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Abstract—Nowadays entropy encoders are part of almost all
data compression methods, with the Asymmetrical Numeral
Systems (ANS) family of entropy encoders having recently risen
in popularity. Entropy encoders based on the tabled variant of
ANS are known to provide varying performances depending on
their internal design. In this paper, we present a method that
calculates encoder redundancies in almost linear time, which
translates in practice to thousand-fold speedups in redundancy
calculations for small automatons, and allows redundancy cal-
culations for automatons with tens of millions of states that
would be otherwise prohibitive. We also address the problem
of improving tabled ANS encoder designs, by employing the
aforementioned redundancy calculation method in conjunction
with a stochastic hill climbing strategy. The proposed approach
consistently outperforms state-of-the-art methods in tabled ANS
encoder design. For automatons of twice the alphabet size,
experimental results show redundancy reductions around 10%
over the default initialization method and over 30% for random
initialization.

Index Terms—Tabled Asymmetrical Numeral Systems, Entropy
encoder redundancy, Optimization.

I. INTRODUCTION

F the diverse set of tools that are employed in data
O compression, entropy encoders are one of the most used
tools, if not the most. They are the last stage in almost all
data compression methods, after a varying set of predictors
and transforms. One particular family of entropy encoders that
has gained popularity in recent years is the one based on the
Asymmetrical Numeral Systems (ANS) [1], [2], [3]. Some
ANS encoders and decoders have been shown to allow for
very fast software implementations in modern CPUs [4], [5].
This has lead to its incorporation in recent data compression
standards and its use in many different cases [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]. In
addition, ANS-based encoders could be applicable to a very
wide range of multimedia scenarios, such as an alternative
to the Rice-Golomb codes employed in the energy-efficient
scheme described in [20], as a high-throughput entropy en-
coder in a high frame rate video format [21], or in general as
an entropy encoder in schemes for sparse coding [22], learned
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image compression [23], compressive sensing [24], or point
cloud data compression [25]. In [26], ANS is employed to
code large-alphabets sources.

While most of the interest in ANS from the data compression
community has been focused on practical efforts, other rele-
vant papers have been published recently, such as an approx-
imate method of calculating the efficiency of encoders [27],
[28] an improved probability approximation strategy [29], or
their use as extremely parallel decoders [30].

In this manuscript, we study Tabled ANS (tANS), which is
an ANS variant that is well suited for hardware implemen-
tations [31], [32], [33]. It employs a finite state machine
that transitions from state to state as symbols are encoded,
which is certainly not a new idea [34]. However, the ANS
theory enables the creation of effective encoding tables for
such encoders. The underlying idea of this ANS variant is that
for non-integer amounts of information an encoder produces
integer-length codewords, while state transitions are employed
to carry over fractional bits of information to subsequent
codewords.

In particular, we focus our study on efficiently measuring the
redundancy produced by tANS encoders, and on optimizing
tANS encoders to minimize their implementation footprint
or to improve their coding efficiency. We introduce a novel
redundancy measurement strategy that exploits the structure
imposed by tANS encoders in state transition matrices. This
strategy achieves almost-linear time complexities for redun-
dancy calculations when combined with an efficient calcula-
tion of average codeword length for all states. In addition,
we employ the proposed redundancy calculation technique to
optimize tANS automatons. We do so by exploring automaton
permutations through a stochastic hill climbing method. We
expect these efforts to translate into, for example, less area be-
ing allocated to a hardware implementation, to having smaller
coding tables sent as side information, or to compression meth-
ods that can dynamically determine adequate encoder sizes.
Many compression techniques incorporate entropy encoders
with suitably high efficiency. In this work, we aim at providing
better tANS encoders at equivalent efficiency levels, but with
lower hardware costs. Particularly relevant to this research is
the optimization strategy for tANS encoders in [35]. Further
comparison with this method is provided in the following
sections.

The rest of this paper is organized as follows. In what
remains of this introduction we present some background



information on tANS. Afterward, we provide an efficient
method to calculate the redundancy of tANS encoders in
Section II, and we show a method to optimize tANS encoders
in Section III. In Section IV we discuss our experimental
results, and conclusions are drawn in Section V.

