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Abstract—In recent years, attention mechanisms have been
widely studied in Discriminative Correlation Filter (DCF) based
visual object tracking. To realise spatial attention and dis-
criminative feature mining, existing approaches usually apply
regularisation terms to the spatial dimension of multi-channel
features. However, these spatial regularisation approaches con-
struct a shared spatial attention pattern for all multi-channel
features, without considering the diversity across channels. As
each feature map (channel) focuses on a specific visual attribute,
a shared spatial attention pattern limits the capability for mining
important information from different channels. To address this
issue, we advocate channel-specific spatial attention for DCF-
based trackers. The key ingredient of the proposed method is
an Adaptive Attribute-Aware spatial attention mechanism for
constructing a novel DCF-based tracker (A3DCF). To highlight
the discriminative elements in each feature map, spatial sparsity
is imposed in the filter learning stage, moderated by the prior
knowledge regarding the expected concentration of signal energy.
In addition, we perform a post processing of the identified
spatial patterns to alleviate the impact of less significant channels.
The net effect is that the irrelevant and inconsistent channels
are removed by the proposed method. The results obtained
on a number of well-known benchmarking datasets, including
OTB2015, DTB70, UAV123, VOT2018, LaSOT, GOT-10K and
TrackingNet, demonstrate the merits of the proposed A3DCF
tracker, with improved performance compared to the state-of-
the-art methods.

Index Terms—Visual object tracking, discriminative correla-
tion filter, visual attribute, spatial attention

I. INTRODUCTION

Visual object tracking is a fundamental research topic in
computer vision, with the aim to precisely and continuously
estimate the state of a target of interest in a video. It is a
very challenging task to achieve robust and efficient tracking
under unconstrained scenarios, due to a wide spectrum of
appearance variations of the target in a video. To improve the
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performance of a visual object tracker, various innovative ideas
have been explored and a significant progress has been made
in recent years. Among existing visual tracking algorithms,
the Discriminative Correlation Filter (DCF) based tracking
algorithms have exhibited encouraging performance and drawn
widespread attention.

A DCF-based tracker formulates the learning objective as
a ridge regression problem with a circulant matrix structure,
which simplifies the filter optimisation [1], [2] and thus
results in the use of more sophisticated features [3], [4] and
regularised filter learning [5], [6], [7]. Most existing DCF
trackers use multiple types of features, such as Histogram
of Oriented Gradient (HOG) [8], Colour Names (CN) [9]
and Convolutional Neural Network (CNN) features [10], [11],
[12]. For each feature type, multiple channel features capturing
different properties of the visual content are extracted for filter
learning. Besides the exploitation of powerful features, the
regularisation of the estimated filters also plays an important
role in robust visual tracking by endowing tracking systems
with an attention mechanism, which helps to highlight the
most discriminative and important visual information of a
target. To this end, both fixed [5], [6] and adaptive spatial regu-
larisation [13], [14], [15], [16] have been explored in the DCF
paradigm to achieve attention-based discriminative spatial ap-
pearance modelling. With powerful feature representations and
spatial attention mechanisms, the DCF-based trackers have
witnessed a continuous performance enhancement.

In spite of the success of DCF, many aspects such as the
relevance of multi-channel feature maps, regularised learning
formulation, spatial attention mechanisms and discriminative
data fitting, have not been adequately explored [4], [13], [14],
[17], [18]. First, the extracted multi-channel features maps,
which may exceed thousands of channels, include irrelevant
and redundant information [14], [4]. The filters trained with
such feature maps often contain negligible energy and may
degrade the performance of a DCF tracker [4], [16]. So
far there are only a very few works focusing on reducing
the information redundancy of the feature maps in DCF-
based tracking [13], [14]. Besides, for spatial regularisation,
existing DCF trackers exploit a shared spatial attention pattern
across all the feature channels, which neglects the descriptive
diversity and discriminative competitiveness of the features in
different channels. To address the above issue, we propose to
adaptively optimise the spatial configuration pattern for each
feature map (channel), reflecting the intrinsic link between
visual attributes and attention. In essence, we propose to learn
Adaptive Attribute-Aware Discriminative Correlation Filters
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(A3DCF) for robust visual tracking.
We start by noting that each feature map in a tensor

