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Improving Driver Gaze Prediction With
Reinforced Attention

Kai Lv , Hao Sheng , Member, IEEE, Zhang Xiong, Wei Li, Member, IEEE, and Liang Zheng, Member, IEEE

Abstract—We consider the task of driver gaze prediction:
estimating where the location of the focus of a driver should be,
based on a raw video of the outside environment. In practice, we
output a probability map that gives the normalized probability
of each point in a given scene being the object of the driver
attention. Most existing methods (i.e., Coarse-to-Fine and Multi-
branch) take an image or a video as input and directly output
the fixation map. While successful, these methods can often
produce highly scattered predictions, rendering them unreliable
for real-world usage. Motivated by this observation, we propose
the reinforced attention (RA) model as a regulatory mechanism to
increase prediction density. Our method is built directly on top of
existing methods, making it complementary to current approaches.
Specifically, we first use Multi-branch to obtain an initial fixation
map. Then, RA is trained using deep reinforcement learning to
learn a location prediction policy, producing a reinforced attention.
Finally, in order to obtain the final gaze prediction result, we
combine the fixation map and the reinforced attention by a
mask-guided multiplication. Experimental results show that our
framework improves the accuracy of gaze prediction, and provides
state-of-the-art performance on the DR(eye)VE dataset.

Index Terms—Gaze prediction, driver attention, reinforcement
learning, video processing, deep learning.

I. INTRODUCTION

AUTONOMOUS and assisted driving are some of the most
active research areas in computer vision. Typically, these
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works have focused on lane change assistance [1], traffic signs
recognition [2], and many more [3]. Recently, several works [4],
[5] have advocated for a new assisted driving paradigm - driver
gaze prediction. The goal of gaze prediction is to provide useful
suggestions to the driver where they should focus. In this task,
the gaze points are gathered from real driving scene, and are
defined as the ground truth of the training dataset. In practice,
gaze is defined as a probability map where each point in a given
scene has a value. This value denotes how much probability this
point is the gaze of the driver.

Some previous works take saliency detection methods to ad-
dress the challenge of driver gaze prediction. Some methods
attempt to capture salient objects or events that occur naturally
in the environment as driver gaze [6]–[8]. Other models combine
saliency details with motion cues to handle gaze prediction task
[4], [9]–[11]. These methods do not directly use ground truth hu-
man gaze and instead attempt to approximate the task purely via
environment cues. Recent works [5], [9] propose to specifically
use supervised gaze prediction to achieve higher performance.
For example, Palazzi et al. [5] propose a model based on C3D
[12] that takes videos of driver outside environment as input,
allowing the model to explicitly take into account the temporal
dimension.

Multi-branch [9] is another work solving driver gaze predic-
tion in a supervised strategy and is considered state-of-the-art.
Multi-branch has the architecture of three branches: RGB image,
optical flow and semantic segmentation. Each branch provides
complementary details for the overall model to contribute to the
final prediction.

However, as shown in Fig. 1(c), the Multi-branch [9] tends to
produce scattered gaze prediction maps. The prediction map of
Multi-branch does not reflect the distribution of the ground truth
gaze, as shown in Fig. 1(b), where gaze tends to appear in tightly
clustered areas. In other words, the predicted gaze should mainly
be concentrated in one area. The concentrated map reflects the
nature of human perception: the focus of driver gaze is localized
to the most important part of the environment at any given point
in time.

In contrast to most previous approaches, our work aims to
introduce attention as a regulatory mechanism to increase pre-
diction density and accuracy. In this paper, the attention means
the location where the driver should mainly focus on. We be-
lieve that there is only one attention at a moment. The overall
model has the following advantage. By introducing attention,
the proposed method can output more accurate and reasonable
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Fig. 1. An example of gaze prediction while driving. The results of (c) Multi-
branch and (d) ours are produced with the input (a) a video clip. Comparing with
(c) the result of Multi-branch, (d) the predicted map of ours is more concentrated
and more accurate.

prediction maps, in which gaze tends to appear in tightly clus-
tered areas.