A. Tabled Asymmetric Numeral Systems

In this section we provide the necessary background on how
tANS encoders operate and establish some common notation.
For the underlying rationale behind tANS see [2]. See Table V
for a description of each symbol.

Let an n-symbol discrete memoryless source have an under-
lying alphabet A = {0,...,n — 1}. For symbol s € A, let p;
be the associated occurrence probability, which we assume to
be finitely representable (otherwise, see [29]).

A tANS encoder (or decoder) of size m is a deterministic
finite-state automaton that transitions from state to state as
symbols are being encoded (or decoded). Such automaton is
defined by its key vector, f = fof1... fm—1 € A™, which
uniquely describes the encoding and decoding functions that
the automaton employs (i.e., how are symbols mapped to
codewords and which state transitions occur). Let mg be the
number of occurrences of symbol s in f, with ) sedMs =M.
For example, given A = {0, 1,2}, the key f = 00210 defines
an automaton of size m = 5, with mg = 3 and m; = mg = 1.

Given the current state of the automaton, represented as an

integer x € I = {m,...,2m — 1}, the symbol s is encoded
as follows:
1) First, state x is renormalized to 2’ € I, =

{ms,...,2ms—1} by removing as many least significant
bits from x as necessary (i.e., a bitwise right shift
operation), and pushing them to a stack s (least-significant
bit first).

2) Then, an encoding function Cy : Iy — I is employed to
produce the resulting state Cs(z') = y.

Hence, the encoding process results in a state transition from
z € I to y € I and some bits pushed onto a stack.

The resulting compressed file contains only the contents of
the stack, the final state of the automaton, and, if it cannot
be deduced, the number of symbols encoded. The initial state
of the automaton need not be included in the compressed file,
and can be chosen arbitrarily. However an initial state z = m
is expected to produce less renormalization bits for the first
encoded symbol (renormalizing any initial state larger than m
produces at least as many least-significant bits and possibly
more).

Decoding operations are performed in reverse order, with the
peculiarity that the sequence of decoded symbols is produced
in reversed order. To decode a symbol, a decoding function
D :I— (A, I) is employed to produce a decoded symbol s
and a state 2’ € I,. Then, state 2’ is renormalized by popping
as many bits as necessary from the stack s and appending

them as least-significant bits to z’ so that the resulting z is in
1.

Algorithms 1 and 2 below describe the procedure to encode
and decode one symbol, respectively. The encoding and de-
coding functions are uniquely determined by the key f as
discussed in more detail in what follows.

Algorithm 1 Algorithm for encoding one symbol.

Input: s, z, 5, ms, C
Output: y, s
T
while 2/ > 2m, — 1 do
push(2’ mod 2, s)
x' <« |2'/2]
end while
y + Cs(2')

Algorithm 2 Algorithm for decoding one symbol.

Input: y, s, m, D
Output: s, x, s
(s,2") <= D(y)
while ' < m do
x’ + 2z’ 4 pop(s)
end while
T

As an example, the encoding and decoding functions for the
automaton with key f = 10211011 are provided in Table I.
For this key, mo = 2, my = 5, mo = 1 and m = 8. To encode
symbol s = 0 in this example, suppose that the current state
of the automaton is x = 8. Renormalizing x into ' € Iy =
{mo,...,2my — 1} = {2,3} requires taking the two least
significant bits from z, resulting in 2’ = 2. Applying Cy to
Z' yields y = 9, which is the new state of the automaton. The
two least significant bits “00” are pushed to the stack.

The decoder starts with state y = 9 and applies D to obtain
s = 0 and 2’ = 2. Renormalizing x’ by popping bits from
the stack and appending until x € I = {m,...,2m — 1} =
{8,...,15} yields z = 8.

A key f unambiguously defines functions C's and D as follows:

e The first element of the ordered pair produced by the
decoding function is obtained directly from the symbols,
in order, contained in f. That is,

D(x) = (fo—m,z'), m <z < 2m. (1)

The second element of the ordered pair, z’, is given after
the definition for C, below.

o The values in the coding table for Cy are, in order, the
states that have the symbol s as the first element of the
ordered pair in the coding table for D.

o Destination states in D (the second element of the ordered
pair) are inverse to those in C;. Le., D(z) = (s,2’) where
x = Cy(x').