representation potentially emphasises a unique visual attribute
(pattern), and different feature maps focus on different visual
attributes. For example, each channel of CN features reflects
one specific colour attribute [9] and each channel of HOG
features corresponds to different gradient orientations [8].
Similarly, the semantic information captured by different deep
CNN feature channels is typically distinct [19]. Based on the
above observation, we propose to perform adaptive channel-
wise spatial attention learning for correlation filters, based on
the discrimination relevance of each feature channel and its
corresponding filter. Specifically, we simultaneously optimise
the filter coefficients and channel-wise binary spatial attention
pattern in our paradigm. Through this attribute-aware scheme,
the discriminative elements in each feature map are highlighted
in support of enhanced parsimony and compactness. Moreover,
by virtue of the advocated attention mechanism, the proposed
A3DCF method accomplishes adaptive feature suppression by
enforcing a prior constraint on the filters so that the energy
is concentrated on the central region of a search window.
In consequence, we eliminate irrelevant and interfering in-
formation in the learning stage, enhancing the discriminative
capability of the trained model and resulting in better tracking
performance.

We illustrate the learned attention patterns of our A3DCF
method in Fig. 1. In the figure, the first column is the search
window centred on the position of the target. The second
column contains the multi-channel CN feature maps of the
search window. The third column presents the initial spatial
patterns which are adaptively learned from the input features
according to the visual attribute of each channel. The fourth
column shows the final learned attribute-related spatial patterns
obtained by performing a post processing of the preliminary
spatial patterns. Specifically, the fourth column is generated by
imposing shared spatial patterns, that is a prior constraint, on
the third column. The final column displays the corresponding
correlation filters optimised with the attribute-related spatial
patterns. As some feature channels provide ambiguous appear-
ance information, they can be considered as less representative
or irrelevant channels. Through the spatial attention learned
by the proposed adaptive attribute-aware mechanism, these
irrelevant channels can be eliminated. Therefore, the adaptive
spatial regularisation and feature selection across channels are
realised simultaneously, resulting in enhanced discrimination
of the learned filters.

To summarise, the main innovations of the proposed A3DCF
method include:
• A new adaptive attribute-aware scheme is proposed to

emphasise channel-specific discriminative features, in-
variably related to the corresponding attribute it repre-
sents. With the learned adaptive spatial attention patterns,
irrelevant information of multi-channel features is signif-
icantly reduced and the boundary effect is alleviated.

• The proposed post processing of the initial attribute-
related spatial patterns preserves only the feature channels
representing discriminative attributes, while irrelevant and
inconsistent channels are suppressed.

adaptive spatial 
patterns

attribute-related
spatial patterns learned filtersmulti-channel 

features maps

base sample

relevant and consistent  discriminative feature maps 

irrelevant and inconsistent  feature maps

... ... ... ...

Fig. 1. Illustration of the adaptive attribute-related spatial patterns. Noting
that each feature map (channel) focuses on one exclusive attribute, the
proposed adaptive attribute-aware spatial configurations are optimised jointly
by discriminative data fitting.

• An extensive evaluation is performed on a number of
well-known benchmarks, i.e. OTB2015 [20], DTB70
[21], UAV123 [22], VOT2018 [23], LaSOT [24], GOT-
10K [25] and TrackingNet [26]. The experimental results
demonstrate the superior performance of the proposed
A3DCF method over the state-of-the-art algorithms, in
terms of both effectiveness and robustness.