In this paper, we introduce Reinforced Attention (RA) to get
the attention mentioned above. The attention localization can be
solved by a regression method (i.e., Recurrent Neural Network
(RNN)). Given a sequence of frames, we can directly apply a
standard RNN to produce an attention location. In RNN, we need
to apply convolution for the entire frames. However, this process
is computationally expensive, as the computational cost scales
linearly with the number of image pixels. While down-sampling
the input frames can reduce the computational burden, many lo-
cal details (e.g. lanes and signs) are lost in the process. Instead,
we propose to use a reinforced attention model to estimate the at-
tention, which we term reinforced attention. Our method has the
following characteristics: 1) The backbone of RA is a recurrent
neural network where the input frames are processed sequen-
tially. 2) RA selectively chooses parts of the images to process
to save computational resources. At each frame, the model has a
sampler to select the next patch to sample based on the previous
internal state. At the final frame, the model makes the decision
on where is the attention. The above procedure uses Williams’s
REINFORCE [13] to address the non-differentiates due to the
control problem.

There are two main advantages of RA. On the one hand, RA
solves the gaze prediction problem in a way of reinforcement
learning. This method is derived from the real driving scene,
where a driver makes observations and chooses actions. This
process is very similar to the process of reinforcement learn-
ing, which makes a sequence of decisions in a dynamic envi-
ronment. On the other hand, RA achieves competitive results
at a lower computational cost. Previous methods take all video
content as input and apply convolution for the entire frames,
making them prohibitively slow and expensive. However, RA
selectively chooses parts of the images to process and spends
fewer computing resources.

In addition, we also introduce speed and course details into
the reinforced model. Previous works [9] only analyse the re-
lationship between the gaze locations and speeds, and do not

make use of speed and course details to train their gaze predic-
tion model. In contrast, our method uses these details to improve
the gaze prediction accuracy. Specifically, we feed these details
as well as the patches obtained by the reinforced model into the
RA model.

Overall, we propose a driver gaze prediction method by in-
troducing reinforced attention. The overall framework can be
described as follows. First, we use Multi-branch [9] to obtain an
initial prediction. Multi-branch integrates three sources of in-
formation: raw video, motion and scene semantics. We use the
predicted gaze map as our baseline. Then, RA is employed to
estimate the attention location for the input video. Finally, we
combine the gaze prediction map and the attention to generate
the final result.

In summary, this paper makes the following main points.
� Based on existing gaze prediction approaches, we intro-

duce RA into the framework to estimate the attention. Com-
pared with previous methods, the proposed approach can
produce more clustered and accurate predictions.

� RA is a reinforcement learning strategy, which servers as a
location prediction policy and achieves competitive results
at a lower computational cost.

� We argue that speed and course details are beneficial cues
for attention localization. To the best of our knowledge, we
are the first to introduce speed and course into the attention
localization task.

� Extensive experiments confirm the consistent effectiveness
of RA and the overall framework both quantitatively and
qualitatively. Meanwhile, we provide ablation studies to
show the contributions of different components.

II. RELATED WORK

Appearance-based gaze prediction: There are two kinds of
gaze prediction tasks, appearance-based gaze prediction and
scene-based gaze prediction. Appearance-based gaze prediction
takes images of human face and annotated eye gaze as input to
learn a direct image-to-gaze mapping. Feng et al. [14] propose
a hidden Markov model based gaze prediction system that uti-
lizes the visual saliency of the content being viewed. Davies
et al. [15] present a multicue gaze prediction framework for
open signed video content, and inverstigate which cues are rele-
vant for gaze prediction. Kellnhofer et al. [16] present Gaze360,
a large-scale gaze-tracking dataset. In [16], the authors propose
a 3D gaze model that includes temporal information and output
the probability of gaze prediction. Other deep learning methods
employed to solve the appearance-based gaze prediction task
are described in [17]–[19]. These methods need to apply eye or
face detection before training. The appearance-based task is pri-
marily studied as a behavioral cue to better understand human
thought processes.

Scene-based gaze prediction: In scene-based gaze prediction,
images or videos of the outside environment are taken as input.
One way to address this task is to use saliency prediction ap-
proaches [20]–[23]. Zhang et al. [22] propose a SP-MIL frame-
work for co-saliency detection, which integrates both multiple
instance learning and self-paced learning into a unified learning
framework. Han et al. [23] propose a bottom-up salient object
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detection framework based on the background prior. In [23],
the proposed method adopts a stacked denoising autoencoder to
learn powerful representations for saliency computation. Since
Alletto et al. [5] propose the DR(eye)VE dataset, the works re-
lated to driver gaze prediction begin to appear. Footage for the
DR(eye)VE dataset is recorded as individuals are driving and the
driver gaze is also saved. Palazzi et al. [4] model the driver gaze
by training a coarse-to-fine convolutional network on short video
clips from the DR(eye)VE dataset. In [9], the authors propose
a complementary model based on a deep multi-branch archi-
tecture. This model integrates three sources of information: raw
video, motion cues (in terms of optical flow) and scene seman-
tics. This work focuses on the task of scene-based gaze predic-
tion. The input is 16 raw video frames and the output is a gaze
prediction map. Compared with appearance-based methods, the
scene-based method primarily studies the relationship between
the drivers and the scenes they are viewing. In this work, we
focus on the scene-based gaze prediction.

