene into scene appearance
(background and human foreground) and human motion in
the context of HVMT. Existing works have two limitations.
First, only the mapping from human motions to video scenes
is addressed while scene appearances are encoded individually
in the trained models. Therefore, once trained, each model is
specific to the scene appearance of a target video and cannot
generalize to other scene appearances. They have to train
additional video-specific models with new target videos as the
training data to generate new scene appearances. Unfortunately,
due to the large cost of manpower and computing resources
produced by the data collection and the model training, such
approach lacks efficiency for practical applications. Second,
existing methods can’t control the scene appearance. In
particular, background and human foreground appearances are
bound together and not allowed to be altered. Therefore, these
methods can’t synthesize videos with users wearing new clothes
or performing in new backgrounds if users have never been in
these clothes or backgrounds. However, users expect to alter
appearances in their synthetic videos without the efforts of real
clothes and background changing. Thus, despite the human
motion control, further appearance control is needed to provide
high flexibility in practical applications.

In this work, we propose GAC-GAN: a general method
for appearance-controllable human video motion transfer. For
general-purpose appearance synthesis, we propose to feed
our model with appearance conditioning inputs in addition to
motion conditioning inputs (body poses) used in other works,
allowing the model to learn the mapping from human motions
and scene appearances to video scenes. For appearance control,
we propose to control output appearances through control of
the conditioning inputs. Specifically, we propose a multi-source
input selection strategy to first exert appearance control on the
conditioning inputs during data preprocessing. Then a two-stage
GAC-GAN framework which consists of a layout GAN and
an appearance GAN is proposed to generate the corresponding
appearance-controllable outputs from the conditioning inputs,
where we further apply an elaborate ACGAN loss and a light-
weight shadow extraction module to the appearance GAN to
achieve control of the output human foreground and background
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respectively.
In our experiments, a large solo dance dataset including

148800 frames collected from 124 people is utilized for
general-purpose training and evaluation. We first compare
our approach against state-of-art video-specific [16], [15] and
general-purpose [9] methods through qualitative, quantitative
and perceptual evaluations on the test set. The results show
that, compared with other methods, our proposed approach
can synthesize high-quality motion transfer videos that are
perceptually more popular and quantitatively more similar to
ground-truth real videos in a general way. Then we apply
our method to ordinary and appearance-controllable HVMT
tasks for further validation on simulated real-world situations
where no ground-truth video is available. The results show
that, in addition to the human motion control, our method can
further control the appearances of the human foregrounds as
well as the surrounding backgrounds flexibly. Moreover, to
give a better insight into the proposed GAC-GAN framework,
we conduct comprehensive ablation studies for our important
components (i.e., multi-source input selection strategy, layout
GAN, ACGAN loss and shadow extraction module).

To summarize, our main contributions are as follows:
• We propose GAC-GAN: a general approach enabling

appearance-controllable human video motion transfer.
• We achieve higher video quality than state-of-art methods

by taking advantage of our novel component designs.
• We construct a large-scale solo dance dataset including a

variety of solo dance videos for training and evaluation,
which will be released publicly to facilitate future research.

The rest of the paper is structured as follows: Sec.II discusses
the related work. Sec.III introduces the problem formulation in
our work. In Sec.IV, we describe the proposed GAC-GAN. In
Sec.V, we report and discuss our experimental results. Finally,
Sec.VI concludes the paper and discusses the future work.

II. RELATED WORK

A. Classic motion transfer.

Early works have attempted to reorder existing video frames
[20], [26], [25] to obtain new videos consisting of frames
with motions similar to the desired motions, where the results
are not temporally coherent and can be easily distinguished
from real videos. Later techniques try to animate coarse 3D
character models [22], [23], [21] to create rendered motion
transfer videos, which results in coarse body silhouettes and
unrealistic texture details. Recently, methods [43], [44], [45]
estimate detailed 3D characters with controllable body meshes
to render plausible video results. However, most of these 3D
rendering approaches require massive computation budgets
dominated by the production-quality 3D reconstructions, which
is inefficient for real-world applications.

B. Image and video generation.

Instead of relying on temporally incoherent video manipula-
tions or computationally expensive 3D reconstructions, current
motion transfer works depend more on image and video
generation techniques. Traditional generation methods are prone

to deal with syntheses of local textures based on simple hand-
crafted features [29]. With the development of deep learning
algorithms, variational autoencoder (VAE) [30] and generative
adversarial networks (GANs) [1] become two mainstream
methods due to their capabilities of synthesizing large-size
images. Benefiting from the powerful two-player adversarial
training, GAN-based generative models can synthesize images
that are less blurry and more realistic than those generated
by VAEs, which causes GANs are more exploited in image
and video generation works. In the beginning, GAN-based
image generation works [31], [32] focus on designing GAN
architectures to improve synthetic image resolutions. However,
their image results are randomly generated from randomly
sampled noises, which is out of user control. Since the
emergence of conditional GANs (cGANs) [2], works start
to take class labels [35], [36] or descriptive images [3], [34],
[33] as extra conditioning inputs to control the output image
appearances, which belongs to the same method category as our
proposed cGAN-based approach. Besides of image generation,
there are also works [37], [38], [39], [40], [41], [42] focus
on synthesizing temporally coherent video sequences. For
instance, unconditional video generation works [37], [38], [39]
try to improve temporal consistency between adjacent synthetic
frames based on GANs that consider not only visual quality
but also temporal coherence. However, these approaches fail
to generate high-quality or long-term video results, with scene
appearances are randomly synthesized in an unconditional
manner. Besides, video prediction techniques [40], [41], [42]
attempt to predict future video sequences based on the currently
observed video sequences. Although the synthetic appearances
are conditioned on the previous frames, future video motions
are unconditionally generated, which is inappropriate for the
motion controllable video synthesis that HVMT concerns.