II. RELATED WORK

There are numerous reputable studies in visual object
tracking. In this section, we briefly discuss the recent filter
based approaches, i.e., Siamese networks and Discriminative
Correlation Filters. The main objective of Siamese networks is
to learn an offline mapping function producing similar features
for naturally varying target appearance, while suppressing the
surroundings. The filters are generated by embedding a target
instance (template) into an appearance variation preserved
feature space, where the target’s centre corresponds to high
response [27]. In view of the diversity of target categories,
CFnet [28] was proposed to generate adaptive filters with
an additional structure to reflect the template appearance for
different sequences better. To further improve the precision of
the target centre location, other approaches were developed
to support more complicated network constructions [29], [30],
[31]. To accurately predict the bounding box, the SiameseRPN
framework [32], [33], [34], [35] was designed to simultane-
ously optimise the classification loss and a bounding box re-
gression loss. Though advanced efficiency can be achieved by
Siamese networks via offline learning the mapping function,
the relevance and causality between the embedding features
and the response generators are ambiguous and of limited
interpretability.

Regarding DCF approaches, thanks to the seminal work
of MOSSE [36], DCF has received much attention in vi-
sual object tracking, especially since the development of the
CSK tracker [1] that embeds kernel tricks in the circulant
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structure [37]. Considering the importance of robust fea-
ture representation [38] and the unexpected boundary effect
produced by the implicit assumption of periodicity of the
input signal induced by circulant samples [39], a variety of
advanced DCF-based trackers have been proposed [40], [41],
[42]. As robust feature extraction is crucial to advanced DCF
training, Henriques et al. adopted HOG features in KCF [2]
and Danelljan et al. proposed to employ CN features [43],
resulting in improved performance, as compared with the
trackers using greyscale representations. Recently, due to the
remarkable performance of Convolutional Neural Networks
(CNN), deep features have been widely used in DCF-based
trackers and shown to be instrumental in achieving advanced
tracking performance [44]. Modern DCF trackers usually use
multiple features, such as HOG, CN and CNN, collaboratively
for robust feature extraction [45], [4], [13], [14]. However,
these DCF-based trackers simply assemble all the features for
learning discriminative filters, without considering the effect
of the potentially inconsistent and redundant information they
may convey, which may degrade the performance of the
learned filters. These deficiencies motivate the development
of our A3DCF which is designed to reduce the redundancy
and interference of feature representations in the filter learning
stage, which leads to improved robustness and better discrim-
inative ability of the learned model.

To cope with the issue of spatial boundary effect, Danelljan
et al. proposed the spatially regularised DCF method that
introduced a fixed opposite Gaussian-shaped spatial weighting
mask for correlation filters learning [39], concentrating the
energy of the learned filters on the central target region.
Similarly, CSRDCF [6] proposed to generate a mask using
colour-histogram-based image segmentation to suppress the
background area. In the same spirit, BACF [5] employs a
predefined binary matrix to crop valid training samples. In
contrast to a fixed spatial mask, an adaptive spatial regularisa-
tion is proposed in LADCF [13] to learn an adaptive DCF
via spatial feature selection. The above trackers effectively
alleviate the problem of boundary effect and achieve con-
vincing results in recent benchmarks and competitions [20],
[46], [23], [47], [48]. Nevertheless, these methods enforce the
same attention mechanism on all filter channels and therefore
cannot adapt to the diversity of visual attributes linked to
different feature maps. We argue, therefore, that it is absolutely
essential to identify an attribute-related spatial pattern for each
filter channel separately, so as to enhance discrimination and
simultaneously alleviate the boundary effect.

III. ADAPTIVE ATTRIBUTE-AWARE DCF
A. Standard DCF Formulation

We first briefly revisit the standard DCF tracking approach
that follows a 2-stage tracking-learning framework for online
object tracking. Let us assume that the location of a target in
the t-th frame is known. Given this information, multi-channel
correlation filters H are trained by minimising the following
objective function in the learning stage:

E(H) =
1

2

∥∥∥∥∥
K∑

k=1

Xk ?Hk −Y

∥∥∥∥∥
2

F

+
λ

2

K∑
k=1

‖Hk‖2F , (1)

where Xk ∈ RN×N is the k-th channel feature representation
of an image patch (search window) centred on the position of
the predicted target, Hk ∈ RN×N denotes the corresponding
k-th channel filter. Y ∈ RN×N stands for the desired detector
response map [1] of Gaussian shape. K is the number of
feature channels and λ is a regularisation parameter. ‖ · ‖F
means Frobenius norm and ? is the circular convolution
operator [2]. With the circulant structure [37] and Fourier
transform [49], the optimisation of Eqn. (1) can efficiently
be solved in the frequency domain [2].