Table I: Encoding and decoding tables for the automaton
with key ‘10211011,

[zllG]a G| D |
1 10

21| 9

3| 13

4

5 8

6 11

7 12

8 14 (1,5)
9 15 (0,2)
10 (2,1)
11 (1,6)
12 (1,7)
13 (0,3)
14 (1,8)
15 (1,9)

It is well known that low encoding redundancies are obtained
for keys where ms ~ mp, [2]. However, as others have
shown [35] and we further show, lower redundancies can be
achieved by taking into account the order of symbols in f. An
efective key construction method is described in [2], which we
use as a baseline. We reproduce that method in Algorithm 3
with slight modifications to ensure that all symbols appear
at least once in the key. In the algorithm, heap tuples are
compared lexicographically, and the ‘pop’ operation returns
the smallest element.

Algorithm 3 Algorithm for baseline key creation.

Input: m, p,Vs € A
Output: f
geSet{O,...,nf 1}
h A Heap {(05/]7070)7 ceey (0'5/pn*17n - 1)}
for:=0tom—1do
repeat
(v,s) < pop(h)
until s € gor g <m —i
push((v +1/ps, s), b)
remove(s, g)
Jics
end for

II. EFFICIENT REDUNDANCY CALCULATION

As for any entropy encoder, the redundancy of a tANS
encoder for a given source can be obtained as the difference
between the entropy of the source and the average codeword
length produced by the encoder. Thus, less redundant encoders
produce smaller compressed files.

While redundancy calculation for tANS is well understood,
the straightforward calculation of average codeword lengths

is a computationally expensive procedure, which prevents its
use in important applications. In particular, straightforward
calculation can become infeasible for large automatons, em-
pirical redundancy studies, and most importantly, data-driven
key optimization procedures.

It is worth noting that a redundancy approximation to tANS
was provided by Duda [2] and later refined by Yokoo [28].
However, the approximations may present notable divergences
from the true redundancy or may fail to distinguish the best
of several tANS encoders. See Fig. 1 for an example where
Duda’s redundancy approximation yields the same result for
two different automatons, and where redundancy is signifi-
cantly underestimated around p; ~ 0.2. As seen in the figure,
the same statement is true for Yokoo’s approximation.
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\‘ :' Duda’s approximation for f; and f»
Vi Yokoo’s approximation for f; and f, ----
1074 . i . . . .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

p1

Figure 1: Example where Duda’s and Yokoo’s redundancy
approximations yield identical results for two different
automatons having f; and f;, which in reality have
significantly different redundancy profiles. Additionally,
both methods dramatically underestimate redundancy for
p1 =~ 0.2,

In this section we describe a procedure to efficiently calculate
average codeword lengths and, in turn, the redundancy of
tANS encoders.

The average codeword length of a tANS encoder can be
written as
L=) Px) L )
xel
where P(x) is the probability of the automaton being in the
state = in a given instant, and ¢, is the per-state average
codeword length.

State transitions can be modeled as a Markov process for
which P(x) is the stationary probability of being in state x.
These probabilities can be obtained as the dominant unitary
left eigenvector of the transition matrix P (i.e., the dominant
unitary right eigenvector of PT). Here we consider only
irreducible aperiodic Markov chains, so that unique stationary
probabilities are guaranteed to exist. In particular, stationary
probabilities for automatons with reducible Markov chains
may not be unique, i.e., there can be more than one stationary
distribution for a given automaton. On the other hand, a



stationary probability may fail to exist for a periodic Markov
chain. While outside the scope of this article, if necessary, an
approximate solution can be found for these cases by adding
a small constant to all the elements of the stochastic matrix
and thus ensuring irreducibly and aperiodicity [36].

Regarding per-state average codeword lengths, these can be
obtained as R
gw = Zpsc(s7x)a (3)

seA

where C(s,z) = Lig miJ is the number of bits pushed to
the stack by Algorithm 1 when encoding symbol s in state x.
Here, and in what follows, note that lg denotes the baﬁe-two
logarithm. It is well known that, for each symbol s, C(s, )
can only take two values, which are consecutive integers, and
that a threshold ¢; on z suffices to distinguish the correct
value [2], [35]. Specifically,

~ ks — 1 x<ts,
C(s,x) = {k, - 4)

where k, = [lg(m/m)] + 1 and t4 = m 2Fs.

