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Abstract— Recently, point clouds have shown to be a promising 
way to represent 3D visual data for a wide range of immersive 
applications, from augmented reality to autonomous cars. Emerging 
imaging sensors have made easier to perform richer and denser point 
cloud acquisition, notably with millions of points, thus raising the 
need for efficient point cloud coding solutions. In such scenario, it is 
important to evaluate the impact and performance of several 
processing steps in a point cloud communication system, notably the 
degradations associated to point cloud coding solutions. Moreover, 
since point clouds are not directly visualized but rather processed 
with a rendering algorithm before shown on any display, the 
perceived quality of point cloud data highly depends on the rendering 
solution. In this context, the main objective of this paper is to study 
the impact of several coding and rendering solutions on the perceived 
user quality and in the performance of available objective assessment 
metrics. Another contribution regards the assessment of recent 
MPEG point cloud coding solutions for several popular rendering 
methods which was never presented before. The conclusions regard 
the visibility of three types of coding artifacts for the three considered 
rendering approaches as well as the strengths and weakness of 
objective metrics when point clouds are rendered after coding. 
 

Index Terms—point cloud coding, quality assessment, subjective 
quality assessment, rendering 

I. INTRODUCTION 

OWADAYS, emerging 3D visual representations allowing 
more immersive experiences compared to the classical 2D 

images or videos are attracting much interest. In fact, a new wave 
of multimedia applications are now possible, from geographical 
information systems, and virtual and augmented reality to 
cultural heritage and free viewpoint broadcasting, motivated by 
the recent advances in 3D acquisition systems [1]. In this 
context, point clouds are becoming an important 3D visual 
representation format of the real world due to the availability of 
several acquisition devices (from range sensors to multi-camera 
arrays) as well as efficient coding solutions and rendering 
techniques. A point cloud (PC) is a set of 3D points represented 
by their 3D coordinates and associated attributes, such as color, 
normals and reflectance. PCs can be classified with respect to 
their temporal evolution. While static PCs correspond to a single 
time instant, dynamic PCs correspond to a PC evolving along 
time, thus corresponding to a sequence of static PC frames. Also, 
progressive PCs correspond to large-scale PCs that are not 
consumed all at once and thus are made from complementary 
parts of a visual scene; these parts are static PCs that differ both 
spatially and/or temporally (often used in autonomous driving). 

To represent the visual scene with high fidelity, a PC can have 
several millions or even billions of points, which results in a 

large amount of data that needs to be efficiently stored and 
transmitted. Thus, coding technologies are essential to deal with 
the huge amount of data that PC acquisition devices can 
generate. The coding solutions already available [2]-[5] can be 
lossy or lossless and aim to reduce the PC representation bitrate 
while keeping the data fidelity as high as possible. Following the 
demands by the industry, both the Joint Photographic Experts 
Group (JPEG) and the Moving Picture Experts Group (MPEG) 
standardization bodies recognized that the PC format can address 
future immersive multimedia applications and have initiated 
projects in the area of PC coding [6][7][8]. In January 2017, 
MPEG has issued a Call for Proposals on Point Cloud 
Compression (PCC) [9], targeting the efficient representation of 
static objects and scenes, as well as dynamic objects and real-
time environments. After this call, two PC coding solutions have 
been developed, notably the so-called Geometry-based Point 
Cloud Compression (G-PCC) standard [10], for static and 
progressive acquired content and Video-based Point Cloud 
Compression (V-PCC) [11] standard, for dynamic content. 

Naturally, PC quality assessment is fundamental to evaluate 
the performance of the several processing steps in PC-based 
applications, notably denoising, coding and rendering. 
Moreover, subjective quality assessment procedures and 
objective assessment metrics that can accurately evaluate the 
perceived quality, notably when PC data is compressed, are 
much needed. Both are critical to improve the final Quality of 
Experience (QoE) offered to the end-users, not only to monitor 
the quality of the experiences but also to allow the design and 
optimization of novel PC coding techniques. 

PCs can be visualized on a variety of devices, such as 2D 
displays, head-mounted displays (HMDs), augmented reality 
devices and even on stereoscopic or multi-stereoscopic displays. 
However, independently of the type of display, PCs cannot be 
directly visualized and require a rendering technique to create 
the data that may be visualized; this can be seen as a post-
processing step after decoding. Nowadays, there are multiple PC 
rendering approaches [12] [13] that may significantly influence 
the perceived PC quality in different ways. While there are 
several subjective and objective quality evaluation studies 
available in the literature, they do not use the same type of coding 
and rendering solutions as well as test conditions and thus, rather 
often, reach different conclusions. Therefore, it is critical to 
study the impact of different rendering approaches on the 
subjective and objective decoded PC quality.  

On the other hand, many relevant past works on subjective and 
objective quality assessment [14]-[20] rely on simple coding 
solutions such as octree pruning, which are inefficient and 
produce a rather distinctive type of artifacts. However, more 
sophisticated and also more efficient lossy PC coding solutions 
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are now available, which produce decoded PCs with very 
different characteristics and artifacts. As an example, some PC 
codecs significantly increase the number of decoded points to 
hide coding artifacts, thus achieving a better perceived quality. 
This makes the subjective and objective quality assessment of 
PCs more complex, especially when more efficient coding and 
rendering solutions are considered.  

While PCs have commonly two major components, geometry 
and color (or texture), this paper focus on the quality impacts of 
degradations on the geometry component of the point cloud 
representation. Geometric artifacts are very important for the 
final perceived quality since this type of degradations may 
reduce the realism of the decoded geometry, e.g. due to the 
appearance of holes and deformed and noisy surfaces, 
consequently leading to poorer user immersion. Fig. 1 shows an 
example of geometric artifacts, in this case associated to the 
MPEG G-PCC codec (original texture was used for recoloring), 
which clearly results in a rather low perceived quality. Despite 
its importance to the perceived quality, geometric degradations 
have not been addressed much in the literature before. Besides, 
while the geometry is an intrinsic component of the PC 
representation, the color attributes (which are optional) may not 
be available due to limitations in the acquisition process, e.g. PCs 
acquired by LIDAR only devices.  

 

 
Fig. 1. Arco Valentino PC: left) original PC; and right) MPEG G-PCC decoded 

PC. Original texture used for recoloring. 

In this context, the objective of this paper is to study in a 
subjective way, the impact of the different artifacts produced by 
state-of-the-art PC codecs for different types of rendering and 
assess objective PC geometry metrics in several scenarios. This 
is the first time that the rendering ℛ  and coding 𝒞  processes, 
which play a major role on the final perceived quality, are jointly 
evaluated in this case for static point clouds. To be able to isolate 
and, thus, directly assess the impact of the geometric artifacts on 
the perceived quality, no color attributes coding was considered 
in this work. In this context, the main contributions are: 
• PC rendering after coding – subjective quality 

assessment: Study of the subjective quality impact of 
multiple (ℛ, 𝒞) combinations for relevant, lossy PC coding 
and rendering solutions. Moreover, the visibility of the 
distortions associated to each codec under different rendering 
scenarios will be analyzed. This first contribution is critical 
for the design of a suitable PC subjective assessment 
methodology, where a rendering solution must be chosen. 

• PC rendering after coding – objective metrics 
assessment: Evaluation of the performance of available PC 
objective metrics for multiple (ℛ, 𝒞) combinations, i.e. for 

different types of rendering and coding artifacts. This should 
allow understanding the strengths and weaknesses of 
available objective metrics as well as their scope of validity, 
i.e. for which conditions these metrics represent well enough 
the human perceived quality. This second contribution is 
critical for the design of more reliable PC objective metrics, 
notably for the evaluation of new PC coding solutions as well 
as associated techniques. 

• Rendered Point Cloud Quality Assessment Dataset: 
Provision of the first public dataset of mean opinion scores 
(MOS) and corresponding PCs coded with relevant, lossy PC 
coding solutions. These PC codecs produce a distinctive set 
of artifacts that were not considered when the popular PC 
metrics were designed. This third contribution is particularly 
important for the young PC quality assessment community, 
since not many subjective studies are available, and from the 
ones available, none allows to assess the impact of the 
rendering process that is always performed after decoding. 

This paper is organized as follows. Section II reviews the 
related work while Section III describes three key PC coding and 
rendering solutions, which are used for the following 
experiments. Section IV describes the subjective evaluation 
study along with some key conclusions. Section V aims to 
evaluate the most relevant PC objective metrics. Section VI 
presents some final remarks and, finally, Section VII presents 
challenges and proposes possible ways forward towards the 
advancement of this technical area. 

II. RELATED WORK 

In the literature, there are several subjective and objective PC 
quality assessment methods and studies available. In [21], Zhang 
et al. designed a subjective test for colored PCs under different 
levels of degradation of both geometry and color. The quality 
degradations have been introduced by down-sampling the 
geometry and independently adding (synthetic) uniform noise 
for both color and geometry. The main conclusion was that 
human perception is more tolerant to color noise compared to 
geometry noise in PCs.  

In [22], Mekuria et al. conducted the subjective evaluation of 
a PC codec based on geometry octree pruning and JPEG based 
attributes coding. The subjective evaluation was performed in a 
mixed reality system, combining coded PC data (acquired) and 
computer graphics generated 3D content. In the subjective test, 
the users could interact with the content by navigating a visual 
scene with an avatar. The system performance was globally 
assessed with a questionnaire addressing eight different quality 
aspects, notably realism, immersiveness and color quality. Two 
objective metrics (mean squared error based) were introduced to 
assess both the geometry and color qualities. However, the 
correlation between objective metrics and subjective results was 
not assessed.  