To prevent their temporal degradation, the final filters are
updated online after obtaining the trained discriminative cor-
relation filters H in the t-th frame:

Ht = (1− η)Ht−1 + ηH, (2)

where η ∈ (0, 1) is the online updating rate. Then the updated
filters Ht are used to localise the target in the (t+1)-th frame:

R = F−1

(
K∑

k=1

Ẑt+1
k � Ĥt

k

)
, (3)

where F−1 denotes the inverse Discrete Fourier Transform
(DFT), ·̂ denotes DFT and � denotes point-wise multipli-
cation. Zt+1

k ∈ RN×N is the k-th channel of multi-channel
features extracted from the search region in the (t+1)-th frame
and K is the number of feature channels. R ∈ RN×N is the
response map, in which the location of the maximal value is
considered as the predicted target location.

B. Adaptive Attribute-Aware DCF Formulation

In the classical DCF paradigm, the filters are learned
from multi-channel features extracted from a search window
enclosing the target. However, these multi-channel features are
often irrelevant and may contain inconsistent information that
degrades the discriminative capability of the learned model. To
address this issue, attention mechanisms realised by a spatial
regularisation have been widely studied in recent advanced
DCF-based trackers [39], [5], [6], [14]. In this work, noting
that each feature map (channel) reflects one specific visual
attribute, we propose an adaptive attribute-aware scheme in the
filter learning stage to highlight the discriminative part of each
channel. As illustrated in Fig. 2, the adaptive attribute-aware
correlation filters can be learned by optimising the objective:

E(H,P) =
1

2

∥∥∥∥∥
K∑

k=1

Xk ? (Hk �Pk)−Y

∥∥∥∥∥
2

F

+
λ1

2

K∑
k=1

‖Hk‖2F +
λ2

2

K∑
k=1

‖Pk −Pr
k‖2F ,

(4)

where Xk ∈ RN×N is the k-th channel feature map,
Hk ∈ RN×N is the corresponding k-th correlation filter and
Y ∈ RN×N is the desired Gaussian shaped response map.
Pk ∈ RN×N is the spatial attention pattern, denoted as a
binary matrix, corresponding to the k-th channel of filters.
Pr

k ∈ RN×N is a predefined binary matrix with the values
of one for the target and zero for others. λ1 and λ2 are
regularisation parameters. In Eqn. (4), the first term is the
data fitting term, where the adaptive spatial attention patterns
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Fig. 2. Illustration of the pipeline of the proposed A3DCF. The adaptive attribute-related spatial patterns and attribute-aware discriminative filters are
simultaneously optimised in our design. In the green box, the specific process of optimising the adaptive attribute-related spatial patterns and attribute-aware
filters is presented. The diversity across different feature maps is considered in our attention mechanisms to support enhanced discrimination and to alleviate
irrelevant appearance information.

P and filters H are optimised simultaneously. The second term
is a regularisation term to prevent over-fitting. The third term
incorporates the prior requirement for the filters to concentrate
their energy on the central region of the search window. This
is expressed in the form of a binary mask, Pr. It should be
noted that each channel of Pr shares the same binary values.

C. Optimisation

According to the existing DCF design methodology, the
optimisation step is usually performed in the Fourier domain
for efficient filter learning and target detection. To obtain an
efficient solution of Eqn. (4), the attention constraint can be
formalised as H ≡ P�H. Additionally, an auxiliary variable,
G, with the constraint G−H = 0, is introduced. We can now
employ the following Augmented Lagrange Method [50] in
the frequency domain:

L(Ĝ, Ĥ,P, Γ̂) =
1

2

∥∥∥∥∥
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2

K∑
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k‖

2
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+
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Γ̂T
k (Ĝk − Ĥk)