Assisted driving: Gaze prediction tasks are primarily studied
in the context of assisted driving [24], [25]. One challenge in
assisted driving is the comprehension of the current traffic situa-
tion and the anticipation of all traffic participants’ future driving
behavior. To address this problem, Rehder et al. [26] propose a
prediction framework that is able to infer a driver’s maneuver in-
tention. In [27], the authors model traffic phenomena by taking
into account safety-relevant processes and perform “stochas-
tic” simulation on large, representative virtual samples. In this
way, safety performance of assisted and automated driving can
be quantified by virtual experiments. Simon et al. [28] present
an improvement of the advanced driver assistance systems by
estimating the saliency of road signs using SVM learning tech-
niques. Bredmond et al. [29] review a cluster of visual attention
studies and conduct more realistic experiments with a larger set
of targets, including pedestrians and bicycles. Pugeault et al.
[30] propose a novel vision-based method that predicts driver
behavior in real-time. They find that the field of view used by
the computational model is closely related to driver gaze loca-
tions. In addition, Li et al. [24] focus on monitoring the driver
attention level and propose a driver monitoring system that is
able to sense inattentive drivers.

Deep reinforcement learning: Our method utilizes deep re-
inforcement learning (DRL) to locate the regions of attention.
DRL is a framework in which decision-making networks inter-
act with an environment and seek to learn a policy to take actions
that maximise an environment reward. Similar to deep learning
methods [31]–[33], DRL has been applied to many computer vi-
sion tasks [34]–[37], including bounding box location prediction
[38], image caption [39], and seeding points for segmentation
[40]. In [36], Takanobu et al. propose a reinforcement learning
method for topic segmentation and labeling in goal-oriented di-
alogues. They attempt to solve the task in a weakly supervised
setting and formulate it as a sequential decision problem. Uzkent
and Ermon [37] propose a reinforcement learning approach to
selectively use high resolution data when necessary while main-
taining accuracy and reducing acquisition/run-time cost. Several
works utilize DRL to predict the focus of human attention. Minut
et al. [41] propose a model of selective attention for visual search

tasks and introduce a reinforcement learning framework for se-
quential decision-making. Mnih et al. [42] present a novel recur-
rent neural network model for classification task. This method
can extract information from an image by adaptively selecting
a sequence of regions or locations and processing the selected
regions only with high resolution. In [43], the authors propose
a Dueling Network, which represents two separate estimators:
one for the state value function and one for the state-dependent
action advantage function. They also illustrate that the area of
the network paying attention to is reasonable and important. Xu
et al. [44] apply A3C [45] to predict head movement positions
and focus of attention. Inspired by these reinforced methods,
we train a network based on Williams’s REINFORCE [13] to
learn the policy in continuous action space to produce the driver
attention.

III. THE PROPOSED METHOD

In this section, we review the Multi-branch [9] model, which
is applied to predict the driver gaze in Section III-A. We then
describe the process of acquiring the reinforced attention in
Section III-B. After getting the initial gaze prediction map
and the attention, we employ mask-guided multiplication, in
Section III-C, to generate the final prediction.

A. Multi-Branch Review

In this work, we employ the Multi-branch [9] model to get
an initial gaze prediction map. The input of Multi-branch is a
video clip with 16 frames. The Multi-branch model is composed
of three different branches: RGB image (I branch), optical flow
(F branch) and semantic segmentation (S branch). Each branch
exploits complementary details which contribute to the final pre-
diction.

The three branches have the same architecture. Each branch
is a two-input two-output architecture composed of two streams,
the cropped stream and the resized stream. The two inputs are fed
into a weight shared C3D [46] model which has been pre-trained.
The resized stream differs from the cropped stream due to a set
of refine layers following the C3D model. The prediction of the
resized input is stacked with the last frame of the video clip and
then fed to the refine layers. The refine layers then process and
upsample the tensor back to the input spatial resolution.