In what follows we show how to obtain ¢, and P(x) in a
computationally efficient manner, to facilitate the calculation
of Eq. 2 (as illustrated in Fig. 2). First we describe how to
calculate per-state average codeword lengths directly from the
automaton size, symbol occurrence counts in the automaton
key, and symbol probabilities. Afterwards, we describe how
to obtain state probabilities by exploiting the structure of the
state transition matrix of a tANS encoder. We obtain a compact
representation this matrix, which we then use in a modified
power method to obtain its dominant eigenvector.

A. Per-state average codeword length

While a straightforward approach to calculate all ¢, values
through (3) and (4) requires O(mn) operations, we show a
method that obtains per-state average codeword lengths in
O(m) by employing finite differences. Note that throughout
the document we assume that arithmetic operations have a
O(1) complexity, including exponentiation and logarithms.

Applying a forward difference operator (i.e., Aja, = ant1 —
an) to £, yields

Amgm = ZPSAI6(87m)7 (5)
sEA
where i
~ 1 f = mg2"s,
A C(s,x) = ore : " (6)
0 otherwise.

Given symbol s, the value of A,C(s,z) is only 1 for a
single x value, which implies that each term in the summation
in (5) is only non-zero for a single x value. Given this fact,
we can obtain all values of A, ¢, at once by iterating over
alphabet symbols and only calculating non-zero terms in the
summation. Values of ¢, can then be found through cumulative
summation from A/, values, except for ¢,,, which needs to

be obtained from (5) directly. This method is formalized in
Algorithm 4.

Regarding the complexity of the algorithm, given that |A| <
||, it can be seen that complexity is dominated by the first
and last loops. Each loop performs m individual operations,
and thus the algorithm complexity is O(m).

Algorithm 4 Per-state average codeword length calculation.

Input: m, mg,ps Vs € A
Output: ¢,V el
for x € I do
0. +0
end for
for s € A do
ko lg(m/m,)] + 1
t +— mg2F
O, < 0, + ps
O, U, +ps(k—1)
end for
Em A éfrn
forr=m+1to2m—1do
by by q + 1.
end for

B. Efficient calculation of the state transition matrix and its
dominant eigenvector

Having already seen how to obtain /., in this section we
proceed to obtain P(x) by exploiting the particular structure
of the transition matrix P of tANS automatons.

The re-normalization process in tANS creates structure and
regularity in the automaton transition matrix which we can
exploit. Due to re-normalization it can easily be seen that,
in Algorithm 1, multiple and consecutive input values of x
produce the same output value (same state transition) due to
the floor operation applied in the re-normalization step.

For example, we show in Fig. 3 the transition matrix P and
key f for a three-symbol automaton assuming p, = 0.2,
p1 = 0.3, and ps = 0.5. It is readily apparent that row ¢ of
PT is formed by runs of value py,, which occasionally wrap
around. Le., runs containing the probability of the symbol in
the same row of f7, which occasionally reach the right-most
column continue on the left-most column. We can employ this
fact to efficiently create equivalent compact representations
of the transition matrices of tANS automatons. In addition,
it is possible to observe that runs for the same symbol are
successive and of equal length, up to the wrapping point, where
its length is halved, but we do not exploit this for our purposes.

We can represent row y —m of PT, associated with destination
state y € I as M, = («,f,p), where the interval [«, )
specifies a run of origin states z € [ that lead to y with
probability p. For runs that wrap around, the end of the run
[ is increased by m so that o < 3, which simplifies notation
in further steps. In the example of Fig. 3, there are 15 states
labeled 15 through 29. We then have M5 = (20,22,0.2)
for the top row (row 0) of PT, and My; = (28,31,0.3)
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Figure 3: Transition matrix (transposed) and key for an automaton with n = 3, pg = 0.2, p; = 0.3,

m = 15.
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Figure 2: Diagram of the redundancy calculation method.
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for the third row from the bottom (row 12). We can find
all states x € I with destination state y € [ starting from

the re-normalized state 2’ € I, such that Cy(a’)

= y as

follows. We look for all z € I that re-normalize to z’, i.e.,
z = a'2" + 2, with 0 < z < 28 — 1 and k,z € Z. For
2z = 0 we obtain a run start by solving z’ 2k 4+ 0 > m, which
yields k = [lgm/x'], as only one value for k is possible [2].
Similarly, for z = 2¥ — 1 we obtain a run end by solving
/2% + (28 — 1) + 1 > m, which yields k = [lgm/(2’ +1)].
Hence, o = 2/2/'8™/%"1 and either 8= (x’+1)2ﬂg m/(z'+1)]
or B = (z' +1)2Mem/@'+ D1 4 ;. depending whether there
is a wrap around or not. This yields M, = (o, 5,p).