C. GAN-based motion transfer.

Due to the great success of the GAN-based image and
video generation approaches mentioned above, many works
are developed for motion transfer based on them.

1) Image-based human pose transfer: In the recent years,
there have been significant efforts which we refer to as image-
based methods [9], [11], [14], [13], [8], [12], [10] aiming at
synthesizing new pose images given the human appearance of
a single input image. The purpose of these image-based works
is to impose the input human appearance onto new poses in an
image-to-image translation manner [3], which is very similar
to the human video motion transfer that we focus on. [9], [11],
[14] utilize spatial transformations or surface deformations to
transform the input appearance texture into new pose layouts,
where the transformed results are rough and refined in detail
to generate output images. Similarly, [13], [8], [12] apply such
transformations or deformations to appearance features instead
of textures, where the transformed features are then decoded
to generate new pose images. Furthermore, [10] propose a
style discriminator to force the generator to preserve the input
appearance style, which gives a new sight from the aspect
of discriminator design. Although these image-based methods
can achieve general-purpose appearance synthesis, all of them
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Fig. 1. Overview of our method. In the data preprocessing, we obtain the paired XSP and XT from the source motion frame and the target appearance frames
based on the multi-source input selection strategy. Then the processed inputs are fed into the GAC-GAN which consists of a layout GAN and an appearance
GAN to sequentially generate the layout ỸLO and the scene appearance ỸI (composed of the synthetic foreground ỸFG and the rendered background
ỸBG), where we further apply an ACGAN loss and a shadow extraction module to the appearance GAN to control foreground and background appearances
respectively. In the figure, the orange and the blue arrows represent data flows of the layout GAN and the appearance GAN respectively, ⊗ and ⊕ represent
pixel-wise multiplication and addition operations respectively. In the data preprocessing module, the red circles specify the desired body part appearances. In
the GAC-GAN module, the red circles point out how the synthetic shadow map ỸM modulates brightness for the input background image XTBG, which
enables shadow rendering.

are designed for still image generation without consideration
of temporal coherence, which causes they are not qualified
for video synthesis that we concern. Besides, these methods
try to generate unseen body views from a single input image,
which greatly restricts their performance due to the lack of
appearance information, especially when the desired output
pose greatly differs from the input pose.

2) Video-based human motion transfer: As the video coun-
terpart of the above mentioned image-based pose transfer, video-
based motion transfer considers video generation with access
to more appearance information contained in a whole video,
leading to a higher level of temporal coherence and visual
quality. In [16], the authors propose to generate optical flows
to warp previously generated frames into temporally consistent
new frames. Besides, [15] use a temporal smoothing loss to
enforce temporal consistency between adjacent frames. Note
that video quality depends not only on temporal coherence
but also on appearance details. Thus recent works come
up with feeding rendered images of 3D models [17] or
transformed images of body parts [18] into their models as
input conditions to obtain realistic appearances. Moreover, [19]
split their network into two training branches with respect to
appearance generation and temporal coherence improvement to
account for both sides. Although these works can generate
videos with higher quality than image-based methods, an
obvious limitation is that they have to train additional models
to generate unseen scene appearances, keeping them from
general-purpose appearance synthesis required in real-world
applications. Besides, none of them can realize controllable
appearance synthesis to satisfy user demands for clothes and
background changing. Although [18] can support background
replacement with user-defined images, they don’t allow users
to try on different clothes in the synthetic videos.

III. PROBLEM FORMULATION

Before describing our method, we first define the problem
to solve: given conditioning input of a source motion video
and multiple target appearance videos, we aim at synthesizing
a new video with human motion of the source video and
combined scene appearance of the target videos. Specifically,
the conditioning input is divided into motion conditioning
input (source motion) and appearance conditioning input (target
appearance), where the target appearance is further divided
into human and background appearances. Source motion input
is described by the estimated body poses of the source video
frames. To enable human appearance control, target human
appearance input is decomposed into three user-defined body
parts (e.g., head, upper body and lower body) with respect
to appearances of face, upper garment and lower garment,
each of which is described by the estimated body part poses,
layouts and foregrounds of its own target video frames. To
enable background appearance control, target background
appearance input is described by a user-defined background
image. Conditioned on the source motion and the target
appearance inputs, we generate the corresponding outputs
including body layouts, body part foregrounds and shadow
maps, where the body layouts are generated by the layout GAN
while the others are generated by the appearance GAN. Then
we use the synthetic shadow maps to render shadows on the
input background image. Finally, we obtain the synthetic full
scenes by composing the synthetic body part foregrounds and
the rendered backgrounds together. For the above mentioned
inputs and outputs, we give their variable definitions used in
this paper as follows:

1) Inputs
• source motion: source pose XSP

• target human appearance (XT ):
target poses: XTP,H , XTP,U , XTP,L
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Fig. 2. Illustration of our data preprocessing. In step 1, we detect poses, layouts and foregrounds to obtain the motion condition XSP and the appearance
condition (XT ) library, where each red circle specifies a target body part. In step 2, each body part of the source pose XSP is paired with a target body part
(pose XTP , layout XTLO , and foreground XTFG) in the XT library according to body part pose similarity. Then in step 3, we use the computed scale and
translation values between body parts of XSP and XT to transform the body parts of XT into the same sizes and positions as those of XSP .

target layouts: XTLO,H , XTLO,U , XTLO,L

target foregrounds: XTFG,H , XTFG,U , XTFG,L

• target background appearance: XTBG

2) Outputs
• layout GAN: body layout ỸLO

• appearance GAN:
body part foregrounds: ỸFG,H , ỸFG,U , ỸFG,L

shadow map: ỸM
background: ỸBG

full scene: ỸI
where X and Ỹ mean input and output, S and T represent input
source and target videos, P , LO, FG, BG, M , I represent
pose, layout, foreground, background, shadow map and scene
image, H , U , L refer to head, upper body and lower body.