The model is trained in two steps. The first is single branch
training in which each branch is trained separately using the
aforementioned method. Following this, the three branches are
then simultaneously fine-tuned. Prediction cost is minimized in
terms of Kullback-Leibler divergence:

DKL(Y ||Ŷ ) =
∑
i

Y (i) log

(
ε+

Y (i)

ε+ Ŷ (i)

)
, (1)

where Ŷ is the prediction map of Multi-branch and Y is the
ground truth. i is the summation index that spans across image
pixels and ε denotes a small constant.
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Fig. 2. Architecture of the reinforced attention (RA) model. Our model is based on Recurrent Neural Network (RNN) and the RNN iteration is repeated for T
steps. 1) At Frame t, the core network fh(θh) takes multiple features as input: observation feature gt, speed-course feature kt and the internal feature ht−1. Note
that ht−1 is produced at the previous time step t− 1. 2) At the last Frame T , the model produces the final location lp. Instead of applying fs(θs) to generate a
sample location, fp(θp) is applied to produce the final attention location lp of the video clip. Note that fp(θp) and fs(θs) have the same architecture but different
parameters.

B. Reinforced Attention

This section presents how the Reinforced Attention (RA) ob-
tains the attention. Fig. 2 shows the overall framework of RA, in
which REINFORCE [47] is embedded to generate the reinforced
attention.

In a typical DRL-based method, there exists an agent tak-
ing actions in an environment to maximize the cumulative re-
wards. The process by which an agent makes decisions is called
policy π. π can be a deep network and map states to the ac-
tion with some probability. The environment can be modelled
as a Markov decision process, where the current state and ac-
tion depend only on previous state and action. Given an obser-
vation ot at each time step t, the agent chooses an action at
and receives a reward Rt. The reward Rt at each step t is ei-
ther a future or discounted reward, which can be described as
Rt =

∑T
i=t γ

i−tr(si, ai). r(si, ai) indicates the reward at state
si when taking action ai. γ ∈ [0, 1] is the discount-rate. As a
particular state becomes older, its effect on the later states be-
comes less and less. Thus, this reward is discounted by γ, which
is less than 1.

We formulate the driver gaze prediction task in an RL frame-
work as shown in Fig. 2. The input of the attention model is
video frames {Ft}Tt=1 with frame number t ranging from 1 to T
and the output is a predicted location lp, where the attention is
located.

Actions: The parameters of the RA agent are composed of
several networks described as: {θg, θk, θh, θs, θp}. Here fh(θh)
is the core network. As shown in Fig. 2, the core network at
time t takes three kinds of inputs: the localization and obser-
vation feature gt, the speed-course feature kt and the internal
representation ht−1 at previous time step. fs(θs) has the same
architecture with fp(θp), which is applied to produce a loca-
tion. The difference is that fs(θs) is a sampler deciding where

to sample the patch at frame t+ 1, while fp(θp) determines the
final action. This final action is the predicted location of atten-
tion for the input video clip. Our objective is to maximize the
expectation of accumulated future rewards:

J(θ) = Ep(s1:T ;θ)

[
T∑

t=1

rt

]
= Ep(s1:T ;θ)[R], (2)

where s1:T is a possible interaction sequences and p(s1:T ; θ)
is the probability of s1:T . Here p(s1 : T ; θ) is based on current
policy θ. During training, We use REINFORCE [47] to calculate
the gradient,

∇θJ =

T∑
t=1

Ep(s1:T ;θ)[∇θ log π(at|s1:t; θ)R]

≈ 1

M

M∑
i=1

T∑
t=1

∇θ log π(a
i
t|si1:t; θ)Ri, (3)

where at is the action we take in time step t.
Rewards: One of the major tasks in training the RA network is

formulating the reward function. A reward R reflects the quality
of the action and is given back to the agent. In the case of RA,
R is determined by the ground truth attention lg = (xg, yg) and
final action lp = (xp, yp), which is produced by fp(θp). We use
Euclidean distance d(·, ·) to calculate the distance between two
points and the reward function R is defined as:

R = 1− d(lp, lg). (4)

Training the RA model. In training the RA model, the actor
interacts with the environment. The interaction is achieved in
our RA model through the following procedure:

1) At frame t ∈ [1, ..., T − 1], the sampler obtains the cur-
rent observation ot from the input frame Ft, according to
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the position lt. Note that lt is generated by processing the
previous frames. More specifically, ot is a square with a
side length of 64 pixels centered at lt.