Hereafter we refer to this representation, M, as a compact
transition matrix, which Algorithm 5 obtains in O(m) time
complexity, given that | J . 4 Is| = m.

Algorithm 5 Compact transition matrix creation.

Input: ps,ms, CsVs e A

Output: M
for s € A do
for ' € I, do

B+ (¢'+1)-

B<—{’B

B+m

ollg(m/(a'+1))]

ifa<p
otherwise

Me,(z) = (o, B,ps)

end for
end for

p2 = 0.5, and

Now we see that we can employ the power method on a
compact transition matrix to produce its dominant eigenvector
(i.e., the vector with elements P(z) Va € I). It is well known
that the power method can be employed by iterating over

PTViT
[[PTviT]|

Vit1 (7)
to produce a dominant eigenvector in O ( %IM\) iterations,
where R is the required precision and Ay is the second-
largest eigenvalue [37] (see [38] for further estimation of this
eigenvalue). In what follows, we show that, by exploiting the
transition matrix structure, we can obtain the dominant eigen-
vector in a O (m %le) complexity. To do so, we show
how to obtain the result of the matrix-vector multiplication
wT = PTv" in the power method in O(m) instead of O(m?).

For non-wrapping runs, the i*” element of w’ can be formu-

lated as
w; = pr Z Uj*m)
a<lj<pB

®)

with a and 3 being the closed and open boundaries of the run
in row ¢ of the transition matrix, as described previously. For
wrapping runs we can consider

Y Yemt

a<lj<2m

>

m<j<pf—m

wi = pf; Vj—m €))

Due to the particular definition of 3, both summations in (9)



are equivalent to

wi =Py, (10)

§ Ujfm )

a<j<p

where u = (v, ..., Um—1,v0,--,VUm—1). Thanks to this, arbi-
trary summations of continuous u; elements can be obtained
in O(1) by subtracting two elements from a pre-calculated
cumulative sum of the elements in u.

The resulting method to obtain stationary state probabilities for
tANS automatons is presented in Algorithm 6. As previously

discussed, Algorithm 6 converges in O %W\) iterations,
with a O(m) cost per iteration. Thus the complexity of Algo-
rithm 6 s O (m — 2
from the previous steps and results in the total complexity for
the tANS redundancy calculation.

. This complexity dominates those

Algorithm 6 Compact power method.

Input: m, M
Output: v
ML
repeat
vi+—v
uy <0
for i < 1 to 2m — 1 do
U; «— u;‘,_l + V(i—1 mod m)+1
end for
for i < 0 to m —1 do
(O‘7ﬂ7p) — Mi+m
v = p - (uf —ug);
end for
Ve VvV
[Ivll2
until ||[v — V|| <278

At this point we have presented a method to obtain the average
codeword length of a tANS automaton and thus its redundancy
in a very efficient manner, which allows us to explore the
optimization of automatons.

III. REDUNDANCY REDUCTION

The basic principle behind ANS dictates that, when encoding
a symbol, an encoder should transition to a next state that is
approximately 1/ps times larger than the current state (i.e.,
y = x/ps), in order to accommodate the extra 1g(1/p;) bits
of information [2]. When this is translated to tANS, it suggests
that the number of occurrences of each symbol in tANS
keys should be ms; ~ m ps. However, in addition to symbol
frequencies, the order of these symbols in the key also plays
an important role in tANS performance, as larger states emit
more symbols to reach the same I, during re-normalization,
and not all automaton states are equally probable [2].

For example, Fig. 4 shows the redundancy of all two-symbol
automatons that have keys sorted in ascending order, which we

This figure required more than 50 million redundancy evaluations for
automatons of 10° states. Calculation was possible thanks to the redundancy
calculation method presented in the previous section.