In [23], Javaheri et al. performed the subjective and objective 
quality assessment of denoising algorithms for PC geometry. To 
introduce geometry errors in clean, reference PCs, impulse noise 
and Gaussian noise with three different strengths were added to 
represent three different perceptual qualities. Several outlier 
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removal and regularization algorithms were applied to the 
degraded PCs. Noisy and denoised PCs were rendered on 
standard 2D displays by first applying a surface reconstruction 
method (i.e. PC converted to polygonal meshes). Also, several 
objective metrics were selected to assess their performance in a 
denoising context. In a later study [24], Javaheri et al. performed 
the subjective and objective quality assessment of the geometry 
of compressed PCs. In this case, the popular Point Cloud Library 
(PCL) octree and graph-based codecs, with two very different 
types of associated distortions, were used. The rendering was 
performed with a point-based representation, recoloring each 
decoded point with the original color attributes. In both these 
works, PCs were visualized on a 2D display and a Double-
Stimulus Impairment Scale (DSIS) method was used for 
subjective quality assessment.  

In [14], Alexiou et al. performed a subjective quality 
assessment study of the PC geometry for two types of 
degradation, octree pruning and Gaussian noise, thus generating 
PCs with different quality levels and artifacts. An augmented 
reality (AR) headset was used to visualize simple PC objects 
without color from different perspectives (user could move 
around the object). It was concluded that objective metrics could 
perform well for Gaussian noise but underperform for PCL-like 
compression artifacts. In [15] and [16], Alexiou et al. also 
performed a subjective test with the same data as in [14] and the 
same distortion types but visualized on a 30-inch 2D display. In 
both cases, color was not used and user interaction was allowed; 
a simple rendering method with unit size points was selected. In 
[15], the impact of adopting two different subjective test 
methodologies, Absolute Category Rating (ACR) and DSIS, was 
studied through their comparison. The DSIS methodology was 
found more consistent and with lower confidence intervals and, 
thus, it was used later in [16]. In [17], Alexiou et al. performed 
a subjective study to evaluate the PC geometry quality using an 
octree pruning based codec. Before rendering, a Poisson surface 
reconstruction algorithm was used to obtain a mesh from the 
decoded PCs. In this case, no interaction was allowed with the 
content and the subjective experiment also followed the DSIS 
methodology. It was found that most PC objective metrics have 
a low correlation with the subjective scores and the 3D surface 
reconstruction algorithm plays a crucial role on the subjective 
scores obtained.  

In [18], Alexiou et al. performed two subjective tests to study 
the impact of visualization on the subjective quality assessment 
of PCs. The first test used a 30-inch 2D display and the second 
an AR headset. As before, geometric artifacts associated to 
octree coding and Gaussian noise were used. The test 
methodology was DSIS and interaction by users was not 
allowed. In any case, the correlation between scores obtained 
with different visualization devices was rather high, notably 
statistically equivalent for Gaussian noise.  

In [19], Alexiou et al. conducted a subjective evaluation to 
assess the quality of compressed PCs rendered as mesh objects 
in several types of 3D displays, from passive stereoscopic to 
auto-stereoscopic displays. Geometry degradations in the form 
of octree pruning were evaluated in the absence of color. The 
results obtained with 3D displays have a strong correlation with 
the results obtained with 2D displays for the same content. 

However, it was also found that the rendering method may play 
a significant role in this evaluation. Also, Alexiou et al. have 
benchmarked objective metrics for PC data represented by octree 
pruning and corrupted with Gaussian noise [20]. Both DSIS and 
ACR methodologies were used in separate sessions. It was found 
that the correlation between subjective and objective scores was 
low for distance-based objective metrics for octree-based 
compression artifacts, but better correlation performance could 
be achieved with metrics considering the normal at each point.  

In [25], Christaki et al., performed a subjective study for 
simple PCs, that were converted to meshes and coded with 
suitable open-source mesh codecs. While some of the test PCs 
are common with the PCs often used in previous subjective 
quality evaluation studies (e.g. Bunny) others were obtained with 
a platform designed for 3D human capture (with multiple Kinect 
devices). In [25], a variant on the pairwise subjective test 
methodology was used for evaluation with three stimuli 
presented simultaneously. Overall, three mesh codecs were 
considered, and content was displayed with a virtual reality (VR) 
application in a head-mounted display. They concluded that 
usual 3D mesh metrics have a low correlation performance in 
this scenario and the 3D mesh surface reconstruction method 
plays an important role. Finally, Dumic et al. presented in [26] 
the state-of-the-art on PC subjective quality evaluation as well 
as a summary on the available PC objective metrics.  

In many of studies reviewed above, it is concluded that the 
rendering process, applied after decoding, can have a significant 
impact on the perceived quality by the users; however, there is 
no solid assessment or quantification of the differences between 
rendering methods. Moreover, realistic distortions produced by 
relevant coding solutions are not often used, e.g. compression 
artifacts have been artificially simulated by noise addition or 
coding solutions that are much less efficient, compared to the 
MPEG PC codecs. Also, all the previous studies on PC quality 
assessment do not follow a common set of test conditions, such 
as those defined by the MPEG and JPEG standardization bodies. 
Finally, many previous works just focus on a single type of 
objective metrics. These limitations and simplifications are 
overcome by this paper which precisely targets to study the 
impact of the rendering process on the perceived quality and 
objective metrics accuracy for recent, efficient coding solutions, 
under meaningful test conditions, for a wide range of objective 
metrics. This should guide future developments in the areas of 
subjective and objective PC quality assessment.  

III. POINT CLOUD CODING AND RENDERING SOLUTIONS 

This section first describes three popular rendering solutions, 
used later for subjective and objective assessment. Then, three 
well-known state-of-the-art PC codecs are reviewed, and the 
associated PC coding artifacts are characterized. 

A. Selected Point Cloud Rendering Solutions 
PC rendering is the process of producing a visual 

representation that can be consumed by users using an available 
display, e.g. conventional 2D, stereo, auto-stereoscopic, head-
mounted displays, etc. [27]. Since it effectively selects the 
information to be seen, the rendering process has a significant 
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impact on the quality perceived by the user. In this section, the 
rendering solutions selected for the experiments reported in this 
paper are briefly described. 

Regarding PC rendering, there are two main approaches; the 
first, directly uses the PC data (point-based) while the second 
converts the PC data into another representation format, very 
commonly a surface, e.g. a polygonal mesh. The decision on the 
rendering approach to adopt mostly depends on the application 
requirements which may be very different.  

The PC conversion to another representation format more 
rendering friendly may bring some information loss and, in some 
cases, it may not even be possible due to the complexity of the 
visual scene in terms of geometry or the low PC density. By 
directly rendering PCs, massive amounts of points can be 
visualized. Rather often, these PCs do not fit into the available 
memory and require special algorithms to stream, process and 
render only a small subset of the entire PC data. This is easier to 
perform with a point-based model due to the lower complexity 
associated to the rendering process in comparison to a polygonal 
mesh representation where surface reconstruction and 
interpolation are usually needed. 

Independently of the rendering approach, a geometry shader 
with some primitives is employed to construct the final image 
shown to the user. In this context, the geometry shader is 
responsible for the creation of appropriate levels of light, 
darkness, and color within an image [28]. For PCs only with 
geometry, the shading is commonly performed with a single 
color; otherwise, color attributes are used for each point or 
vertex. Moreover, primitives are the simplest (atomic) elements 
that are combined to create the 3D impression of surface in the 
final displayed content.  
1) Point-based Rendering without Color Attributes 

Point-based rendering algorithms use a set of discrete points 
that may be irregularly distributed, simple rendering primitives 
and 3D/image space interpolation procedures to obtain a 2D 
image. The main advantage of this rendering approach is that it 
can achieve high levels of realism and is adequate for complex 
objects, such as trees, feathers, smoke, water, etc. In addition, 
point based rendering simplifies the rendering process and 
typically requires less memory and computational power due to 
the lack of connectivity information. 

In this approach, simple and fast to render primitives are 
selected, such as circles, squares, spheres, cubes. Based on the 
PC density and distance to the virtual camera (zoom level), the 
size of the primitives can be manually or automatically adjusted 
to create the impression of a surface; in the automatic case, 
connectivity information between points is usually computed to 
determine the primitive size [24]. The definition of an 
appropriate size for the primitive is rather important to reduce 
the appearance of empty spaces (holes) between points (size too 
small) or aliasing artifacts (size too large). In this work, the 
primitive selected for rendering was a square because they are 
similar to the smallest element of a 2D image (pixels) and the 
point size was set to the minimum value able to fill the 3D space 
between points completely, thus avoiding holes.  

Regarding shading, color attributes were not used, in order the 
impact of geometry distortions may be assessed without any 

additional component. The human visual system can easily and 
accurately derive the three-dimensional orientation of surfaces 
by using variations in the image intensity alone [29]. To obtain 
the normals, a (best fitting) plane was used as the local surface 
model and an automatic estimation for the neighborhood radius 
was used, as suggested in [17]. This automatic estimation helps 
to find a suitable radius as a too small radius may result in some 
points having an invalid normal and a too large radius may result 
into smoothed edges. By fitting a local surface, only the direction 
of the normal can be computed and, thus, the orientation of the 
normal was determined with the minimum spanning tree 
algorithm [30]. This type of rendering approach will be 
designated as RPoint in the following. 
2) Point-based Rendering with Color Attributes 

The second rendering solution is still point-based but uses also 
the available color attributes and thus for this reason, it will be 
designated as RColor in the following. In RColor, the RPoint 
rendering method is again applied but the point color attributes 
are used. This means that the surface is still represented with 
points and displayed with the same primitives but with the color 
obtained during the PC acquisition process. While the color 
attributes correspond to the real color of the objects, they are still 
influenced by the specific light conditions that have occurred 
during their acquisition. However, in the final rendered image, 
some colors can be interpolated, e.g. between points, to avoid 
aliasing. Moreover, since the captured color also conveys the 
object depth, it may mask some geometric distortions of the 
surface. On the contrary, distortions may be more visible at 
object boundaries, which give the user, the shape perception of 
the objects in the visual scene. 