)
+
µ

2

K∑
k=1

∥∥∥Ĝk − Ĥk

∥∥∥2
F
,

(5)

where Γ, µ, and tr denote the Lagrangian multiplier, penalty
factor, and trace calculation, respectively. It can be reformu-

lated as follows by combining the last two terms:

L(Ĝ, Ĥ,P, Γ̂) =
1

2

∥∥∥∥∥
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2

F

,

(6)

where Γ is the Lagrange multiplier and µ is a penalty
factor. The Lagrangian in Eqn. (6) can be minimised by the
Alternating Direction Method of Multipliers (ADMM) by
solving the following sub-problems:

Sub-problem G: Given Ĥ, P and Γ̂, Ĝ can be updated by
solving:

Ĝ = argmin
Ĝ

1

2

∥∥∥∥∥
K∑

k=1

X̂k � Ĝk − Ŷ

∥∥∥∥∥
2

F

+
µ

2

K∑
k=1

∥∥∥∥∥Ĝk − Ĥk +
Γ̂k

µ

∥∥∥∥∥
2

F

.

(7)

To solve this problem efficiently, we decompose it to process
simultaneously all channels of each spatial unit. Decomposing
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Eqn. (7) into NN sub-problems as :

Vj(Ĝ) = arg min
Vj(Ĝ)

1

2

∥∥∥Vj(X̂)TVj(Ĝ)− Ŷj

∥∥∥2
2

+
µ

2

∥∥∥∥Vj(Ĝ)− Vj(Ĥ) +
1

µ
Vj(Γ̂)

∥∥∥∥2
2

,

(8)

where Vj(Ĝ) ∈ RK×1 denotes the vector containing the j-th
spatial unit of Ĝ with elements across all the channels, we can
apply the Sherman-Morrison formula to obtain the closed-form
solution to Eqn. (8) as:

Vj(Ĝ) =
1

µ
(I− Vj(X̂)Vj(X̂)T

µ+ Vj(X̂)TVj(X̂)
)q, (9)

where q = Vj(X̂)Ŷj + µVj(Ĥ)− Vj(Γ̂).

Sub-problem H: Given Ĝ and Γ̂, each channel of Ĥ can be
updated by solving the following sub-problem:

Ĥk = argmin
Ĥk

λ1
2

∥∥∥Ĥk

∥∥∥2
F
+
µ

2

∥∥∥∥∥Ĝk − Ĥk +
Γ̂k

µ

∥∥∥∥∥
2

F

. (10)

This sub-problem can be easily solved by setting the derivative
to zero, and the closed-form solution is given by:

Ĥk =
µĜk + Γ̂k

λ1 + µ
. (11)

Sub-problem P: Since solving P is a binary optimisation
problem, we relax and embed it into filters H. First, we
introduce a variable J as Jk = Hk �Pk and a variable Jr as
Jr
k = Hk �Pr

k. Then given Ĝ, H and Γ̂, Ĵ can be solved by
optimising:

Ĵ = argmin
Ĵ

1

2

∥∥∥∥∥
K∑

k=1

X̂k � Ĵk − Ŷ

∥∥∥∥∥
2

F

+
λ2
2

K∑
k=1

∥∥∥Ĵk − Ĵr
k

∥∥∥2
F
.

(12)
Note that Eqn. (12) can be solved in the same way as Eqn. (7).
Hence we get the analytical solution as :

Vj(Ĵ) =
1

λ2
(I− Vj(X̂)Vj(X̂)T

λ2 + Vj(X̂)TVj(X̂)
)(Vj(X̂)Ŷj+λ2Vj(Ĵr)).

(13)
In Eqn. (13), Jr can be computed directly with predefined Pr.
Once J is found in the spatial domain by the inverse DFT of
Ĵ, we subject it to a binarisation process to produce the binary
matrix P. To apply binarisation, we set the first r% values in
each channel to one and all the others to zero, according to
the absolute value of J. In fact, in the t-th frame (except the
first frame), for temporal consistency, we apply binarisation
to Jt to obtain P and Jt = (1 − γ)Jt−1 + γJ, where γ is
a predefined constant. The P is the initial attribute-related
spatial patterns, as exhibited in the third column of Fig. 1.
To obtain the final attribute-related spatial patterns, a post
processing operation using the identified spatial patterns,
namely the prior constraint Pr, is performed to update P.
The specific steps are summarised as follows.