IV. METHOD

In this section, we first give the overview of our proposed
method, which is followed by two subsections with respect to
our data preprocessing and GAC-GAN framework.

A. Overview

The overview of our method is depicted in Figure 1.
First, we apply data preprocessing to the input videos to

obtain our conditioning inputs, where we pair each motion
conditioning input (source pose XSP ) with an optimal ap-
pearance conditioning input XT (target pose XTP , layout
XTLO and foreground XTFG of head, upper body and lower
body) based on a multi-source input selection strategy.
Specifically, each body part of XT is obtained from its own
target human appearance source, which can be altered based
on user preferences to enable input appearance control.

Next, we feed the motion (XSP ) and the appearance
(XT ) conditioning inputs into our two-stage GAC-GAN which
consists of a layout GAN and an appearance GAN, responsible
for controllable layout synthesis and appearance synthesis
respectively. Because generating appearances directly from
body pose points can be extremely hard, we can ease training
by dividing our model into these two stages, where the synthetic
layout can be regarded as the intermediate representation of

the final appearance result. Specifically, in the first stage,
the layout GAN is designed to synthesize the foreground
layout ỸLO whose body pose and body part distribution
are consistent with the motion condition (XSP ) and the
multi-source appearance condition (XTLO) respectively. In
the second stage, the appearance GAN takes the synthetic
layout ỸLO as additional motion conditioning input to generate
the desired scene appearance ỸI , which is composed of a
synthetic foreground ỸFG and a rendered background ỸBG.
As for the foreground, we train the appearance GAN with an
ACGAN loss to ensure the appearance consistency between
the synthetic foreground and the input appearance condition,
which therefore enables foreground appearance control in
consistency with the input appearance control. As for the
background, we implant a light-weight shadow extraction
module into the appearance GAN to generate a shadow
map ỸM that modulates background brightness and renders
appearance-irrelevant shadows on XTBG, which therefore
enables background appearance control by directly replacing
background with arbitrary user-defined images.

B. Data Preprocessing

The main purpose of data preprocessing is to obtain our
motion and appearance conditioning inputs. For each frame
synthesis, the motion condition is extracted from a source
motion frame while the appearance condition is extracted from
a target appearance library which contains three kinds of target
appearance video frames with respect to head, upper body
and lower body. Since video sources of the three body parts
are alterable based on user preferences, the multi-source input
appearance condition is fully appearance-controllable. With
body motion is specified by the motion condition, the data
preprocessing aims at obtaining the paired appearance condition
which contains the maximum appearance information needed
for appearance synthesis. Specifically, the data preprocessing
consists of the three steps depicted in Figure 2, where the
multi-source input selection strategy utilized in step 2 is the
key to ensure the obtained appearance condition is optimal for
the motion condition. It’s noted that there’s no restriction on
the frame number for the target appearance library, we can
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means ”right” and ”L-” means ”left”.

obtain the optimal appearance condition no matter how many
frames are provided.

1) Step 1: Detecting Poses, Layouts and Foregrounds: We
utilize [6] and [4] to detect body poses and semantic layouts
respectively, where the pose point locations and the layout
classes are described in Figure 3. Then we can decompose
the full body layouts into body part layouts for the three
body part regions. Specifically, head region is a combination
of hair and face; upper body region is a combination of
tops, torso skin, left arm and right arm; lower body region
is a combination of bottoms, left leg, right leg, left shoe,
right shoe and socks. Thereafter we can extract foregrounds
for each body part by multiplying the full images with the
corresponding body part masks derived from the body part
layouts. Based on the detections described above, we can
obtain the input motion condition from the source motion
frame and the appearance condition library from the target
appearance library. In particular, the motion condition is the
detected source body pose (XSP ) of the input source motion
frame. The appearance condition library (XT library) consists
of three body part appearance condition libraries, each of which
contains target body part poses (XTP ), layouts (XTLO) and
foregrounds (XTFG) obtained from the corresponding video
of the target appearance library.