In this work, to isolate the impact of geometric distortions, the 
color attributes are not compressed and, thus, the original color 
is used to recolor the decoded PC. The recoloring process occurs 
when the number of points in the decoded point cloud is different 
(or the same) from the original number of points. The recoloring 
procedure uses the original color and performs a mapping of the 
original colors in the original positions to the decoded points 
positions. In this case, the vertex attribute transfer method 
available in MeshLab was used for the recoloring process. 
Moreover, in the adopted RColor rendering method, no 
relighting is performed to preserve as much as possible the color 
fidelity of the PC representation. 
3) Mesh-based Rendering 

The first step in the mesh-based rendering approach, hereafter 
designated as RMesh, is to create polygonal meshes with a 
surface reconstruction algorithm, such as the Poisson Surface 
Reconstruction [31]. This means that rendering is performed 
with a set of vertices along with their connectivity to obtain a 
closed surface very precisely defined. 

The advantage of this rendering method is that, independently 
of the distance to the object (or scene) or the PC density, a 
seamless surface is obtained; this may not occur with point-
based rendering since the quality is associated to the number of 
points describing the surface and the distance between the viewer 
and the object. The disadvantage of this rendering method is that 
it requires surface reconstruction, which usually removes high 
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frequency geometric details [32] (smooth surfaces are obtained). 
It is important to note that surface reconstruction from complex 
surfaces is not always straightforward, it may not always be 
successful and can even require some user intervention. After 
surface reconstruction, the polygonal mesh needs to be rendered, 
usually with some shading algorithm [33][34]. There are several 
mesh rendering techniques performing shading, reflection, 
refraction and indirect illumination, and able to improve (when 
properly applied) the quality of the rendered data.  

In this work, the procedure to reconstruct the surface proposed 
in [17] was followed. The Poisson Surface Reconstruction 
algorithm, available in the popular CloudCompare [35] 
software, was selected with default parameters. The estimation 
of the normal vectors was performed as for the RPoint solution; 
no color attributes were used to be able to directly assess the 
subjective impact of the geometric artifacts. 

B. Selected Point Cloud Coding Solutions 
This section reviews some relevant and representative PC 

coding solutions available in the literature that will be later used 
for subjective and objective quality assessment. As mentioned 
before, only the geometry component will be addressed. 
Naturally, the MPEG G-PCC and V-PCC codecs, currently 
under development, are the most relevant for this work as they 
are the most recent and efficient PC coding solutions available. 
These codecs are part of the MPEG-I set of standards, which aim 
to design key technologies for immersive media.  

Considering the above context, the PCL, MPEG G-PCC and 
V-PCC codecs were selected. These codecs represent the three 
most relevant ways to structure PC data for coding purposes, 
namely tree, surface and patch, respectively. A tree is a data 
structure where the points are organized in a tree, e.g. octrees, 
kd-trees; a surface is a data structure where the points are 
represented with a parametrized surface model (e.g. represented 
as a set of triangles); finally, a patch clusters points into groups 
with some size, which is suitable for 3D to 2D projections. 
Naturally, these PC codecs produce different types of geometry 
artifacts, such as loss of geometric detail, geometric 
deformations, holes creation and other geometric distortions, e.g. 
curved surfaces represented by a set of planes.  

1) PC Coding with Tree Structures 

The PC coding solution selected for this class is the popular 
PC codec public available in the Point Cloud Library [36], a 
large scale, open project for 2D/3D image and PC processing. To 
facilitate the compression of geometry data, this codec 
represents the PC 3D coordinates and its attributes with an octree 
structure [37]. The PCL PC codec is often used as benchmark 
since it can handle unorganized PCs of arbitrary size/density 
acquired with many types of sensors and has low encoding and 
decoding complexity. 

In PCL, each octree node corresponds to a voxel in 3D space. 
The root node corresponds to a voxel that contains all points of 
the PC, the so-called PC bounding box. Then, starting from the 
root node, each voxel is divided iteratively into 8 voxels with the 
same size; naturally, a node is not divided if the corresponding 
voxel is not occupied. The occupancy of a node is represented 
with a single byte that signals the occupied child nodes up to the 

leaf voxels. By traversing the octree in breadth-first order, a 
stream of occupancy bytes is created, thus allowing an efficient 
representation of the PC geometry.  

The decoded quality is determined by the octree depth, which 
indirectly specifies the minimum voxel size; this corresponds to 
a pruned octree, since the octree will not have the full depth. 
When the PC is decoded, all the points inside an occupied voxel 
are represented with just one point at the voxel center. The 
statistics of the occupancy bytes are exploited by an entropy 
encoder (range coder [38]) that takes into account the specific 
(non-uniform) symbol frequencies. The PCL v.1.8 version was 
used as the reference software for the experiments reported here. 
In these experiments, no point detail coding is performed to 
refine the geometry within the leaf voxels.  
2) PC Coding with Surface Models 

The PC coding solution selected for this class is the MPEG G-
PCC codec, which is capable of lossy and lossless coding of 
large PCs, with spatial random access, view dependent 
processing, packetization, and scalability [39]. As the PCL 
octree-based codec, the G-PCC codec is also based on octree 
decomposition to code the PC geometry but extends this coding 
paradigm with a parameterized surface model. As in PCL, a 
pruned octree is used but the geometry of the points at each leaf 
voxel is not represented by the voxel center; instead, a set of 
triangles is used to represent a surface formed by these points. 

In G-PCC, the input PC data is first voxelized such that the 
resulting coordinates lie in the cube [0, 2! − 1]" and all points 
are represented by the voxel center; 𝑑 corresponds to the octree 
(full) depth parameter (defined a priori). Then, a pruned octree 
is created, from the root down to some specific octree level (ℓ), 
which must be smaller or equal than the octree depth; for lossless 
coding, level must be equal to the octree depth. If ℓ is smaller 
than depth, a polygonal representation is used to represent the 
points, which is known as TriSoup, an amalgam for Triangle 
Soup. This means that the limited depth octree is complemented 
with additional geometry information within groups of voxels, 
called blocks; this additional geometry is represented by vertices, 
corresponding to the intersections of the surface with some edges 
of the block (in this case at most 12 vertices). This set of vertices 
is sufficient to reconstruct a surface, corresponding to a non-
planar polygon passing through the vertices. The test model 
category 1 (TMC1) v1.1 version of the G-PCC reference 
software was used for the experiments reported in this paper. 
3) PC Coding with Patch-based Projection 

The PC coding solution selected for this class is the MPEG V-
PCC codec, which targets dynamic PC coding and performs a 
3D to 2D mapping of both the geometry and color components 
[40]. Thus, depth and texture images are created and can be 
coded with any video codec, notably a High Efficiency Video 
Coding (HEVC) standard-compliant codec [41]. 

In the first step, the PC is decomposed into several patches 
with smooth boundaries, while minimizing the reconstruction 
error. PC points are clustered according to the relation between 
their normals and the normal directions of six predefined 
oriented planes (forming a 3D bounding box). Then, patches are 
extracted from these clusters using a connected component 
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technique and mapped onto a 2D grid using a packing process 
which attempts to minimize the unused space. Each n×n (e.g., 
16×16) block in the grid is associated with a unique patch. After 
the packing, geometry (depth) and texture maps are created and 
the empty spaces between patches are filled using a padding 
process to obtain a smooth image (easier to code). These maps 
are passed to an HEVC encoder, which exploits the spatial and 
temporal correlations in a very efficient way. An occupancy map 
used to determine whether a grid cell is occupied or not is also 
coded to determine which 3D points are decoded. The V-PCC 
reference software used for the experiments reported in this 
paper was TMC2 v.2. 

C. Coding Artifacts 
This section describes the distortions associated with each of 

the PCC selected solutions. A characterization of the artifacts is 
important to understand the perceptual impact in the subjective 
tests and the limitations of the available objective metrics. For 
this purpose, some frames are extracted from the videos created 
for the subjective test session described in Section IV.B. All PCs 
were coded using the test conditions for low rate as described in 
Section IV.A. The selected PCs examples try to show as much 
as possible the most typical visual artifacts found during this 
study. A more complete set of examples, including these PCs for 
all codecs and rendering combinations (low quality only) are 
available in Section I of the supplementary material. 
1) PCL Codec 

In the PCL codec, as the target bitrate decreases (lower octree 
depth), the number of decoded points also decreases since all 
points inside a voxel are represented by just one point at the 
voxel center. The consequence is an increase of the distance 
between decoded points and thus lack of detail. When PCL 
decoded PCs are rendered, in any rendering solution, the lack of 
detail (i.e. points) results into a pixelated (or overly sub-sampled) 
decoded PC. An example of the artifacts produced with PCL 
coding at low rate is illustrated in Fig. 2, for the Loot PC for all 
rendering solutions. As shown, PCs are rather pixelated (RPoint 
and RColor) or lack detail (e.g. face and hands in RMesh). 

 
Fig. 2. PCL coding artifacts for Loot when rendering with RPoint, RColor and 

RMesh (from left to right). 

2) MPEG G-PCC Codec 
The MPEG G-PCC codec prunes the octree at some specific 

depth and after creates a surface representing all points in that 
depth with more precision. The rendering artifacts produced are 
very different from PCL, since the number of decoded points is 
no longer reduced. An example of the artifacts produced by G-
PCC at low rate is illustrated in Fig. 3 for the Egyptian Mask PC 

for all rendering solutions. The geometric artifacts essentially 
come from the TriSoup process which may create false edges at 
the boundaries of the blocks or triangles; for low rates, these 
triangles may be visible. Moreover, when the PC is sparse in 
some region, the TriSoup process may cause artificial holes (with 
polygonal shapes) or even an increase in the size of holes already 
present in the original PC. 