3.0 :
m=25 ——
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2.5 m=1000 ——
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=
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Cm=100000 ——

)
)

Relative redundancy (%)
&

=]
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0.0

0.0 0.2 0.4 0.6 0.8 1.0
po

Figure 4: Redundancy achieved with automatons of a given
size where keys are restricted to be in order.'

call ordered automatons. There are m+1 such automatons. The
26 dotted black curves in the figure correspond to all ordered
automatons with m = 25. The blue curve is the minimum of
these. The other colored curves show the minimum curve for
other values of m. For comparison, the black curve represents
the redundancy obtained by non-ordered automatons produced
by Algorithm 3 for m = 100. It can be seen that, as m in-
creases, the redundancies obtained by even very large ordered
automatons seem to stagnate, still having relative redundancies
significantly larger than the automatons with non-ordered
symbols. Note how the curves for m = 1000, m = 10000, and
m = 100000 are nearly identical. This might have interesting
implications for the redundancies achievable by the rANS
variant of ANS, which for redundancy purposes are equivalent
to ordered tANS automatons, as it seems to suggest that rANS
encoders may not converge to zero redundancy as automatons
grow, or that they do so at a much slower rate than non-ordered
tANS automatons.

In the remainder of this section we describe how to obtain
well-performing orders for the elements of tANS automaton
keys. The approach, which is based on hill climbing, is as fol-
lows: given an initial automaton key, a succession of pseudo-
random pairwise permutations of key elements are considered.
Whenever an element permutation reduces the automaton
redundancy, the permutation is applied to the key, otherwise
the permutation is discarded. Algorithm 3 can be employed
to create initial automaton keys that have appropriate symbol
frequencies.

Traditionally, measuring the effects of any replacement or
permutation of the key elements has been computationally
challenging. In particular, obtaining the dominant eigenvector
after a change in a state transition matrix is a difficult and well-
studied problem [37], [39]. Existing solutions are significantly
more computationally expensive than the straightforward ap-
plication of our redundancy calculation method, or are just
not very effective. For example, employing an approximate
eigenvector as the starting point for the power method may
seem promising, but is not as effective as intuition would



suggest [37]. Hence, in what follows, we directly employ the
proposed redundancy calculation method to evaluate the effect
of a key change.

Informed decisions could also be employed to explore the
space of automaton keys. For example, the estimator

E = —P(a)ly = P(y)ty + P(x)ly + P(y)le
= (P(z) =P(y)(ty — tz)

could be employed to guide the selection of keys to be
evaluated. This estimator is the redundancy variation after
the elements of a key associated with states x and y are
swapped, under the assumption that state probabilities will
remain unaltered. Recently, Dubé and Yokoo proposed a
similar approach in [35], where key elements are rearranged
as per the probability of their associated automaton state
in descending order. In their state-of-the-art proposal this
approach is repeated multiple times, and the key producing
the least redundancy is finally selected.

(1)

The motivation of such approach is to reduce complexity
by reducing the number of keys to be evaluated. Given the
low cost of evaluating keys via the proposed method, such
approaches may not be necessary. Indeed, directly exploring
pseudo-random permutations reaches more key variations than
those suggested by heuristics and approximations, and ulti-
mately achieve lower redundancies.

Fig. 5 shows redundancy reductions versus iterations for
three different frequency tables for our proposed method as
compared to the informed approach proposed by Dubé and
Yokoo. It is worth emphasizing that for both approaches
the plots indicate actual redundancy reduction calculated via
algorithms proposed earlier in this paper, without employing
any approximations or heuristics. In each case, the key size
m is set to approximately 5n. It can be observed that the
informed approach yields significant redundancy reductions
with very few iterations, with little or no further improvement
provided by subsequent iterations. In contrast, for pseudo-
random permutations, significant redundancy reductions are
only obtained after a moderate number of iterations, but a
larger redundancy reduction is eventually obtained.

IV. EXPERIMENTAL RESULTS

In this section we first present the corpus employed to test the
described methods, followed by experimental results regard-
ing the performance of the method proposed in Section II,
and results regarding the optimization method described in
Section III.