2) Step 2: Multi-Source Input Selection: Since human
appearances vary significantly with body poses, we propose
a multi-source input selection strategy to select the optimal
XT based on the body part pose similarity. For each body
part of the motion condition (XSP ), we select the paired body
part appearance condition from the corresponding body part
appearance condition library, where the pose of the selected
body part appearance condition is the most similar to the
body part pose of the motion condition within the body part
appearance condition library. Thus we obtain the selected XT
which consists of three body part appearance conditions. Each
body part appearance condition is composed of a body part
pose, layout and foreground, containing the maximum appear-
ance information needed for body part appearance synthesis.
Specifically, pose similarity of each body part is denoted as
the average cosine similarity between the corresponding source
and target body part pose vectors:

Sim =
1

N

N∑
i=1

−→
V i
S ·
−→
V i
T

|
−→
V i
S | |
−→
V i
T |

(1)

where Sim is the body part pose similarity,
−→
V i
S and

−→
V i
T

represent the i-th body part pose vectors of the source pose XSP

and the target pose XTP respectively, |
−→
V i
S | and |

−→
V i
T | represent

vector lengths of
−→
V i
S and

−→
V i
T respectively. N is the number

of body part pose vectors, which equals to 5, 7, 8 for pose
vectors of head, upper body, lower body. In particular, head
pose vectors are

−−−→
P0 P1,

−−−→
P0 P2,

−−−→
P1 P3,

−−−→
P2 P4,

−−−→
P0 P5. Upper

body pose vectors are
−−−→
P5 P6,

−−−→
P6 P7,

−−−→
P7 P8,

−−−→
P5 P9,

−−−−→
P9 P10,−−−−→

P10 P11,
−−−−→
P5 P12. Lower body pose vectors are

−−−−→
P12 P13,

−−−−→
P13 P14,−−−−→

P14 P15,
−−−−→
P15 P16,

−−−−→
P12 P17,

−−−−→
P17 P18,

−−−−→
P18 P19,

−−−−→
P19 P20. In the

above description, P0∼P20 represent pose points marked as
numbers as shown in Figure 3.

3) Step 3: Pose Normalization: Although body parts of the
selected XT have the most similar poses with those of XSP ,
sizes and positions of different parts are not compatible with
each other and therefore needed to be normalized to form a
whole body spatially consistent with XSP . In practice, we
apply a pose normalization to transform each body part of
XT into the same size and position as the corresponding part
of XSP , where the scale values and the translation distances
of different parts are computed separately by analyzing the
differences between body parts of XSP and XTP in vector
lengths and point locations:

Scale =

∑Nv
i=1 |
−→
V i
S |∑Nv

i=1 |
−→
V i
T |

Translation =
1

Np

Np∑
j=1

(P j
S − P

j
T )

(2)

where Nv is the number of body part pose vectors, Np is
the number of body part pose points, PS and PT represent
source and target body part pose points respectively. For head,
Np = 6, pose points are P0∼P5. For upper body, Np = 8,
pose points are P5∼P12. For lower body, Np = 9, pose points
are P12∼P20.

Thus we obtain the transformed body part pose points,
layouts and foregrounds. Then the pose points of different
parts are connected to compose a new target pose XTP while
the body part layouts are processed into a one-hot tensor XTLO

with each channel represents a body part as shown in Figure
3. Similarly, the body part foregrounds are also processed
into a tensor XTFG which consists of body part channels
consistent with XTLO. By separating different body parts by
different channels, we can eliminate the loss of appearance
information caused by the overlap between body parts that
come from different video frames. Moreover, since the obtained
body parts are inherently misaligned, we can eliminate the
difference between single-source and multi-source appearance
inputs, which benefits our training because only single-source
inputs are available during training due to the lack of ground
truths for multi-source appearance outputs.

C. GAC-GAN

Given appearance is fully controllable in the conditioning
input, the GAC-GAN is designed to generate the corresponding
fully controllable appearance output. As shown in Figure 4, our
GAC-GAN has two stages: a layout GAN and an appearance
GAN, described in detail in the following subsections. It’s
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architectures are also drawn above. In (b), foregrounds and discriminators of the three body parts are drawn in the same blocks annotated by H/U/L for
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noted that, because videos are generated frame by frame, we
present the generation of the frame at time t as an example in
the following discussions for convenience.

1) Layout GAN: The layout GAN aims at synthesizing the
desired multi-source body layout with body part distributions
consistent with the multi-source appearance condition. By
taking the synthetic layout as additional motion condition,
we can describe the human motion at a more accurate pixel
level compared to other works [15], [16], [17], [18], [19] that
use sparse body pose points as motion conditions.

Network Architectures: Our layout GAN is made of a layout
generator GLO and a layout discriminator DLO as shown
in Figure 4(a). Specifically, the generator GLO consists of
two encoders and one decoder. The first encoder learns to
encode features for the concatenation of three consecutive
source poses, target poses and target layouts: XLO|tt−2 =
[XSP |tt−2, XTP |tt−2, XTLO|tt−2]. The second encoder learns
to encode features for the concatenation of two previously
generated layouts: ỸLO|t−1

t−2. Then the two kinds of features
are summed and fed into the decoder to generate the desired
layout Ỹ t

LO. Here we include features of the concatenated
consecutive frames to improve temporal consistency. Besides,
the discriminator DLO is designed to be multi-scale [3] to
determine whether the generated layout is real or fake.

Objective Function: To train the layout GAN, we design the
objective like this:

LLO = LLO
GAN + λSSL

LO
SS + λTL

LO
T + λFML

LO
FM (3)

LLO
GAN is the adversarial loss of the layout GAN, which is

given by:

LLO
GAN =E[logDLO(YLO, XLO)

+ log[1−DLO(ỸLO, XLO)]]
(4)

where YLO is the real layout map with respect to ỸLO.
LLO
SS is the structural sensitive loss adapted from [5] and

weighted by λSS , which is used to minimize the difference
between YLO and ỸLO at both the pixel level and the structure
level. It can be derived like this:

LLO
SS = Ljoint · Lpixel,

Ljoint =
1

2n

n∑
i=1

‖Ci,real − Ci,fake‖22
(5)

where the pixel-wise softmax loss Lpixel is weighted by the
joint structure loss Ljoint, which is an L2 loss used to measure
the structural difference between the real and the generated
layout maps. Ci,real and Ci,fake represent center points of the
real and the generated layout maps, respectively, which are
computed by averaging coordinate values of the i-th layout
regions for the two layout maps. Specifically, when i ranges
from 1 to n (n = 9), the i-th region represents: head, tops,
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bottoms, left arm, right arm, left leg, right leg, left shoe and
right shoe. As shown in Figure 3, all the regions have their
class labels except for the head, which is a merged region of
face and hair.
LLO
T weighted by λT is the temporal loss used to minimize

temporal difference between the real and the generated layout
sequences, which can be derived like this:

LLO
T = E[logDT

LO(SLO) + log[1−DT
LO(S̃LO)]] (6)

where DT
LO is the temporal discriminator of the layout GAN,

trained to determine whether a layout sequence is real or fake.
SLO and S̃LO are the real and the generated layout sequences,
which are obtained by concatenating three consecutive YLOs
and ỸLOs sampled by the sampling operator presented in
vid2vid [16].
LLO
FM is the discriminator feature matching loss presented in

pix2pixHD [7] and weighted by λFM , which is used to improve
synthesis quality.

2) Appearance GAN: Provided with the additional synthetic
motion condition that specifies the desired body layout, the
appearance GAN aims at synthesizing the desired foreground
and background appearances, which are added together to
compose the full scene appearance.

As for the foreground, since the appearance is already
controllable in the input appearance condition, we can syn-
thesize the corresponding controllable foreground appearance
by ensuring the appearance consistency between the synthetic
and the input appearances. Therefore, we propose an ACGAN
loss to supervise not only visual quality but also appearance
consistency during training. Besides, since ground truths for
multi-source appearance outputs don’t exist, we utilize three
part-specific ACGAN losses with respect to head, upper body
and lower body to supervise different body parts separately
rather than supervise them as a whole, which helps to alleviate
inner relevance between body parts that come from the same
videos in our training data.

As for the background, we implant a light-weight shadow
extraction module into the appearance GAN to generate
the shadow map that modulates background brightness and
renders background shadow rather than directly generate the
background appearance from scratch [15], [16], [17], [18],
[19]. The reasons are manifold: 1) Since video backgrounds
are fixed and can be regarded as still images, patterns of the
backgrounds are much fewer than those of the foregrounds
in the training data. A deep learning model could easily
get overfitted if trained with a few kinds of background
appearances for a large number of training steps. 2) Besides, an
overfitted model may tend to remember the relevance between
co-occurred foreground and background appearances, which
may cause failures when synthesizing new human foregrounds.
3) Compared to generating the fixed background appearance
which can be easily described by a still image, generation of
the appearance-irrelevant background shadow is more worth
studying, which enables background appearance control by
adding shadows to alterable user-defined background images.

Then we describe the architectures in detail to explain the
above mentioned functionalities. As shown in Figure 4(b), the
appearance GAN is made of an appearance generator GA, a
scene discriminator DS , three standard body part discriminators

DH , DU , DL and three appearance-consistency body part
discriminators DAC,H , DAC,U , DAC,L.

Generator: Specifically, GA consists of three encoders and
two decoders. The first encoder learns to encode the target
foreground appearance features with X1

A|tt−2 = XTFG|tt−2

as its input. The second encoder learns to encode the source
motion features with X2

A|tt−2 = [XSP |tt−2, ỸLO|tt−2] as its
input. The third encoder learns to encode features for previously
generated foregrounds ỸFG|t−1

t−2. Then the three kinds of
features are summed and fed into the first decoder to generate
Ỹ t
FG, which is the desired foreground appearance at time t.

Meanwhile, features of the second and the third encoders
are summed and fed into the second decoder to generate
the shadow map Ỹ t

M , which is output by a sigmoid layer
into the same size as the input background image XTBG.
Thus, the second decoder, the second and the third encoders
form our shadow extraction module, which is light-weight
because it only requires one additional decoder on the basis
of foreground synthesis modules. By multiplying XTBG with
Ỹ t
M , the background brightness is modulated pixel by pixel to

achieve shadow rendering. Since the generation has no relation
to background appearance, the shadow map Ỹ t

M is identical
to any XTBG and therefore supports shadow rendering for
arbitrary images, which enables background appearance control.
Then the synthetic foreground and the rendered background
are added together to compose the full image Ỹ t

I , which is the
desired video scene at time t.

Discriminators: In addition, we design multiple multi-scale
discriminators (DH , DU , DL, DAC,H , DAC,U , DAC,L and
DS) for the three part-specific ACGAN losses and one scene
GAN loss. Specifically, each part-specific ACGAN loss is
used for the supervision of a specific body part and is made
of a standard GAN loss and an appearance consistency loss,
aiming at supervising visual quality and appearance consistency
respectively. As for the visual quality, we decompose the
generated and the real foreground appearances into the three
body parts and feed them as the fake and the real samples into
their corresponding standard body part discriminators DH , DU

and DL, forcing the generator GA to synthesize more realistic
body part appearances. As for the appearance consistency,
we further apply three appearance-consistency (AC) body
part discriminators DAC,H , DAC,U and DAC,L to ensure
appearances of the generated body parts are consistent with
their input appearance conditions. Specifically, we obtain three
kinds of body part appearance pairs as training samples for each
DAC as shown in Figure 4(b): 1) consistent pair P1: two body
parts from the same person, labeled as ”true”; 2) inconsistent
pair P2: two body parts from different persons, labeled as
”false”; 3) fake pair Pfake: body part of the generated ỸFG

and the corresponding part of the input appearance condition
XTFG, labeled as ”false” when updating discriminator and
labeled as ”true” when updating generator. In company with
the progress of DACs that distinguish inconsistent body part
appearances well, GA learns to generate more consistent body
part appearances during adversarial training. The scene GAN
loss is designed to force the appearance generator GA to
focus on details at part boundaries and compose the full scene
harmoniously, where we feed ỸI and YI as the fake and the
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real samples to the scene discriminator DS for training.
Objective Function: To train the appearance GAN, we design

the objective like this:

LA =LH
ACGAN + LU

ACGAN + LL
ACGAN + LS

GAN

+ λTL
A
T + λFML

A
FM + λV GGL

A
V GG

(7)

L
H/U/L
ACGAN are ACGAN losses of different body parts, each

of which is summed by a standard GAN loss LGAN and an
appearance-consistency loss LAC . Since all of them have the
same design, we only give the derivation of LH

ACGAN as an
example:

LH
ACGAN =LH

GAN + λACL
H
AC (8)

LH
GAN =E[logDH(YFG,H , XA,H)

+ log[1−DH(ỸFG,H , XA,H)]]
(9)

LH
AC =E[logDAC,H(P1,H)

+ log[1−DAC,H(P2,H)]

+ log[1−DAC,H(Pfake,H)]]

(10)

where λAC is the weight of LAC , YFG,H represents head region
of the real foreground, XA,H represents the conditioning input
obtained by concatenating head regions of X1

A and X2
A, P1,H ,

P2,H and Pfake,H are consistent, inconsistent and fake head
appearance pairs respectively.
LS
GAN is the scene GAN loss, derived as follows:

LS
GAN =E[logDS(YI , XI) + log[1−DS(ỸI , XI)]] (11)

where YI is the real scene image with respect to ỸI , XI =
[X1

A, X
2
A, XTBG].

LA
T is the temporal loss weighted by λT to improve temporal

consistency, which can be derived as follows:

LA
T = E[logDT

A(SI) + log[1−DT
A(S̃I)]] (12)

where DT
A is the temporal discriminator of the appearance

GAN, trained to determine whether an image sequence is
real or fake. SI and S̃I are the real and the generated image
sequences, which are obtained similarly to the layout sequences
by concatenating three consecutive YIs and ỸIs.
LA
FM is the discriminator feature matching loss weighted by

λFM , LA
VGG is the VGG loss [27], [28], [7] weighted by

λV GG.

V. EXPERIMENTS

A. Solo Dance Dataset

We construct a large solo dance dataset with 124 dance
videos collected from 58 males and 66 females, including a
variety of human identities and clothing styles that allow for
appearance generalization. Our dataset covers four main dance
types (modern, jazz, rumba, tap) with the dancer in each video
performing a dance different from others. Each video is an
individual dance clip captured at a 30fps frame rate, containing
1200 continuous frames with the corresponding appearances
and motions. To satisfy the setting that single persons perform
difficult movements in stationary backgrounds, only solo dance
videos with fixed viewpoints are included in the dataset.

After the videos are collected, we automatically extract
backgrounds for each video by stitching detached background
regions of different frames. Then we detect poses, layouts and
foregrounds for each frame, where we crop and resize all the

frames to central 192x256 regions and manually rectify ones
with bad detection results for better data quality. Next, we
divide each processed video sequence into two halves, where
the first half is used to extract XSP s and the second is used
to obtain the paired XT s. Therefore, we obtain 600 available
conditioning inputs and the corresponding ground-truth frames
for each of the 124 videos. In our experiments, we use 100
videos for training and the remaining 24 videos for testing.

B. Experimental Setup
1) Our Method: The design of encoders and decoders

follows pix2pixHD [7], where the numbers of convolutional
filters are decreased to half of the original pix2pixHD to reduce
the model size. All the discriminators that distinguish single
frames (standard and AC discriminators) follow the multi-scale
PatchGAN architecture [3], and each of them has three spatial
scales to model different image resolutions. All the temporal
discriminators that distinguish sequences rather than single
frames follow the design of [16], and each of them has three
time scales to ensure both short-term and long-term temporal
consistency.

During the training stage, the layout GAN and the appearance
GAN are trained separately with Adam optimizers (learning
rate: 0.0002, batch size: 4) on 4 Nvidia RTX 2080 Ti GPUs for
10 epochs, where we set λAC = 5 and λSS = λT = λFM =
λV GG = 10 in the objective functions. Since frames (layouts
and foregrounds) at time -1 and -2 don’t exist, we directly
replace them with two same-size zero tensors to first generate
the frame at time 0, which is then taken as input together with
the zero tensor at time -1 to generate the frame at time 1. By
doing this during training, the layout GAN and the appearance
GAN learn to handle the generation of the first two frames.

2) Other Methods: We also implement the following meth-
ods for comparisons:

• Video-based methods:
We compare our method with two state-of-art video-based
methods vid2vid [16] and EDN [15], both are video-
specific with each model can only generate videos with
the same scene appearance. In our implementation, each
of their models is trained with 3000 frames of one specific
video.

• Image-based methods:
Since video-based methods are video-specific, we imple-
ment a state-of-art image-based method PoseWarp [9] as
a general-purpose baseline, which is trained on the same
data as ours in a general way.

• w/o input selection:
To evaluate the effectiveness of our input selection strategy
which enables input appearance control, we implement
a model trained with body part appearance conditions
selected randomly with no extra computation.