 
Fig. 3. G-PCC coding artifacts for Egyptian Mask when rendering with RPoint, 

RColor and RMesh (from left to right). 

3) MPEG V-PCC Codec 
In MPEG V-PCC, PC data is coded with traditional prediction 

and 2D transform tools. The more visible rendering artifacts 
correspond to blockiness and the creation of false edges, often 
associated to the directional Intra prediction modes. An example 
of the rendering artifacts produced by V-PCC is illustrated in 
Fig. 4 for House without a Roof PC for all rendering solutions. 
While false edges are visible, mostly for RPoint rendering, V-
PCC distortions are not very visible for RColor rendering. For 
RMesh, the entire decoded PC is smoother compared to RPoint. 
However, some details are lost (e.g. in the bell tower), which may 
cause lower perceived quality. 

 
Fig. 4. V-PCC coding artifacts for House without a Roof when rendering with 

RPoint, RColor and RMesh (from left to right). 

Another type of artifact typically occurring with V-PCC 
coding (not shown in this example) is the lack of points at the 
patch boundaries. 

IV. PC RENDERING AFTER CODING: SUBJECTIVE QUALITY 
ASSESSMENT STUDY  

In this section, the creation of the visual content for the 
subjective experiments is described along with the test setup and 
the experimental results. The analysis of these results will allow 
to assess the visibility of distortions of each PC codec under 
different rendering approaches.  

A. Test Conditions  
Six static PCs have been selected from the MPEG content 

repository [42], notably Egyptian Mask and Frog from the class 
inanimate objects, Facade9 and House without a Roof from the 
class buildings and facades, and Longdress and Loot from the 
class people. This selection includes PCs with different levels of 
coding complexity (as defined by MPEG in [43]), with four PCs 
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from class A (lowest complexity) and two PCs from class B 
(medium complexity). These six selected PCs have rather 
different characteristics in terms of content type, geometry and 
color. Thus, the most important factors in the PCs selection were: 
i) the PC density (PCs sparse and dense), ii) the semantic type of 
content (PCs from Inanimate Objects, Facades & Buildings and 
People), iii) the PC geometry structure (PCs with holes and PCs 
with flat surfaces), and iv) the color characteristics (PCs with a 
small or high color gamut). Table I shows the PC name, number 
of points, coordinates precision, category while Fig. 5 shows the 
original PCs with RColor rendering. 

TABLE I 
TEST MATERIALS AND CHARACTERISTICS. 

 

 
Fig. 5. Test materials with RColor rendering. From left to right and top to bottom: 

Egyptian Mask, Frog, Longdress, Loot, Facade9 and House without a Roof. 

The selected PCs were coded with the three selected PC 
codecs, at three different rates, to obtain decoded PCs with three 
different perceptual qualities, labelled as Low (L), Medium (M) 
and High (H). The selected codecs represent three different 
coding paradigms, notably PCL for tree structures, MPEG G-
PCC for surface models and MPEG V-PCC for projection-based 
coding. For each of the MPEG PC codecs, three different rate 
points have been selected based on the suggested coding 
parameters in the MPEG Common Test Conditions (CTC) [43] 
for lossy coding. These rate points resulted into three 
distinguishable qualities, ranging from low to high. For PCL, the 
octree depth parameter was defined in a way to obtain a similar 
range of qualities compared to V-PCC. Table II shows the coding 
parameters used for the PCL and MPEG G-PCC codecs. 

TABLE II 
OCTREE DEPTH AND LEVEL FOR PCL AND G-PCC CODECS FOR LOW (L), 

MEDIUM (M) AND HIGH (H) QUALITIES. 

 

For G-PCC, the octree depth establishes the PC precision (after 
the encoding voxelization step). The level parameter corresponds 
to some octree layer after which a polygonal representation is 
used. For PCL, the octree depth (OD) is set indirectly, using the 
PCL Octree Resolution (OR) parameter which corresponds to the 
size of the voxel computed as 𝑂𝑅 =	2($%&') , with P as PC 
precision (defined in Table I). Table III shows the MPEG V-PCC 
HEVC quantization parameter (QP) used for depth map coding 
(note that no color coding is performed) and B0 is the occupancy 
map precision. For V-PCC, all the test material was voxelized to 
10-bit precision. 

TABLE III 
QUANTIZATION PARAMETER (QP) AND OCCUPANCY MAP PRECISION (B0) FOR 

V-PCC CODEC FOR LOW, MEDIUM AND HIGH QUALITIES. 

 

B. Test Sessions 
The subjective quality assessment was performed in three test 
sessions, each using a different PC rendering approach. 
Following Section III.A, the test sessions have been labelled as: 
1. RPoint session: PCs are rendered with point-based rendering 

with point shading without color attributes. 
2. RColor session: PCs are rendered with point-based rendering 

with the original color (by recoloring) and no shading. 
3. RMesh session: PCs are rendered with mesh-based rendering 

with surface shading without color attributes. 
The PCs were visualized in a non-interactive way, which 

means that the original and decoded PCs were rendered to 
standard video sequences and shown on a 2D display. The 
advantage of such approach is that all subjects in the subjective 
test see the same parts of the PC exactly in the same way, thus 
obtaining more reliable subjective assessment scores. The 
CloudCompare PC processing software was used for rendering 
with the point size, normal estimation and surface reconstruction 
performed as described in Section III.A. The lighting conditions, 
which influence the shading process in RPoint and RMesh, 
correspond to the default conditions, this means ambient light 
source (sun light) and no spotlight. A simple camera path rotation 
around the object was used to create a 2D rendered video; this 
path was found to allow a complete visualization of the PC and, 
most importantly, the coding artifacts under evaluation. For some 
PCs (e.g. Facade9), no geometry was acquired for the back side 
and, thus, the rotation path was restricted to the frontal part of the 
object. The virtual distance between the PC and the camera did 
not change, similarly to standard image and video subjective test 
methodologies where the distance between the subject and the 
display is fixed. 

The rendered videos have a spatial resolution of 1600×800, a 
temporal resolution of 25 frames per second (fps), and a duration 
of 10 seconds. For all the three sessions, the rendered videos were 
visualized on a 23-inch ASUS VH238 monitor with 1920×1080 
resolution. An i7 workstation with the Intel HD 530 graphic card 
and 128MB video memory was used to play the rendered videos 
at the correct frame rate.  

PC Name No. Points Precision Category 
Egyptian Mask 272,684 12 bit Inanimate Objects 

Facade9 1,596,085 12 bit Facades & Buildings 
Frog 3,614,251 12 bit Inanimate Objects 

House wo. roof 4,848,745 12 bit Facades & Buildings 
Loot 805,285 10 bit People 

Longdress 857,966 10 bit People 
 

PC 
PCL G-PCC 

Octree depth Octree depth Octree Level 
L M H L/M/H L M H 

Egyptian Mask 7 8 9 9 5 6 7 
Frog 8 9 10 11 7 8 9 

House wo. Roof 8 9 10 11 7 8 9 
Facade9 8 9 10 11 7 8 9 

Loot 7 8 9 10 6 7 8 
Longdress 7 8 9 10 6 7 8 

 

Quality Low Medium High 
QP 32 24 16 
B0 4 4 4 
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C. Subjective Quality Assessment Methodology 
The PCs selected for the subjective study have rather different 

characteristics. Due to the acquisition process, some original PCs 
can be rather noisy, e.g. MPEG cultural heritage and buildings 
sub-category may have holes, outliers or even positioning errors. 
Also, the density (number of points per unit volume) of the 
original PC may have a significant impact on the perceived 
quality of the original rendered PC. These two factors may affect 
the subjective scores given by the subjects. Since these issues 
affect both the original and decoded PCs, the DSIS subjective test 
methodology was selected for all the test sessions of this 
subjective study. Thus, subjects visualize first the original and 
then the decoded rendered PCs and score the similarity of 
decoded PC relatively to the original, which allows to mitigate 
the impact of acquisition artifacts and other original PC 
characteristics. 

There were 20 subjects participating in each test session with 
18 people participating in all the three sessions and four people in 
one or two sessions. At the beginning of each session, the goal of 
the subjective assessment experiment was explained to the 
subjects and they were asked to participate in a short training 
session to become familiar with the application interface. For the 
training sessions, the Statue Klimt PC from the same MPEG 
repository was used.  

The full set of rendered PCs was organized into six rounds per 
session with each round including all PCs with one of the three 
levels of quality. Since there were six PCs coded with three 
different codecs for three rate points, 6 × 3 × 3	 = 	54 stimuli 
were assessed in each session. According to Recommendation 
BT-500.13 [44], the subjects see first the original rendered PC 
and after the impaired (this means decoded) rendered PC and 
score the later in a 1-5 scale associated to five impairment levels, 
notably very annoying, annoying, slightly annoying, perceptible 
but not annoying and imperceptible. The display of each new 
rendered video was controlled by the subjects by pressing ‘Play’. 
The subjects had the option to replay both video sequences 
(original followed by impaired PCs) before giving the subjective 
score. This option allows to reduce the cognitive load of the 
subjects and, thus, obtain more reliable scores. Each session had 
a duration of approximately 28 minutes, considering the training 
and scoring times. To avoid that the results of one session 
influenced the results of another session, a minimum of 48h 
between test sessions was respected. 

For each session, outlier subjects were identified based on the 
collected scores, following the procedure in BT.500-13 [44]; only 
one outlier was identified in the RMesh session. After, the average 
of all scores across the subjects were computed for each test PC, 
thus obtaining a MOS for each PC under evaluation. The 
subjective scores for the three test sessions along with the original 
and decoded rendered PCs are publicly available at [45] and, thus, 
may be used by the research community. 