Post Processing: After obtaining the initial attribute-related
spatial attention patterns, P, as illustrated in the third column

of Fig. 1, a post processing operation is applied to P. Specif-
ically, we update P by enforcing a prior constraint as:

Pk = Pk �Pr
k. (14)

The updated P are the final attribute-related spatial attention
patterns as shown in the fourth column of Fig. 1. By doing
this, the spatial attention patterns focus more on the central
region and alleviate the impact of less representative channels.

Update H: After updating channel-specific spatial patterns P,
we update the filters H by enforcing the attention patterns on
filters H as:

Hk = Hk �Pk. (15)

It should be noted that the filters H are updated in the spatial
domain and should be transformed into the frequency domain
to update the Lagrangian multipliers.

Update Lagrangian Multiplier: Given Ĝ, Ĥ and µ, the
Lagrangian multipliers Γ̂ can be updated as :

Γ̂ = Γ̂ + µ(Ĝ− Ĥ). (16)

After each iteration, the step size parameter µ is updated as:

µ = min(µmax, ρµ), (17)

where µmax denotes the predefined maximum value of µ, and
ρ > 1 is a factor that controls the convergence speed.

Therefore, the optimisation of our proposed A3DCF can
be processed by iteratively employing the above steps.
The total complexity of our optimisation framework is
O(LKN2log(N)), where L is the number of iterations. After
optimisation, the filters H are used to update the filter model
and localise the target in the next frame.

D. Online Update and Object Detection

For adaptation to appearance variations, the model is online
updated by utilising the same updating strategy as other
DCF-based trackers, as presented in Eqn. (2). Additionally,
similar to many other DCF-based trackers, we follow the fast
Discriminative Scale Space Tracking (fDSST) method [51] to
achieve position localisation and scale estimation simultane-
ously. When a new frame becomes available, multiple scales
as of the search region {Xs}s∈{b 1−S

2 c,...,b
S−1
2 c}

are analysed
to extract features, where S is the number of scales. Then a
filter, Hs, is designed for each Xs in the Fourier domain to
obtain multi-channel response maps by using Eqn. (3). The
position and scale of target pt and st are predicted according
to the maximum of these response maps.

IV. EXPERIMENTS

A. Implementation Details

The proposed A3DCF method is implemented in MAT-
LAB2019a on a platform with one Intel i7-9700 3.00GHZ
CPU and a single NVIDIA GeForce GTX 1660Ti GPU. For
feature extraction, we use three hand-crafted features including
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TABLE I
TRACKING RESULTS WITH DIFFERENT FEATURES ON OTB2015 IN TERMS OF OP SCORES AND FPS.

Feature HOG HOG+CN HOG+CN+ResNet-50

Method SRDCF CSRDCF BACF A3DCF C-COT ECO A3DCF UPDT GFSDCF A3DCF
OP 71.1% 70.5% 77.6% 78.1% 75.7% 78.0% 80.2% 88.7% 89.0% 89.4%
FPS 5.2 7.4 38.3 42.6 1.5 26.1 26.9 5.4 4.8 4.2

Fig. 3. The AUC score of A3DCF on OTB2015 dataset with different
regularisation parameters λ1 and λ2, ranging from 0.01 to 100.

TABLE II
A COMPARISON OF THE BASELINE, BASELINE AAA, BASELINE PP,

BASELINE GAM, BASELINE ALL ON THE OTB2015 DATASET.

Method AUC DP
BaseLine 63.9% 84.8%
BaseLine AAA 67.5% 89.9%
BaseLine PP 67.9% 91.9%
BaseLine GAM 68.2% 91.7%
BaseLine ALL 69.6% 92.5%

image patch feature maps

attention maps filters

GFSDCF

A3DCF

SRDCF

Fig. 4. Visualisation of attention maps and filters using the frame #28 of
Jogging-2 in OTB2015. We visualise 4 channels of the CN feature maps,
attention maps and corresponding learned filters.