2) Multiple details from the current frame t and the RNN
feature ht−1 in the last frame are fed into the core net-
work fh(θh). These details of current frame include the
observation ot, the location lt, speed st and course ct. As
shown in Fig. 2, the RA model contains several deep mod-
ules, which are to extract the features described above. The
speed and course details are represented by two normal-
ized numbers. The normalized values are fed into fk(θk)
to get the speed and course feature kt. Note that fk(θk) is
a fully connected layer.

3) The RA model produces the RNN feature ht by fh(θh).
Based on ht, the sample network fs(θs) produces the next
sample location lt+1. Note that ht and lt+1 will be deliv-
ered to next frame t+ 1.

4) When arriving at the final frame t = T , RA uses action
fp(θp) to output the final location of attention. fp(θp) and
fs(θs) have the same network architecture but different
parameters. This is primarily because fs(θs) is a sampler
which mines useful details, including the sample loca-
tion and the corresponding observation. However, fs(θs)
is employed to make final decisions based on the driving
state collected from the video clip.

5) Once the RA model meets the termination condition of
giving the final decision lp, all experiences, together with
the rewards R are delivered to the optimizer to upgrade
the RA network.

C. Prediction with Reinforced Attention

In this section, we propose mask-guided multiplication to gen-
erate the final gaze prediction. After obtaining the reinforced
attention, we need to combine it with the fixation map F de-
scribed in Section III-A. The fixation map is a W ×H distribu-
tion matrix and the reinforced attention lp is a location. Thus, we
generate a mask M by using the attention location lp. Here M is
2-D gaussian distribution with mean (xp, yp) and σ = 0.1. Fol-
lowing this, each fixation map, F , generated by Multi-branch
is masked with the learned attention mask M . The final gaze
prediction map F̂ is defined as:

F̂ = F �M, (5)

where � denotes element-wise multiplication.

D. Discussion

The difference between the RA model and the typical RNN
model. Attention localization can be regarded as a regression task
with video as input and a prediction map as output. Typically this
is achieved by feeding all video frames into the RNN model and
then processing them with convolution filter maps. This process
is computationally expensive, because all the pixels would be
processed by convolutional process.

In contrast to the typical RNN, the proposed RA model adap-
tively selects a region to process at high resolution. Comparing
with RNN, RA process less pixels and thus is more compu-
tational efficient. This technique is inspired by the perception

Fig. 3. A demonstration of the selective process mechanism. As the video
plays sequentially, the sampler fs(θs) chooses a patch rather than processing
the entire frame. At each time step, the sampler has observed several patches in
previous steps. Based on these patches, the sampler determines where to locate
to get more details. After the sampler obtains the patch to be processed, the
sampler moves on to the next frame.

mechanisms of human drivers who do not process a scene in
full. Experiment in Section IV-E indicates that RA has a com-
petitive accuracy when compared with the typical RNN. The
main reason is that continuous frames contain much redundant
information, it is unnecessary to process the entire frame at each
step.

The mechanism of the sampler: We illustrate the sampling
process in Fig. 3. Taking T = 16 frames as input, the sampler
selects a specific area for each frame to process. As the frames
move forward, the sampler is found to select different locations
to process. A possible explanation is that the small differences
between successive frames lead the sampler to explore other ar-
eas in which it can collect new details. This can also be explained
by the fact that the reinforced model is fed with appearance and
location features so the sampler can perceive which areas have
been collected and which are not.

IV. EXPERIMENT

A. Datasets and Evaluation Metrics

Datasets: We evaluate our method on DR(eye)VE [5], which
is the first publicly available dataset addressing driver gaze pre-
diction. While there exist several dataset for gaze prediction [16],
[18], [48], only DR(eye)VE is setup for scene-based driver gaze
prediction, the rest being designed for appearance-based gaze
prediction tasks.

The DR(eye)VE dataset consists of 74 sequences with
555,000 frames. Each sequence is 5 minutes long and is cap-
tured at 1080p/25fps. Additionally, the dataset includes other
relevant driving state such as GPS data, accelerometer and gyro-
scope measurements. In this work, we mainly concern the speed
and course details, which are then employed in our reinforced
attention model.