D. Experimental Results and Analysis 
The focus of this section is on the study of the impact of 

different PC rendering solutions on the user perceived quality for 
PCs compressed with different coding artifacts. Additionally, the 
obtained subjective scores are analyzed to assess the visibility of 
the different coding artifacts. The subjective scores obtained for 

the three test sessions will be the basis for this study; in this case, 
the MOS values represent the similarity between the original and 
decoded PCs and not the intrinsic PC quality for which many 
other factors play a role. From now on, when the ‘quality’ term is 
used, it regards only to the fidelity (or similarity) aspect. 
1) Impact of Rendering on Perceived PC Quality 

This section studies the impact of the three rendering solutions 
on the perceived PC quality. Note that, within each session, the 
rendering methods were not mixed and thus the subjects 
evaluated videos from decoded PCs for each rendering solution 
independently. 

Fig. 6 shows the 54 MOS for all PCs within each test session 
(each associated to a rendering solution). In Fig. 6, the MOS are 
sorted in ascending order, thus from lower to higher scores; each 
score is labelled with a rendered PC index and corresponds to a 
coding condition. To identify which are the most frequent MOS 
per session (data not shown in Fig. 6), Fig. 7 shows the MOS 
distributions (number of votes) given by the subjects in the three 
rendering sessions.  

 
Fig. 6. Sorted MOS for all test PCs in the three test sessions. 

 
Fig. 7. MOS histograms for the three test/rendering sessions. 

Fig. 6 shows that the scores are well distributed over the full 
range, from low (close to 1) to high (close to 5). The RColor 
session (blue curve) shows the highest MOS, followed by the 
RMesh session and, finally, the RPoint session.  

RPoint rendering: The geometry coding distortions are more 
visible for RPoint rendering since RMesh and RColor have 
mechanisms to mitigate the visual impact of the coding artifacts, 
e.g. filtering or masking. This can be clearly observed in Fig. 6 
where the coding artifacts are more visible for the curve with 
lower MOS and, thus, as shown in Fig. 7, more ‘1’, ‘2’ and ‘3’ 
votes are obtained for RPoint compared to RMesh and RColor. 

RMesh rendering: As shown in Fig. 7, RMesh rendering has 
higher MOS (and less low MOS) than RPoint rendering. This can 
be explained by the fact that RMesh rendering includes a surface 
reconstruction process (polygonal mesh creation) which smooths 
the PC and makes the coding distortions less visible, somehow 
behaving as a denoising filter. However, it should be emphasized 
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that PC edges and details are also smoothed with this type of 
rendering and, thus, RMesh is not able to outperform a point-
based rendering solution with color (RColor), where the points 
are simply rendered with a basic primitive, e.g. circles or squares. 
It also requires the extra pre-processing step of surface 
reconstruction before rendering, which may be difficult to apply 
in some application scenarios due to the scene complexity or the 
PC size (number of points). 

RColor rendering: For RColor rendering, the original texture 
contains natural shading information, acquired from the light 
reflected by the object surface. This contrasts with the RPoint and 
RMesh renderings, which use a single color with synthetic 
shading and the final result depends on the accuracy of the 
(extracted) normal vectors (geometry only). However, it is clear 
that the original color captured during the acquisition is able to 
mask many of the geometric distortions, changing the perceived 
surface of the objects. Also, the texture details are able to hide 
geometric distortions since the human visual system is less 
sensible to high frequencies; this will cause the subjects to 
perceive less distorted shapes and, thus, better scores are given in 
the RColor session. In fact, in the RColor session, most of the 
scores are ‘4’ and ‘5’ as shown in Fig. 7, which means that most 
of the decoded PCs were considered to have high similarity with 
the original PCs. In this case, the most visible geometric 
distortions are limited to the object boundaries. 

In summary, rendering with high quality color attributes masks 
the geometric distortions and results in higher perceived PC 
qualities. However, color attributes may not be available, and 
some applications may require high geometry fidelity. For 
example, geographical information systems and cultural heritage 
applications typically only tolerate imperceptible geometry 
deformations; in such cases, RPoint rendering could be an 
appropriate choice to avoid the influence of color masking or 
geometry filtering. On the other hand, if color is not available and 
geometry degradations are tolerable if not visible, RMesh 
rendering should be used, since it allows to mitigate the impact of 
some coding artifacts, e.g. holes or false edges, compared to 
RPoint, thus leading to higher perceived PC qualities. 
2) Impact of Rendering on the Coding Artifacts Visibility 

This section studies the impact of the three rendering solutions 
on the visibility of the coding artifacts associated to the three 
selected codecs. With this purpose in mind, the MOS for the three 
PC codecs and the three rendering solutions are shown in Fig. 8.  

 
Fig. 8. MOS for each PC codec, organized by rendering approach. 

This PC codec presentation of the MOS, more granular 
compared to Fig. 6, allows comparing the impact of the rendering 
solution on the final perceived visibility, when different coding 
artifacts are present. From Fig. 8, it is clear that the MOS 
distribution for each rendering approach is not similar for all 
codecs. The main conclusion is that the different types of coding 
artifacts are not equally visible for all rendering approaches. 
Based on the results, the following conclusions about the 
sensibility of the various rendering solutions to the PC codecs 
considered, and thus type of coding artifacts, may be derived:  

PCL Coding: PCL distortions are visible regardless of the 
rendering solution and, thus, MOS are rather well distributed in 
the 1-5 range. This is mainly because a pure octree PC coding 
solution controls the decoded quality by limiting its maximum 
depth and, thus, decoded PCs have a lower number of points than 
the original PCs, sometimes significantly lower. Thus, larger 
point sizes for RPoint and RColor rendering are needed, creating 
a pixelated effect (perceptually unpleasant). Although a surface 
is reconstructed with RMesh rendering, when the number of 
points is reduced, details are lost and some meshes even show 
geometric distortions due to the surface reconstruction process. 

G-PCC Coding: G-PCC distortions are less visible for RColor 
rendering compared to RPoint and RMesh, since the color masks 
the surface distortions. However, false edges, holes and 
geometric distortions at boundaries are still visible for severe 
distortion cases. RPoint and RMesh follow a similar trend, with 
slight better scores for RMesh, since it mitigates the impact of 
some coding artifacts (e.g. holes or false edges), thus offering a 
more visually appealing surface.  

V-PCC Coding: V-PCC distortions are not very visible for 
RColor rendering since they are not large enough to create strong 
deformations and the color masks most of the geometric 
distortions. Due to the V-PCC projection onto 2D maps (texture 
and depth) and the efficient HEVC coding process, most of the 
surfaces are consistently represented, although with some error 
regarding the original surface. V-PCC distortions are also less 
visible for RMesh than for RPoint rendering due to the impact of 
surface reconstruction-based rendering on the perceived quality. 
3) Statistical Significance Analysis of Subjective Assessment 

This section presents a statistical significance analysis of the 
subjective quality assessment. The goal is to evaluate if the 
differences between the MOS for the three rendering approaches 
(RPoint, RColor and RMesh) are statistically significant at a given 
confidence level. Base on procedures suggested in previous work  
[46][47][48], three statistical tests were applied. For all tests, the 
full set of obtained scores was divided in three groups, one group 
of scores for each PC rendering approach, since the results being 
tested for statistical significance (sections IV.D.1 and IV.D.2) 
evaluate the impact of rendering. The selection of these tests was 
motivated by the fact that for V-PCC data the variance 
homogeneity test fails according to a Levene’s test while the 
distribution of data is not normal for the All case according to the 
Shapiro-Wilk normality test. 

Welch ANOVA significance test: To evaluate if the 
dependency of MOS values on the rendering method is 
statistically significant, the Welch ANOVA significance test was 
applied, thus comparing groups of MOS values, one group for 
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each rendering method. This test measures the difference between 
the mean values of each group with a 5% significance level 
without requiring homogeneity of variances. The null hypothesis 
assumes that MOS values for the various groups (rendering 
methods) are drawn from a population with equal means. Table 
IV shows the p-values and associated MOS averages when 
considering all possible groups of scores for each codec (‘PCL’, 
‘G-PCC’ and ‘V-PCC’ columns) and for all the codecs together 
(‘ALL’ column). When the p-value is lower than 0.05 
(significance level), the separation between these rendering 
approaches is statistically significant. 

TABLE IV.  
P-VALUES FOR THE WELCH ANOVA SIGNIFICANCE TEST AND MOS 

AVERAGES FOR EACH SESSION, I.E. RPOINT, RCOLOR, RMESH. 

 
Games-Howell post-hoc and Wilcoxon signed-rank tests: To 

compare the several possible pairs of rendering methods (i.e. 
perform a multiple-comparison statistical test), the Games-
Howell post-hoc test was selected since it also does not require 
the homogeneity of variances, again with a 5% significance level. 
Table V shows the p-values obtained for this post-hoc test for all 
possible rendering pairs. Moreover, since MOS values obtained 
do not follow a normal distribution (i.e. normality does not hold) 
for the ‘ALL’ case, the p-values obtained for the Wilcoxon 
signed-rank test (5% significance level) are shown in Table VI. 
The Wilcoxon signed-rank test assesses whether the group mean 
ranks differ; as it is non-parametric, i.e. it does not assume any 
data distribution, it is thus more suitable for this case. For the 
Games-Howell post-hoc and Wilcoxon signed-rank tests, when 
the p-value is lower than 0.05 (significance level), there is 
statistical significance between groups of MOS.  

TABLE V.  
P-VALUES FOR THE GAMES-HOWELL POST-HOC TEST FOR ALL RENDERING 

PAIRS (PAIR ORDER IS IRRELEVANT). 

 
TABLE VI.  