• w/o layout GAN:
To evaluate the effectiveness of our layout GAN that
provides more accurate motion conditions, we implement
a model with only the appearance GAN, which is fed
with only 2D poses as motion conditions.

• w/o ACGAN loss:
To evaluate the effectiveness of our ACGAN loss which
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Source 
Motions

Ours EDN
Target 

Appearances
w/o layout 

GAN
vid2vid

w/o input 
selection

w/o 
shadow 

extraction 
module

w/o ACGAN 
loss

PoseWarp
Ground 
Truths

Fig. 5. Qualitative comparison results on HVMT tasks (please zoom in for a better view). From left to right: input target appearances, input source motions,
our generated results (layouts, foregrounds, full scenes), ground-truth frames, results of vid2vid [16], results of EDN [15], results of PoseWarp [9], results of
the four ablated variants with respect to input selection strategy, layout GAN, ACGAN loss and shadow extraction module.

Source 
Motion

Target 
Appearances

Source 
Motion

Target 
Appearances

Synthetic Results Synthetic Results

Fig. 6. Examples of ordinary HVMT (please zoom in for a better view). Each synthetic result (layout, foreground, full scene) is generated to have the same
motion as its input source motion image and the same appearance as its input target appearance image.

enables foreground appearance control, we implement a
model whose appearance GAN is trained without ACGAN
loss.

• w/o shadow extraction module:
To evaluate the effectiveness of our shadow extraction
module which enables background appearance control,
we implement a model that generates backgrounds from
scratch with fixed background images included in its input
appearance conditions.

C. Qualitative Results

To assess the quality of our synthetic results, we test different
methods on our test set and compare their synthetic frames
with ground-truth video frames. It’s noted that ground truths
are available here because the motion and the appearance
conditions of each synthetic frame are obtained from the same
person as has been stated in the description of our dataset

(Sec.V-A). As shown in Figure 5, we randomly visualize some
synthetic frames generated by our method and other methods
to make qualitative comparisons. Based on the proposed GAC-
GAN, we can synthesize motion transfer videos with realistic
appearance and body pose details, which are consistent with
the input target appearances and source motions. In contrast,
the image-based method PoseWarp [9] can’t preserve the
target appearances well with body poses and locations are
not consistent with the desired source motions. Although the
two video-based methods vid2vid [16] and EDN [15] perform
well when synthesizing appearances of frequent poses (e.g.,
front bodies in the first two rows of Figure 5), they render
bad visual results when synthesizing appearances of infrequent
poses (e.g., backside bodies in the last two rows of Figure
5). We think the main reason is that infrequent poses are
less explored during training due to the imbalance between
numbers of frequent and infrequent poses in their training
data, which contains only one video sequence for each video-
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body background

source motion

Fig. 7. Examples of multi-source appearance control (please zoom in for a better view). Each synthetic image is generated based on five inputs in terms of
body motion, appearances of head, upper body, lower body and background. We also show the results generated by the variant model without ACGAN loss,
allowing for comparisons with our full method.

specific model. However, the quality of our results is not
influenced by such imbalance because we provide our model
with optimal appearance inputs that contain the maximum
texture information needed for appearance synthesis. Besides,
our model is trained with access to more infrequent poses
contained in the whole dataset, leading to better results than
EDN and vid2vid when synthesizing unseen infrequent pose
appearances. Please refer to our supplementary material for
the video version of the qualitative comparison results.

Then we test our method on tasks which have no ground-truth
frame for a better understanding of the appearance-controllable
human video motion transfer that we realize:

• Ordinary HVMT:
Transfer one person’s motion to another person without
further appearance control on body part foregrounds and
surrounding backgrounds, which has the same test setting
as the qualitative comparisons shown in Figure 5 except
for the absence of ground-truth frames. As shown in Figure
6, our one-time trained model can generate high-quality
motion transfer video frames with details of the source
motions and the target appearances are well preserved.

• Appearance-Controllable HVMT:
For HVMT with multi-source appearance control, we let
our model synthesize videos with appearances of body
parts and backgrounds coming from different appearance
sources, where the synthetic appearances are naturally
composed and the synthetic motions are consistent with
the source motions as shown in Figure 7. For further
evaluation on background appearance control based on
our synthetic shadow maps, we add shadows to different
backgrounds and fuse them with the synthetic foregrounds
to achieve controllable background replacement, where

detailed shadows are rendered in harmony with the human
motions as shown in Figure 8.

For a full and animated version of the synthetic visual results,
please refer to our supplementary materials.

D. Quantitative Results

We also make a quantitative assessment to analyze differ-
ences between synthetic and ground-truth video frames by four
metrics: Structural Similarity (SSIM), Peak Signal to Noise
Ratio (PNSR), Learned Perceptual Image Patch Similarity
(LPIPS) [24] and Video Fréchet Inception Distance (VFID) [16].
In particular, SSIM and PSNR are classic metrics that measure
the pixel-level image similarity between synthetic results and
ground truths, which are simple and based on shallow functions.
LPIPS is a newly invented metric that accounts for similarity
measurement between two images, which is computed based
on features extracted by deep models. VFID is also a deep
metric with a video recognition CNN model performing as
its feature extractor, which measures temporal consistency in
addition to visual quality. It’s noted that SSIM and PSNR
are similarity metrics while LPIPS and VFID are distance
metrics, which means higher values are better for the former
while the opposite for the latter. All the comparison results
are summarized in the first five rows of Table I. We can see
that our method outperforms other methods for all the metrics,
which indicates that our synthetic results have not only higher
visual quality but also better temporal consistency.