Moreover, we evaluate the methods on the complete test set as
well as the acting subset. The acting subset is particularly inter-
esting as the deviation of driver gaze from central pattern denotes
an intention related to some driving actions (e.g. changing lanes
and overtaking).

Evaluation metrics: To evaluate the proposed method, we
compare our approach with the state-of-the-art methods primar-
ily in two aspects, i.e., the accuracy of gaze prediction and the
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Fig. 4. Evaluation with different σ on the complete dataset of DR(eye)VE. By adopting RA, baseline+RA achieves better results than baseline in terms of CC,
DKL and IG.

Fig. 5. Qualitative examples of the gaze prediction maps. Each row is a set of examples. Each test sample is represented by five images: input raw image, ground
truth map, prediction of MLNet [20], prediction of Multi-branch [9] and our prediction. The results show that the prediction maps produced by our method are
more focused (the first three rows) and more accurate (the last two rows).

accuracy of reinforced attention. We evaluate the gaze predic-
tion result following the guidelines in [9], [49]. Specifically, we
use Person’s Correlation Coefficient (CC), Kullback-Leibler
Divergence (DKL) and Information Gain (IG) for evaluation
on DR(eye)VE. For CC and IG, higher is better, while for
DKL the opposite is true. IG is a measure of the quality of
a predicted map P with respect to a ground truth map Y in
presence of a strong bias,

IG(P, Y,B) =
1

N

∑
i

Yi[log2(ε+ Pi)− log2(ε+Bi)], (6)

where i is an index spanning all the N pixels in the image and
ε is a pre-defined constant to ensure numerical stability. Note
that B is the bias map computed by averaging the training
fixation map. The ground truth map Y for a frame is built by
accumulating the gaze points of the nearby 25 frames [9]. For

evaluating the reinforced attention model, we use the Euclidean
distance d(lp, lg) between two locations to evaluate the distance
between the predicted location lp with ground truth attention
lg . lg is a location, which is obtained by calculating the gaze
prediction ground truth Y . As shown in Fig. 5, for each ground
truth Y (column 2), there exist several gathered points. All
the points are Gaussian distribution and they have the same
maximum value. In this work, the ground truth attention lg is
defined by averaging the coordinates of these maximum points:

lg =
1

N

N∑
n=1

ln, (7)

where N is the number of maximum value points in Y
and (xn, yn) is the coordinate of n-th point ln. Note that
(xn, yn) ∈ [−1, 1].
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TABLE I
COMPARISON WITH STATE-OF-THE-ART ON THE COMPLETE TEST SET OF

DR(EYE)VE

B. Experiment Setting

Baseline model for gaze prediction. We use Multi-branch as
the baseline of our overall framework. To train the baseline,
we follow the training strategy in [9]. Specifically, the Multi-
branch model is split into three branches where each branch is
fed with 16 frames clips in raw RGB color space, 16 frames
clips with optical flow maps and 16 frames clips with semantic
segmentation maps, respectively. The training process is divided
into two stages: training the three branches independently and
then fine-tuning the complete Multi-branch model with a lower
learning rate value. More details can be found in [9].

Reinforced attention model: We train the reinforced attention
model following Sec. III-B. In our implementation, input frames
are resized to256× 256 and the sampled patch has the size of 64.
The dimension of the internal state vector ht, appearance feature
gt and speed-course feature kt is 256. The model is trained via
stochastic gradient descent with batch size 32 and momentum
of 0.9. The learning rate is initialised at 0.003.

C. Parameters Analysis

An important hyper-parameter of RA is σ described in
Section III-C. This parameter is used to generate the weighted
mask M . We show its impact by varying its value in Fig. 4. In
this part, we can draw two conclusions. On the one hand, we ob-
serve that our method with different σ consistently improves the
baseline. As a regulatory mechanism, RA provides accurate at-
tention and help generate more clustered and accurate prediction
maps. On the other hand, baseline+RA arrives the best perfor-
mance when σ = 0.1 with 0.58 CC, 1.37 DKL and 0.05 IG. In
this work, a low σ indicates that the gaze prediction values tend
to be close to the focus of attention, while a high σ indicates that
the values are spread out over a wider range. When σ is set to
0.1, the gaze prediction maps are reasonably adjusted. Note that
we set σ = 0.1 in the following experiments.