P-VALUES FOR THE WILCOXON TEST FOR THE ‘ALL’ CASE. 

 
Final remarks: From the analysis of the results in Table IV  

and Table V above, i.e. Welch ANOVA significance and Games-
Howell post-hoc tests, respectively, the analysis of section IV.D.2 
can be confirmed and new conclusions can be derived: 

PCL: The difference between the MOS for the three rendering 
approaches is not statistically significant and thus, any rendering 
can be used. This was expected since PCL distortions are visible 
regardless of the rendering solutions and, thus, similar subjective 
scores were obtained for all rendering approaches. 

G-PCC: RColor is better than RPoint and, thus, if color is 
available, it should be used in point-based rendering solutions. 
There is no statistical difference between RPoint and RMesh and 

RColor and RMesh, meaning that there is no advantage in using 
mesh-based rendering (which may even require complex surface 
reconstruction methods).  

V-PCC: RColor is better than RPoint and RMesh and, thus, 
color effectively masks the geometric distortions associated to the 
V-PCC coding artifacts. For the 2nd best rendering method, there 
is no statistical difference between RPoint and RMesh and thus, 
this means that any of these two methods could be used.  

Finally, from the analysis of the results in Table VI above, i.e. 
Wilcoxon signed-rank test results, statistical significance was 
obtained for all rendering pairs (i.e. RPoint↔RColor, 
RPoint↔RMesh, and RColor↔RMesh) for the ‘ALL’ case, 
meaning that a ranking order of the rendering methods is 
established. The results for this test show that RColor is 
statistically better than RMesh and RMesh is statistically better 
than RPoint. This confirms the intuitive ordering shown in Fig. 6 
and the conclusions in section IV.D.1. 

V. PC RENDERING AFTER CODING: OBJECTIVE METRICS 
PERFORMANCE ASSESSMENT 

The main purpose of this section is to evaluate the performance 
of several PC objective metrics in the presence of coding artifacts. 
Only metrics accounting for geometry errors are considered since 
this is the PC component where artifacts may cause a higher 
negative impact on the user quality of experience. 

First, the objective metrics that are evaluated are presented and 
then the correlation between the objective metrics and the MOS 
are reported and analyzed. This will allow to understand which 
objective metrics perform better, which type of coding 
degradations can be more appropriately accounted and the impact 
of the rendering solution on the PC objective metrics accuracy. 

A. Geometry Objective Assessment Metrics 
Objective assessment metrics for PCs are essential for several 

tasks, notably: i) measuring the PC fidelity and thus playing a part 
on the rate-distortion (RD) performance assessment of PC coding 
solutions; ii) optimizing PC coding solutions, e.g. allowing to 
make perceptual optimizations; iii) measuring end-to-end quality 
in PC streaming solutions, thus involving other degradations 
besides coding.  

In this section, the most popular geometry objective metrics for 
PC quality assessment adopted for this study are presented. These 
quality metrics are full reference metrics and measure the level of 
similarity (impairment level) of the decoded PC (with some 
coding artifacts) with respect to the original PC. Overall, they are 
based on establishing correspondences and computing distances 
between points of the original and decoded PCs. The following 
classes of metrics can be defined: 
1. Point-to-point (Po2Point): Score depends on the distance 

between corresponding points. 
2. Point-to-plane (Po2Plane): Score depends on the distance 

between a point and a reference plane where this plane is a 
representation of the surface around a point in the original PC. 

3. Plane-to-plane (Pl2Plane): Score depends on the similarity of 
the planes representing the surfaces near corresponding points. 
While Po2Point metrics are rather straightforward, Po2Plane 

metrics use a plane to represent the surface around a point, under 
the assumption that this is a reasonable representation of the 

 PCL G-PCC V-PCC All 
p-value 0.98 0.019 0.0 0.002 

MOS averages 3.0, 3.0, 3.1 2.8. 3.8, 3.2 3.1, 4.2, 3.5 3.0, 3.7, 3.2 
 

 PCL G-PCC V-PCC All 
RPoint↔RColor 0.998 0.011 0.000 0.002 
RPoint↔RMesh 0.973 0.586 0.144 0.300 
RColor↔RMesh 0.988 0.162 0.000 0.085 

 

 RPoint↔RColor RPoint↔RMesh RColor↔RMesh 
p-value 0.0 0.023 0.003 
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object surface in a specific region. The Pl2Plane metrics extend 
this concept and use two planes to represent the surfaces around 
points, both in the original and degraded PCs. 
1) Point-to-Point (Po2Point) Objective Metrics 

Point-to-point objective metrics establish point-wise 
correspondences in two directions: 1) direct 𝑅 → 𝑇 : for each 
point in the original (as reference) PC R and the nearest neighbor 
(NN) point in the degraded (as test) PC T [49]; 2) inverse 𝑇 → 𝑅: 
correspondences are computed similarly to 1) but in the opposite 
direction, thus, from PC T to PC R. 

Assuming �⃗�1(𝑟𝑖, 𝑡𝑗) as an error vector between point 𝑟, in PC 
R and the 𝑟, nearest neighbor point 𝑡- in PC T, the Po2Point error 
vector length, i.e. the distance 𝑑R,TPo2Point between these two points 
is given by: 

𝑑R,TPo2Point(𝑖) = ?𝑒7(𝑟, , 𝑡-)?8
8
 (1) 

This distance is computed for all the points in both directions, 
i.e. from original to degraded PCs, 𝑑R,TPo2Point, and from degraded 
to original PCs, 𝑑T,RPo2Point, for every point. There are three main 
approaches to aggregate or pool all the computed errors: 
• Mean Squared Error (MSE): Average of the squared distance 

between each point and their corresponding nearest neighbor, 
for all points, as defined in: 

MSER,T =
1
𝑁9

E 𝑑R,TPo2Point(𝑖)
∀;!	∈R

 (2) 
 

where 𝑁9 is the number of points in the original PC R. 
• Hausdorff (HAUS) distance: Maximum for all points of the 

MSE distance as defined in: 
HAUS𝐑,𝐓 = max;!	∈@I𝑑R,T

Po2Point(𝑖)J (3) 

• Geometric PSNR: Geometric PSNR metric defined as: 

PSNR𝐑,𝐓 = 10 log10 K
3𝑃2
MSE𝐑,𝐓

M 	with	𝑃 = 2A; − 1 (4) 

where 𝑃 is the peak constant value and 𝑝𝑟 the PC coordinates 
precision. The metrics above defined just for one direction (from 
PC R to T) are computed also in the other direction and, thus, the 
final metric value can be computed as: 

MSE = max	(MSE𝐑,𝐓, MSE𝐓,𝐑) (5) 

HAUS = maxRHAUS𝐑,𝐓, HAUS𝐓,𝐑S (6) 

PSNR = minRPSNR𝐑,𝐓, PSNR𝐓,𝐑S (7) 

The Po2Point PSNR metric is used nowadays by the MPEG 
3D Graphics Compression (3DGC) group in the evaluation of PC 
coding methods such as G-PCC and V-PCC, labelled as D1 [42]. 
2) Point-to-Plane (Po2Plane) Objective Metrics 

Point-to-plane metrics take into consideration the underlying 
object surface represented with the PC by fitting a plane to the 
local neighborhood of each point [50]. Considering the 3D point 
locations and their associated surfaces, the normal for each point 
is equal to the normal of the tangent plane to the surface. A point 
and the corresponding normal vector can, thus, determine the 
tangent plane for each point. As for Po2Point metrics, Po2Plane 
metrics are also symmetrically computed for both directions, i.e. 

from original to degraded and from degraded to original PCs. 
However, Po2Plane metrics require the computation of normals 
on the original PC, which are directly used in the direct direction 
(𝑅 → 𝑇). For the opposite direction (𝑇 → 𝑅), the normal for each 
point is estimated by averaging the normals of the nearest 
neighbor points from the original PC.  

The Po2Plane error distance between two points �⃗�2(𝑟𝑖, 𝑡𝑗) is 
obtained by first computing the Po2Point error vector �⃗�1 which is 
then projected onto the normal 𝑛BCYYY⃗ . Thus, the Po2Plane distance 
𝑑R,TPo2Plane(𝑖)  that represents the error between a point and its 
corresponding surface is given by: 

𝑑R,T
Po2Plane(𝑖) = ?𝑒8(𝑟𝑖, 𝑡𝑗)?8

8 = (𝑒7R𝑟𝑖, 𝑡𝑗S ⋅ 𝑛BCYYY⃗ )8 (8) 

MSE distance, Hausdorff distance and Geometric PSNR may 
then be computed with the projected error distances as for 
Po2Point metrics (where the error vector is not projected). In this 
way, the degraded PC points that are closer to the reference 
surface have smaller projected distances even though they are 
farther from the corresponding point on the original PC. The 
Po2Plane PSNR metric is also used by MPEG for the evaluation 
of the G-PCC and V-PCC codecs, labelled as D2 [42]. 
3) Plane-to-Plane (Pl2Plane) Objective Metrics 

This type of objective metrics estimates the similarity of 
surfaces in the original and degraded PCs [51]. In this case, 
tangent planes are estimated for both the original and degraded 
points. As for Po2Plane metrics, tangent planes are used as a local 
linear approximation of the underlying object surface but, in this 
case, planes are estimated for both the original and degraded PCs. 