In order for the experimental results to be applicable in
practical scenarios, a data corpus has been carefully curated.
The corpus, detailed in Table II, consists of multiple frequency
tables obtained in various real data compression experiments.’
Two of the corpus datasets (aviris_123 and deer_iwt) represent
what an entropy encoder may expect during image compres-
sion, whereas another two (bookl_bzip2, enwik8_gzip) are

2The corpus is available online as supplementary material through IEEE
Xplore.
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Figure 5: Redundancy reduction versus number of itera-
tions for the proposed method (solid curves) and for the
method by Dubé and Yokoo (dashed curves). Results are

for the first frequency table of each dataset.

representative of the expected input to the entropy encoder
of a general-purpose compression method. Three additional
synthetic distributions are included in the corpus.

Regarding the performance of the method presented in Sec-
tion II, in addition to the previous theoretical time complexity
discussion, several wall-clock measurements are reported here.
Table III reports on performance of the proposed redundancy
calculation method. Results are produced on an AMD Thread-
ripper 1950X with 3200 Mhz DDR4 RAM, by employing
a hybrid implementation of higher level Python 3 code and
lower-level elements either in NumPy or custom C code.
All results are for single-thread execution (including BLAS
routines). We have also developed a ‘reference’ implemen-
tation for comparison purposes where the power method
is employed, but none of the other complexity reduction
strategies described in Section II are used. As compared with
this reference implementation, the proposed method yields
substantial execution time improvements. Albeit the reference
implementation is not as optimized as the proposed one, the
difference in wall-clock performance is of around three or four
orders of magnitude. For m > 105, results for the reference
method have not been produced due to its quadratic memory
requirements. In addition, the proposed technique has been
checked against this reference implementation for correctness,
with additional checks against LAPACK routines for the power
method.

Regarding the performance of the optimization method pre-
sented in Section III, results are presented in Fig. 6 and Ta-
ble IV. Results in Fig. 6 show the relation between automaton
size and its redundancy for two different frequency tables.
Results for a ‘default” automaton (Algorithm 3) are compared
with the proposed ‘optimized’ method, and with three random
permutations of the ‘default’ automaton. It can be observed
that random permutations tend to yield poor results, whereas
the optimized method provides improvements over the default



Table II: Details of the corpus of frequency tables employed in the experimental results. The minimum, average, and
maximum number of symbols is reported for each set of frequency tables.

’ Name \ Tables \ Min. n \ Avg. n \ Max. n \ Source ‘

aviris_123 11 355 | 1,272.1 4,891 | CCSDS 123.0-B-2 applied to the AVIRIS Yel-
lowstone hyperspectral image (scene 00).

book1_bzip2 24 92 92.0 92 | Bzip2 (-9) on the ‘BOOKI" file from the Calgary
corpus.

deer_iwt 16 3,412 | 9,395.2 14,447 | Subbands of a 5-level 5/3 LeGall IWT transform
applied to the ‘deer’ image from the 16-bit (log)
Rawzor corpus.

enwik8 gzip | 1,985 13 82.1 219 | Gzip (-9) on M. Mahoney’s 100 MB English
Wikipedia test file.

proba02 1 256 256.0 256 | Synthetic distribution (02) from Y. Collet’s
‘probaGenerator’.

probal4 1 53 53.0 53 | Synthetic distribution (14) from Y. Collet’s
‘probaGenerator’.

proba80 1 7 7.0 7 | Synthetic distribution (80) from Y. Collet’s
‘probaGenerator’.

Table III: Wall-clock measurements of the proposed method (measured in seconds). The first table of each dataset is
employed for the measurements. Invalid automaton sizes (m < n) are denoted by ¢-’.

Reference Proposal Speedup

m bookl1_bzip2 | deer_iwt | proba02 | bookl_bzip2 \ deer_iwt \ proba02 | bookl_bzip2 | deer_iwt | proba02
102 0.152 - - 0.001 - - 152.0 - -
103 1.723 - 0.496 0.002 - 0.002 861.5 - 248.0
10* 32.940 | 116.316 5479 0.011 0.014 0.010 2994.5 8308.3 547.9
10° 0.130 0.155 0.099

108 Insufficient memory 3.614 9.409 1.891 Insufficient memory

107 39.588 | 191.075 23.173

automaton. V. CONCLUSIONS

For some frequency tables, such as that in Fig. 6(a), larger
automatons consistently yield smaller redundancies. However,
for the frequency table presented in Fig. 6(b) and others, the
redundancy obtained by default automatons may significantly
increase as their size is increased. Thus, even for cases
where automaton optimization may not be worth the extra
computational effort, carefully evaluating automaton size can
yields important benefits.