D. Comparison With State-of-the-Art Methods

We compare our approach with state-of-the-art methods on
the complete test set and the acting subsequences of DR(eye)VE.
Note that we use the same model to test on the two sets. Table I
and II report the comparison when tested on the complete set and

TABLE II
COMPARISON WITH STATE-OF-THE-ART ON THE ACTING SUBSEQUENCES OF

DR(EYE)VE

the acting set, respectively. We compare with two baseline meth-
ods: Baseline Gaussian and Baseline Mean, several saliency de-
tection based methods: MLNet [20] and RMDN [21], and previ-
ous gaze prediction methods: Palazzi et al. [4] and Multi-branch
[9].

We first compare with two baseline methods which do not
require training. The Baseline Gaussian method is employed by
a centered gaussian baseline and the Baseline Mean is generated
by averaging all training set prediction maps. On the complete
test set and the acting subsequences, the proposed method out-
performs the Baseline Gaussian and the Baseline Mean. For ex-
ample, the DKL value of Baseline Gaussian and Baseline Mean
are 2.16 and 1.60, respectively, both higher than the value of our
method. This indicates that our method can deal with task-driven
changes in gaze prediction, even if the gaze distribution is often
strongly biased to the vanishing point of the road.

Next, we compare with several saliency prediction based
methods, which can be employed to solve gaze prediction task.
As shown in Fig. I, RMDN [21] yields a DKL of 1.77 on the
test set. It is lower than the Baseline Gaussian but is higher
than Palazzi et al. [4] by 0.29. This is probably due to that [4]
is a task-orientated method designed for gaze prediction, while
RMDN is not. In addition, we compare the proposed method
with the LSTM-based Saliency Attentive Model (SAM) [52],
which aims at predicting where human gazes will focus on a
given image. The DKL value of SAM is 2.56, higher than the
value of the proposed method. It shows that our method outper-
forms SAM. The main reason is that SAM takes an image as
input and is not designed for video-based tasks.

We also evaluate the methods on the complete set and the
acting subset. We observe that the results of Baseline Gaussian
and the Baseline Mean performed on the complete set are not
as accurate as those performed on the acting set. For example,
the Baseline Gaussian achieves DKL = 2.16 when tested on
complete set, and obtains DKL = 2.41 on when tested on the
acting set. It indicates that the deviation of driver gaze from the
central pattern does occur when undergoing task-specific actions
(e.g. changing lanes and overtaking). One possible solution is to
introduce attention mechanism, which can highlight the valuable
ares. Results show that our method provide more accurate gaze
maps on both sets.

Comparing with state-of-the-art gaze prediction methods, our
approach clearly achieves higher performance on both sets.
Specifically, our method achieves DKL = 1.37 and CC = 0.58
on complete set, and obtains DKL = 1.79 and CC = 0.42 on
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TABLE III
COMPARISON OF ATTENTION LOCALIZATION METHODS ON THE COMPLETE SET

OF DR(EYE)VE. NOTE THAT S. INDICATES SPEED AND C. INDICATES COURSE

acting set. The DKL value is 0.03 and 0.01 lower than the cur-
rent best results (Multi-branch [9]) when tested on the complete
set and the acting set, respectively. The above results show that
our method can quantitatively improve the gaze prediction ac-
curacy. The main reason is that the proposed method is a good
complementary to the existing methods. RA is built on top of ex-
isting methods, providing an accurate attention for gaze predic-
tion maps. This attention can regulate the maps and output more
clustered and accurate results. Qualitatively results are shown in
Fig. 5. The results illustrate that our method can generate more
concentrated and more accurate gaze maps.

E. Evaluation of Reinforced Attention

Compared with RNN, our approach is competitive in accu-
racy: In this section, we evaluate the reinforced attention (RA)
model. The results are shown in Table III. On the DR(eye)VE
dataset, we compare RA with typical recurrent neural network
(RNN). The RNN takes a set of images as input and can be
viewed as a standard regression problem. On the complete test
set, the proposed RA yields anL2 of 0.20, while theL2 of RNN is
also 0.20. Comparing with RNN, in some indicators, our method
outperforms RNN. Specifically, our results are higher by 0.01
in CC and lower by −0.01 in DKL. However, RNN yields an
IG of 0.06, higher than RA. The results indicate that RA yields
competitive results on the complete set of DR(eye)VE.