Again, to compute Pl2Plane metrics, the nearest neighbor 
correspondences are computed in both directions. The Pl2Plane 
metrics depend on the angular similarity (or dissimilarity) 
between the planes, i.e. the angular difference between local 
planes associated to the points in a correspondence. In this case, 
the so-called cosine similarity measure, 𝑐𝑠, measuring the cosine 
of the angle between two vectors is used. The two vectors 
correspond to the normal vectors (perpendicular to the tangent 
planes) for the two points in a correspondence in PCs R and T 
[51], as in:  

𝑐𝑠(𝑖) = cos(𝜃,) =
𝑛G;YYYY⃗ ⋅ 𝑛BCYYY⃗

?𝑛G;YYYY⃗ ?8 ^𝑛B
CYYY⃗ ^

8

 (9) 

where 𝑛G;YYYY⃗  and 𝑛BCYYY⃗  are normals for points 𝑟, and 𝑡- in PCs R and T, 
respectively. To compute the angular difference (or distance), 
𝑑𝐑,𝐓Pl2Plane, the inverse cosine is used as follows: 

𝑑𝐑,𝐓Pl2Plane(𝑖) = 1 −
2arccos(|𝑐𝑠(𝑖)|)

𝜋  (10) 

After determining the angular difference for all the points in 
the original PC, different strategies for pooling, i.e. for 
aggregating the angular differences obtained for all points, can be 
defined. In this case, three pooling strategies were defined:  

MAD@,H =
1
𝑁9
	 E 𝑑R,TPl2Plane(𝑖)
∀;!	∈@

 (11) 
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MSAD@,H =
1
𝑁9
	 E b𝑑R,TPl2Plane(𝑖)c

2

∀;!	∈@

 (12) 

RMSADR,T = dMSADR,T	 (13) 

MAD stands for mean angular difference, MSAD for mean 
squared angular difference and RMSAD as the square root of 
MSAD. As for the other types of metrics, (11)-(13) are performed 
symmetrically, this means in both direct and inverse directions, 
and the minimum value is selected as the final (similarity) score. 

Since PCs have different precisions (depth) for the point 
coordinates, the error vectors for all these metrics may not be 
directly comparable. To overcome this problem, all PCs are 
normalized to have coordinates in the [0,1]  range before 
computing the metrics. The only exception is the PSNR for 
Po2Point and Po2Plane metrics, which includes the peak 𝑃 that 
already plays the role of a scaling factor depending on the bit 
depth of each PC under evaluation. 

B. Experimental Results and Analysis 

In this section, the selected objective metrics performance will 
be presented and analyzed for the subjective scores obtained in 
the three test sessions, thus for different rendering approaches. As 
recommended in [44][52], before assessing the objective metrics 
performance, a nonlinear logistic fitting has been applied on the 
objective scores to map them to the subjective scores scale. To 
assess the metrics performance, the Pearson Linear Correlation 
Coefficient (PLCC) is computed as a measure of the linear 
dependence between the MOS and each objective metric. 

Table VII shows the PLCC for the 9 metrics described in the 
previous section, for each rendering approach, independently 
computed for each PC codec and also considering all codecs 
simultaneously (column All). With these results, the performance 
of each metric can be assessed for each of the three test sessions 
described in Section IV.B. A detailed analysis of the results in 
Table VII is presented in the following. First, from the 
perspective of the PC codec and coding distortions, after from the 
perspective of the rendering solution and, finally, assessing which 
metric performs the best and in which conditions. 

1) Impact of Coding on the PC Metric Assessment  
PCL Coding: For PCL coded data, the Po2Plane and Po2Point 

metrics have the best PLCC (overall, PSNR is the best) with high 
correlations for all rendering approaches as shown in Table VII. 
As PCL controls the rate by reducing the number of decoded 
points, large objective errors and perceived distortions are visible 
for all sessions. This was expected since, when the compression 
ratio increases (lower rates), more and more points are discarded 
(due to octree pruning) and the remaining points are represented 
farther away from the original surface. PCL artifacts are strong 
enough to be visible even after the RMesh surface reconstruction.  

G-PCC & V-PCC Coding: As shown in Table VII, the 
objective metrics performance for G-PCC is slightly lower (4 to 
5%) compared to PCL and shows the highest performance for 
Po2Point metrics (only for RPoint and RColor sessions). 
Moreover, none of the selected objective metrics performs well 
for V-PCC coded data. The selected metrics underestimate the 
perceived similarity between original and degraded PCs, 
especially for RPoint and RMesh renderings where the geometric 
errors are less visible, e.g. compared to RColor. Since both the G-
PCC and V-PCC codecs tend to add points with respect to the 
original PC (see Fig. 9), the density of points is increased and, 
thus, the perceived quality is higher (higher MOS). However, the 
objective metrics are not able to account for this effect and, thus, 
underperform for G-PCC and V-PCC codecs. In addition, since a 
wide range of values is obtained for the ratio of decoded over 
original number of points, notably depending on the codec (and 
also coding parameters), it is rather difficult to map errors to a 
perceptually meaningful metric; this makes the task of designing 
reliable objective metrics harder, especially when different types 
of codecs, with different coding artifacts, are jointly assessed 
(‘All’ column in Table VII). The correlation of the objective 
metrics for V-PCC is much lower compared to G-PCC (cf. Table 
VII). The projection-based V-PCC codec causes slight distortions 
on the geometry which are not very visible even for lower 
bitrates. On the other hand, G-PCC artifacts are more visible 
especially when the surface estimation (triangulation) process 
fails. 

TABLE VII 
PLCC (%) BETWEEN OBJECTIVE GEOMETRY ASSESSMENT METRICS AND MOS FOR THE THREE RENDERING APPROACHES. IN BOLD, THE BEST PLCC VALUE 

BETWEEN THE SUBJECTIVE AND OBJECTIVE SCORES AND ALL THE OTHER PLCC VALUES THAT DO NOT DEVIATE MORE THAN 0.02 FROM THE BEST PLCC. 

 

Type Metric 
RPoint RColor RMesh 

PCL G-PCC V-PCC All PCL G-PCC V-PCC All PCL G-PCC V-PCC All 

Point-to-Point 

MSE 84.5 53.7 26.3 51.9 84.1 85.5 44.1 64.3 90.5 32.7 7.5 39.0 

HAUS 90.5 45.6 34.2 23.7 87.1 59.2 57.8 18.6 88.3 49.4 31.2 32.5 

PSNR 87.4 86.5 55.0 66.9 89.8 71.1 72.3 78.3 91.6 51.7 18.3 68.8 

Point-to-Plane 

MSE 84.4 50.2 32.8 46.9 84.7 80.6 18.3 60.2 88.5 37.1 12.4 34.5 

HAUS 90.1 55.1 29.8 30.1 87.0 67.1 69.0 21.1 87.7 45.9 26.9 28.9 

PSNR 90.1 82.4 52.1 69.7 90.3 54.6 61.4 78.2 91.0 63.2 28.0 72.1 

Plane-to-Plane 

MAD 72.4 55.5 54.1 51.8 55.7 68.3 74.5 24.7 40.0 28.0 28.7 30.3 

MSAD 72.4 55.4 52.6 51.8 55.7 68.3 74.5 24.6 40.0 27.9 27.1 30.5 

RMSAD 71.7 55.6 51.8 51.5 55.0 68.0 72.9 24.7 39.8 26.2 30.4 31.1 

- No. Points 65.2 21.8 27.9 12.3 69.0 27.1 60.6 43.1 68.6 35.1 28.9 2.3 
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Fig. 9. Average ratio of decoded over the original number of points (1 means 

the original and decoded number of points are the same). 

Fig. 10 shows the Po2Point RMSE distance errors histogram 
for all the points in two PCs coded with G-PCC and V-PCC for 
which the same overall Po2Point PSNR (60 dB) was obtained. As 
shown, although the PSNR is the same, the error distribution is 
very different between G-PCC and V-PCC. V-PCC errors are 
closer to zero which makes them less perceptually visible while 
G-PCC errors have larger magnitudes and, thus, are more visible. 
This implies that G-PCC has a lower subjective similarity (MOS 
of 1.1) than V-PCC (MOS of 3.15) even when the Po2Point 
PSNR objective metric computes the same DSIS score (in this 
case 60 dB). This observation happens also for other objective 
metrics, such as Po2Point and Po2Plane MSE. 

 
Fig. 10. Po2Point RMSE histograms for G-PCC and V-PCC. 

In summary, the objective metrics performance in terms of 
correlation with MOS highly depends on the coding distortions 
introduced, being satisfactory when PCs are coded with PCL and 
G-PCC and performing poorly for the V-PCC codec. Naturally, 
no objective metric performs well for all codecs together, a real 
problem when comparing the RD performance of very different 
coding paradigms.  
2) Impact of Rendering on the PC Metrics Assessment 

As previously concluded, rendering can significantly influence 
the visibility of coding artifacts (i.e. the perceived similarity 
between original and decoded PCs) and, thus, it is important to 
analyze the objective metrics performance for different rendering 
solutions. The PLCC correlation over all data for all sessions is 
rather low (less than 78.4%) because the objective metrics cannot 
measure with accuracy all different types of distortions. However, 
as shown in Table VII, the best PLCC correlations occur for 
RColor rendering, for which higher MOS values were obtained. 
Thus, geometry metrics measure the perceived similarity better 
when color attributes are used. 

The main reason is because subjects were able to better 

perceive degradations for medium and high quality ranges (which 
occur often with RColor, cf. Section IV.D) compared to low and 
medium quality ranges (which occur more often with RPoint and 
RMesh, cf. Section IV.D). For RMesh rendering, PLCC 
correlations are rather low comparing to the other rendering 
approaches, especially for G-PCC and V-PCC codecs. For 
RMesh, PC data is converted to a polygonal mesh (surface 
reconstruction) for rendering and most the objective metrics have 
low correlation performance for this type of representation.  