E. Human Perceptual Results

For human perceptual assessment, we conduct a human
subjective study by performing preference tests on the Amazon
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Fig. 8. Examples of background appearance control (please zoom in for a better view). The input backgrounds are modulated by the synthetic shadow maps to
fuse with the synthetic foregrounds. We also show the results generated by the variant model without shadow extraction module, allowing for comparisons with
our full method.

TABLE I
QUANTITATIVE AND PERCEPTUAL COMPARISON RESULTS. SSIM AND PSNR ARE SIMILARITY METRICS, THE HIGHER THE BETTER. LPIPS AND VFID ARE
DISTANCE METRICS, THE LOWER THE BETTER. PREFERENCE SCORE IS DENOTED AS THE PROPORTION OF PERCEPTUALLY PREFERRED VIDEOS GENERATED

BY OUR METHOD.

vid2vid [16] EDN [15] PoseWarp [9] w/o
input selection

w/o
layout GAN

w/o
ACGAN loss

w/o
shadow extraction module Ours

SSIM 0.8834 0.8711 0.8380 0.8652 0.8545 0.8613 0.8580 0.8947
PSNR 26.9316 26.5653 23.5423 24.7923 22.5398 24.1372 24.0782 27.9458
LPIPS 0.0352 0.0363 0.0537 0.0413 0.0436 0.0394 0.0419 0.0341
VFID 3.9752 4.3410 7.0721 5.1426 5.3624 4.9845 5.2187 3.9689
Preference Score 69.2% 73.1% 93.8% 76.2% 81.5% 77.7% 80.8% —

Mechanical Turk (AMT). Particularly, each question is an
A/B test where we show turkers two videos generated by our
method and a compared method and let them choose which
video looks more realistic in consideration of visual quality
and temporal consistency. After gathering 10 answers for 13
videos generated by different methods, we summarize the
average human preference scores in the last row of Table I.
The results indicate that videos generated by our method are
also perceptually preferred to those generated by others, which
is consistent with our qualitative and quantitative results. It’s
noted that each preference score in the table represents the
proportion of perceptually preferred videos generated by our
full method when compared to one of the compared methods.
Since the comparison between our full method and itself is
missing, the preference score of our full method is left blank.

F. Ablation Studies

We also compare our full method with the above mentioned
four variants with respect to ablations of our input selection
strategy, layout GAN, ACGAN loss and shadow extraction
module. As can be seen from the quantitative and the perceptual

results shown in the 5-8th columns of Table I, our full method
outperforms all the variants significantly, which indicates that
videos generated by our full method have higher visual quality
and better temporal consistency than those generated by the
variants without our important components. We also make
comparisons on qualitative results as shown in the last four
columns of Figure 5. The 10th and the 12th columns indicate
that, without the selected optimal appearance inputs and the
elaborate ACGAN loss, the model can’t preserve human
appearances well, which results in blurry faces and bodies,
proving that both the two components can improve human
appearance details. The 11th column indicates that, without the
layout GAN to provide additional motion conditioning inputs
that describe human motions more accurately, the model even
can’t generate the desired body motions, let alone satisfactory
appearances, which proves the effectiveness of our two-stage
framework design. The last column shows that, without shadow
rendering, the model fails in both background and foreground
synthesis, which proves that our shadow extraction module can
also improve foreground synthesis quality. Moreover, we make
further qualitative comparisons to demonstrate the importance
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of our ACGAN loss and shadow extraction module in the
multi-source foreground and background appearance control
respectively. As shown in Figure 7, without training with
the proposed ACGAN loss, the model renders bad body part
appearances which are mixed up together and inconsistent with
the input appearance conditions. As shown in Figure 8, without
the synthetic shadow maps to achieve shadow rendering, the
model can only generate background appearances from scratch,
which results in blurry backgrounds as well as unrealistic
foregrounds.

VI. CONCLUSION

In this paper, we present GAC-GAN for general-purpose
and appearance-controllable human video motion transfer. To
synthesize videos with controllable appearances, we propose a
multi-source input selection strategy to first obtain controllable
input appearance conditions. Moreover, given such appearance-
controllable inputs, we propose a two-stage GAN framework
trained with the ACGAN loss and implanted with the shadow
extraction module to enable the compatible synthesis of the
appearance-controllable outputs. Extensive experiments on our
large-scale solo dance dataset show that our proposed method
can not only enable appearance control in a general way but
also achieve higher video quality than state-of-art methods. We
also conduct comprehensive ablation studies with respect to our
input selection strategy, layout GAN, ACGAN loss and shadow
extraction module. The results show that our full method
achieves higher performance than all the ablated variants, which
proves the effectiveness of our important components. Although
our method performs well in most cases, challenges and open
problems remain: 1) Since the GAC-GAN is a deep learning
model, our method may fail when the GAN model is tested
on unseen domains that are too different from the training
domains (e.g., generate videos for CG characters rather than
real humans). 2) Because the quality of the synthetic outputs
highly depends on the conditioning inputs which are obtained
based on pose and layout estimation techniques, texture artifacts
may occur when these estimations fail. In the future, we
may also explore the potential of synthesizing more complex
videos where multiple people dance together rather than solo
dance videos. Besides, video synthesis with movable camera
views is also worth studying, requiring further consideration of
background motions. Both of them are promising extensions
to our accomplished work.
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