Compared with RNN, our approach is more computational
efficient: To quantitatively measure the computational cost of
RA, we use the number of model parameters and the inference
time for evaluation. In this paper, RNN model has 32.4 million
parameters, while RA only has 24.8 million parameters. For in-
ference time, we test the two models on a GPU of NVIDIA 2080
Ti. In testing phase, RNN takes 1.2s per mini-batch, while RA
only takes 0.5s. Note that, the batch size is set to 32. The results
indicate that our approach is more computational efficient. To
process a video clip, RNN needs to apply convolution operation
for the entire frames, while RA selectively chooses a patch of
each frame. The patch is one quarter of the size of the entire
image. It indicates that the computational cost of RA is much
lower than that of RNN.

Speed and course details are useful for attention localization:
This section also presents ablation studies of the RA model.
Since the driving condition details are involved, i.e., speed and
course, we remove them one at a time to evaluate their contribu-
tion respectively. Results on DR(eye)VE are shown in Table III.
When removing speed and course from the RA system, L2 and

Fig. 6. Examples of the reinfoced attention on the CityScapes dataset [53].
The patches in red rectangle are the attentions predicted by our method.

DKL will be 0.06 and 0.04 higher than the full RA model in the
complete set. Meanwhile, the L2 of RNN is 0.20, which is also
lower than RNN w/o speed and course. Recall that lower L2 is
better. These results show that speed and course details play an
important role in estimating the driver attention.

Course details contribute more than speed details: To further
evaluate the respective importance of speed and course details,
we add another experiment. we remove speed or course details,
one at a time from the system. Overall, the models w/o speed or
w/o course achieve lower L2 and DKL than the ones w/o speed
and course, but achieve higher L2 and DKL than the complete
system. For example, RA w/o course yields 0.24 in L2 and 1.38
in DKL, both slightly lower than RA w/o speed and course, but
higher than complete RA. We also find that the course detail is
more import than the speed. RA w/o speed yields 0.21 in L2 and
1.37 in DKL, which are lower than RA w/o course.

RA performs well on CityScapes [53]: To evaluate the ef-
fectiveness of RA, we also test our method on the CityScapes
dataset. The results are shown in Fig. 6. Similar to DR(eye)VE,
the CityScapes dataset is comprised of a large set of video se-
quences recorded in streets. Note that the CityScapes dataset is
designed to address the task of semantic segmentation. How-
ever, it is valuable to utilize the videos of CityScapes to validate
the effectiveness of RA. The results indicate that RA can output
reasonable attentions. In Fig 6, the examples show that RA fo-
cus on the objects that can affect driving, e.g., moving vehicles,
roadside bicycles, and vanishing points of the road.

F. Variant Study.

We further evaluate three different variants of Multi-branch.
i.e., Image Branch, Flow Branch and Segmentation Branch. As
mentioned above, our method is built directly on top of ex-
isting methods. Thus, we use other methods as our baseline.
As described in Section III-A, image branch, flow branch and
segmentation branch are parts of the Multi-branch model. Ta-
ble IV details the CC, DKL and IG results of each variant in
the DR(eye)VE complete set. I refers to the RGB image branch.
As the result shows, I+RA yields 1.40 in DKL, which is slightly
lower than the baseline I 1.41. However, compared with S (1.69),
S+RA (1.59) significantly improves the result by 0.1 in terms of
DKL. Meanwhile, when using the RA model, the DKL value
of (I+F+S)+RA will drop 0.03, compared with I+F+S. These
results prove that the RA model has the ability to improve the
gaze prediction accuracy on top of existing methods.
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TABLE IV
VARIANT STUDY OF OUR METHOD ON THE COMPLETE TEST SET OF

DR(EYE)VE. I, F, AND S REPRESENT IMAGE, OPTICAL FLOW AND SEMANTIC

SEGMENTATION BRANCHES, RESPECTIVELY. (IFS) EQUALS THE

MULTI-BRANCH MODEL. RA MEANS THE REINFORCED ATTENTION

V. CONCLUSION

In this paper, we propose to use attention to improve the
driver gaze prediction task. Based on existing gaze prediction
approaches, we use attention to regulate the initial predicted
results to obtain more concentrated and accurate gaze maps.
Specifically, we propose a reinforcement learning based model,
termed Reinforced Attention (RA), for attention localization.
RA is able to produce competitive localization accuracy while
only processing a small subset of the video. When training RA,
we also feed RA with speed and course details, which are proven
to be indispensable. Experiments on the complete test set and
the acting set of DR(eye)VE show that our method yields consis-
tent improvement over several baselines and compares favorably
with the state-of-the-art approaches.
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