In summary, objective metrics account better distortion 
artifacts and are more reliable when point-based rendering (with 
and without color, RPoint and RColor) is used to process the 
decoded PCs before visualization. 
3) PC Objective Metrics Correlation Assessment 

Po2Point metrics: Po2Point metrics have a high PLCC 
performance for many cases but are especially better than others 
for the PCL and G-PCC codec (RColor and RPoint). This is 
because PCL and G-PCC to some extent are an octree-based PC 
codec and, thus, some distortions still come from the positioning 
error related to the 3D partitioning of space into voxels, the target 
of this type of metrics. The Po2Point and Po2Plane Hausdorff 
metrics can also reach high PLCC performance, especially for 
PCL data and for the RPoint session (90.07). However, Hausdorff 
is not a very reliable metric when different types of coding 
distortions (all data and G-PCC/V-PCC) are considered together. 
The main reason is that only the maximum error is accounted and, 
thus, it is too sensible to outliers; this problem has been already 
observed in the literature [23] and can be mitigated using average 
pooling as in MSE and PSNR metrics. 

Po2Plane metrics: Regarding Po2Plane metrics, the 
performance is very similar to Po2Point metrics, slightly better 
for some cases, since it considers the underlying surface from 
which the 3D point locations were sampled. Moreover, the 
Po2Plane PSNR metric excels, being rather reliable and 
consistent for many cases, outperforming the corresponding MSE 
metric. The main reason is that the peak used (computed from the 
geometry coordinate precision) to convert MSE to PSNR values 
acts as an important normalizer.  

Pl2Plane metrics: Pl2Plane metrics have, in general, worst 
PLCC performance when compared to Po2Point and Po2Plane 
metrics. This is mainly because it is rather difficult to obtain 
reliable normals for the decoded PC, especially when some types 
of coding artifacts are present (e.g. holes) or when the decoded 
PC is rather sparse [51]. However, these metrics seem to be the 
best choice for the V-PCC codec (for RColor and RMesh 
renderings) where geometry errors mainly come from coding 
artifacts in the depth maps and, thus, are more consistent among 
different parts of the PC.  

As a curiosity, the number of decoded points could also be 
used as an objective metric, see last line of Table VII. As 
expected, this metric performs very poorly, especially for V-PCC 
data where the number of decoded points is typically larger than 
the number of original points and critically depends on some 
coding parameters, e.g. B0 for the occupancy maps. 
4) Statistical Significance Analysis of Objective Assessment 

Besides the usual PLCC correlation evaluation, the difference 
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in the performance of one objective metric with respect to another 
was assessed for statistically significance, using the procedure 
suggested in [53]. For that purpose, the prediction residuals were 
first calculated by subtracting the subjective scores from the 
predicted subjective values, obtained by applying a nonlinear 
logistic fitting to the objective scores. These prediction residuals 
were obtained for every PC objective metric. Then, the one-tailed 
F-test was applied to the prediction residuals, to assess if the 
difference in performance (PLCC) between any two given PC 
objective metrics is statistically significant at some significance 
level. In general, the significance level should be set based on the 
sample size (cardinality) being evaluated for an increased power 
of the test (i.e. probability of rejecting the null hypothesis when it 
is not true) [54]; since the cardinality of the prediction residuals 
is 18 for a single PC codec (PCL, G-PCC and V-PCC), a 0.2 
significance level was used [54]. The F-test assumes that the 
samples are normally distributed, and thus the kurtosis test was 
used to verify whether all prediction residuals followed a 
Gaussian distribution, which was the case for all the objective 
metrics, except the No. Points. 

In this work, the F-test null hypothesis is that the prediction 
residuals for the two objective metrics being compared are 
obtained from normal distributions with the same variance, which 
means that the pair of objective metrics under evaluation is 
statistically similar. The alternative hypothesis is that the 
prediction residuals for the two objective metrics being compared 
are obtained from normal distributions with different variances, 
which means that the pair of objective metrics under evaluation 
are statistically different. By computing the ratio between the 
variances of the two prediction residuals, the test statistic, F, was 
obtained, which was then compared to the F-test critical value, 
Fcritical; the F-test critical value depends on the significance 
level and on the sample sizes. When F is higher than Fcritical, 
then the null hypothesis can be rejected, which means that the 
objective metrics under evaluation are statistically different; 
otherwise, the null hypothesis cannot be rejected, meaning that 
the objective metrics under evaluation are statistically 
indistinguishable. Since the test statistic F is always computed 
with the objective metric with larger prediction residual variance 
in the numerator, objective metric in the denominator 
corresponds to the metric with the best performance whenever the 
null hypothesis is rejected.  

The statistical significance tables obtained are presented in 
Section II of the supplementary material. The results obtained 
confirm that P2Point and Po2Plane metrics have the best overall 
performance for many coding scenarios (PCL, G-PCC and for all 
codecs), especially the PSNR based metrics which are 
consistently better than MSE or Hausdorff based metrics. 
Between the P2Point and Po2Plane PSNR there is no statistical 
difference, which means that both metrics achieve similar 
performance. Moreover, Pl2Plane metrics have the best 
performance for V-PCC decoded data (for RColor rendering). In 
summary, the statistical significance results allow confirming that 
the conclusions drawn before (Section V.B.1-3) are valid. 

In summary, when all codecs and all renderings are considered, 
the Po2Point and Po2Plane PSNR metric values have the highest 
correlation with subjective scores. These metrics correspond to 
the ones previously selected by MPEG for the PCC Call for 

Proposals and currently used in common test conditions [42]. To 
the best of the authors knowledge, this is the first time that these 
metrics choice has been validated with MOS obtained with a 
well-defined procedure. From the results presented in this work, 
there is still significant room for improvement, especially if the 
goal is to achieve the same level of performance that past 
objective metrics (e.g. SSIM based) have obtained for 2D image 
and video representations. 

VI. FINAL REMARKS 
The main objectives of this paper are to study the impact of the 

rendering process on the perceived quality of decoded PCs and 
the performance of available PC geometry objective metrics. To 
achieve these objectives, three representative PC coding 
solutions and three PC rendering solutions were used as well as a 
wide set of objective metrics. The subjective experiments suggest 
that geometric coding distortions can be masked by using the 
color attributes and (to a less extent) by surface reconstruction 
methods. Moreover, PC codecs produce distinct coding artifacts 
that have different impacts in terms of the final perceived quality, 
e.g. for PCL decoded data, geometric distortions are clearly 
visible for all rendering methods. Regarding the objective metrics 
evaluation, the results show that a careful selection of the 
objective metrics is necessary to have a reliable measure of the 
decoded PCs quality. Also, for some codecs and rendering 
solutions, the current metrics are not very reliable, e.g. for V-PCC 
coded data; this is rather critical since V-PCC is expected to 
become the first coding standard to be deployed in the market. 
Moreover, some of the objective metrics have a rather limited 
scope with significantly degraded accuracy, for some specific 
rendering solutions. 

Regarding future work, a natural extension of this work is 
rendering with color attributes coded at different rates/qualities as 
it is critical to identify the best trade-off between geometry and 
color parts while maximizing the user perceived quality. 

VII. PC QUALITY ASSESSMENT: CHALLENGES AND WAYS 
FORWARD 

The experimental results presented in this work allowed to 
derive several relevant conclusions to the PC coding and quality 
assessment fields. Establishing a bridge to those conclusions, this 
section identifies some challenges and suggests possible ways 
forward towards promoting advances on those fields, as follows: 

Advancing PC coding: The study reported in this work 
shows that the number of decoded points plays a rather important 
role in perceived quality. When the density of points is increased 
during PC decoding, the perceived quality is also increased and, 
thus, better subjective scores can be obtained (as shown in 
Section V.B.1). This effect is clear for the MPEG V-PCC coding 
solution, which produces decoded PCs with artifacts less visible 
(and thus less annoying) as shown in sections III.C and IV.D 
(Fig. 8). However, many practical applications may not afford 
this increase on the size of the decoded PCs (due to memory and 
computational speed constrains), and thus new coding methods 
that tightly couple the decoding and the rendering processes are 
needed, e.g. PC rendering could render the polygons of the G-
PCC Trisoup geometry representation directly. Moreover, PC 
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representations from which a varying number of decoded points 
can be sampled (e.g. from a set of triangles or 2D projection 
maps) could lead to more efficient ways of achieving gains in 
perceived quality, naturally without compromising the PC 
coding engine efficiency. 

Advancing PC subjective quality assessment: The study 
reported in this work shows the importance of factoring the 
rendering process in the evaluation methodology. For example, 
if non-colored PCs are evaluated and a mesh-based rendering 
methodology is followed, some geometric artifacts (as shown in 
Section IV.D.2) may be masked, which should be avoided when 
the final rendering method is unknown. This is an important 
insight for future subjective studies, which assumes particular 
relevance since both JPEG and MPEG groups have been 
performing often this type of subjective evaluations and PC 
subjective quality assessment standards are not yet defined. 
Moreover, it is now clear from this work that the impact of color 
attributes in the overall perceived quality is high and masks 
geometry deformations (Section IV.D.1), which is not adequate 
for several applications, such as geographical information 
systems or automotive applications. Clearly, for these 
applications, fidelity is an important factor and thus subjective 
studies should include both geometry and geometry plus color 
subjective assessments to measure the different aspects of PC 
quality. 

Advancing objective PC metrics: The study reported in this 
work shows that the final perceived quality not only depends on 
PC errors introduced by some processing step (in this case, 
coding) but also on the rendering process (see Section V.B.2 and 
Table VII). This way, metrics that explicit consider the way that 
rendering is performed are likely to perform better, for example, 
the distance between points (density) after projection could be 
considered for point-based rendering solutions. For mesh-based 
rendering solutions, suitable characterization of the surfaces 
using some statistical information, e.g. perceptually relevant 
surface-based and color-based features, can be extracted and 
used to predict the perceived visual quality. This may lead to 
much needed improvements, considering that objective metrics 
performance is rather poor for this type of rendering (as shown 
in Section V.B.3). 
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