In Table IV, comprehensive results are presented for all
frequency tables of all data sets. It is worth mentioning
that automaton keys that are close in size to the num-
ber of alphabet symbols may present less opportunities to
improve performance by permuting key elements (e.g., the
improvement obtained for the proba02 table is negligible for
m =~ 1.1n). However, these keys may also fail to mimic the
frequency table. This is particularly relevant for the highly-
biased table in the proba80 data set, where an automaton with
m ~ 1.1n = 7.7 cannot effectively represent the required
occurrence probabilities. However, as automaton sizes are
increased, redundancy reductions become substantial, and even
more so as compared to randomly selected permutations of an
automaton key.

This paper addresses the problem of efficiently obtaining tANS
automaton redundancies and the optimization of said automa-
tons. We describe a method to efficiently obtain automaton
redundancies, and we do so by efficiently obtaining per-
state average codeword lengths through a forward difference
operator, and by exploiting the structure of the state transition
matrix to obtain the stationary probabilities of the automa-
ton states. Our proposed method operates in almost-linear
time complexity O Em — gﬁ )\QQ, and three to four orders of
magnitude faster in practice. In addition, we show that we
can employ the proposed redundancy calculation method in
a stochastic hill climbing optimization process to improve
tANS encoder designs. Experimental results with novel corpus
of frequency tables obtained from realistic data compression
processes indicate that automatons are consistently improved
over other informed strategies of automaton optimization. In
particular, results show that improvements increase as automa-
tons grow larger.
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Table IV: Redundancy reductions, in percentage, over default and random key construction methods. Automaton sizes
are set as a multiple of the alphabet size. Results are averaged over all frequency tables in each data set. For each
result 50 thousand iterations are used.

m >~ 1.1n m >~ 2n m >~ bn
Corpus | Default | Random | Default | Random | Default | Random

aviris_123 0.35 17.05 5.08 29.43 7.63 31.87
book1_bzip2 0.52 23.70 10.11 35.17 11.60 39.12
deer_iwt 2.17 41.33 17.40 72.66 17.04 90.83
enwik8_gzip 542 49.32 28.96 76.26 37.04 89.59
proba02 0.00 22.59 10.96 38.88 21.80 66.41
probal4 2.79 26.56 9.19 40.12 11.45 51.11
proba80 0.00 0.00 0.00 45.17 5.36 28.01

Table V: Symbol list.

14 Random order -+
' Ednjoz Orief ol ’ Symbol ‘ Description
z Default —— A An alphabet
E Optimized _
g o1 S o, B Beginning and end of a run in M,
g ;f C, Coding function for symbol s
%f e C Bits pushed into the stack (function)
E» 001 4 D Decoding function
A, Forward difference operator
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ f Automaton key
200 300 400 500 600 700 800 900 f Z,th element in f
m K3
(a) First table in ‘enwik8_gzip’. g A set
b A heap
031 Random order , 1 Interval {m,...,2m — 1}
0.2 \ Random order
\\ Random order -+ | 1 Ié Interval {m‘sv R} 27/7}8 - 1}
z 019 Default ks Threshold value in C' for symbol s
g Optimized —— _
g g L Automaton average codeword length
) \\/./-\/ § Ly Average codeword length for state x
E Loy 2 Ay Second largest eigenvalue
£ 0.01
3 M Compact transition matrix
M, Run of origin states that lead to state y in
a compact transition matrix
10600 ]5600 20(300 25600 30(‘)00 m Automaton size
Mg Number of occurrences of s in f
b) First table in ‘deer_iwt’. -
®) - n Alphabet size
Figure 6: Redundancy as a function of automaton size. P Probability transition matrix
P(x) Probability of automaton being in state x
APPENDIX Ps Occurrence probability of symbol s
] R Precision value
A. Notation -
s A symbol in A
A summary of the symbols employed through this manuscript
.. . 5 A stack
is included in Table V. -
u, v, w Vectors employed in power method
u;, Vi, w; | ¢’th elements in u, v, w, respectively
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