HOG, CN and Intensity Channels, and the Res4e layer of the
pre-trained ResNet-50 model as deep CNN features. We set
λ1, λ2 in Eqn. (4) and γ as λ1 = 100, λ2 = 1 and γ = 0.05.
The number of iterations L is set to L = 2. For hand-crafted
features, we set the corresponding parameters as η = 0.01,
r = 5. For deep features, we set the corresponding parameters

as η = 0.003, r = 20. The source code will be made publicly
available.

B. Evaluation Settings

We extensively evaluate our A3DCF tracker on four bench-
marks including OTB2015 [20], DTB70 [21], UAV123 [22],
VOT2018 [23], LaSOT [24], GOT-10K [25] and Track-
ingNet [26], compared with numerous state-of-the-art vi-
sual object tracking approaches, such as ASRCF [16], GFS-
DCF [14], BACF [5], SRDCF [39], Staple [52], STA-
PLE CA [7], MDNet [53], GOTURN [54], CF2 [55]
CSRDCF [6], C-COT [3], ECO [4], CREST [56], MCPF [57],
STRCF [18], LADCF [13], SiamFC [27], DSiam [30],
CFNet [28], StructSiam [58], LSART [59], DRT [60],
MFT [23], SiamRPN [32], GCT [61], GradNet [62],
UPDT [17], TADT [63] and fdKCF [64] respectively.

For OTB2015, DTB70, UAV123 and LaSOT, we use the
precision plot (measure centre location error) and success plot
(measure bounding box overlap ratio) as metrics. Besides,
four numerical criteria, i.e., Distance Precision (DP), Overlap
Precision (OP), Area Under Curve (AUC) and Frames Per
Second (FPS) are used in the evaluation. For VOT2018, Ex-
pected Average Overlap (EAO), Accuracy (A) and Robustness
(R) are used as criteria for performance evaluation. For GOT-
10K, Average Overlap (AO) and Success Rate (SR) are used
to evaluate the performance of a tracker. For TrackingNet,
Precision, Normalized Precision and Success are employed
to quantitatively compare the performance of the algorithms.
Specifically, DP is the percentage of location errors within a
threshold of 20 pixels. OP is the percentage of overlap ratios
surpassing a threshold of 0.5. AUC is the value of area under
the curve of success plot. FPS measures the speed of a tracker.
EAO is the main evaluation metric in VOT challenges which
considers both bounding box overlap and failures (robustness).
The A measure denotes the accuracy value of a tracker. The R
measure quantifies the robustness of a tracker (the lower the
better). The AO metric is the average of overlap rates between
the tracking results and groundtruth over all the video frames.
SR is the percentage of successfully tracked frames where
the overlap rates are above a threshold. Precision is the same
as Distance Precision (DP) and Success is the same as Area
Under Curve (AUC). Normalized Precision is measured by
normalizing the Precision over the size of the ground truth
bounding box.

C. Self Analysis

Parameters Analysis: In this section, we first analyse the
sensitivity of our A3DCF tracker to parameters λ1, λ2 in
Eqn. (4). In Fig. 3, we report the variation of the AUC scores
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A3DCF ASRCF STRCF ECO MCPF TRACA CREST BACF SRDCFGFSDCF

Fig. 5. Showing some failed cases on challenging video sequences including Bird1, Soccer, Jump, Coupon.The colour bounding boxes are the corresponding
results of A3DCF, GFSDCF, ASRCF, STRCF, ECO, MCPF, TRACA, CREST, BACF and SRDCF respectively.

TABLE III
EVALUATION OF 11 ADVANCED TRACKERS ON THE VOT2018 DATASET IN TERMS OF EAO, A, AND R. THE TOP THREE RESULTS ARE SHOWN IN RED,

BLUE AND GREEN COLOURS RESPECTIVELY.

ECO LSART LADCF MFT SiamRPN DRT STRCF UPDT ASRCF GFSDCF A3DCF
EAO 0.280 0.323 0.389 0.385 0.383 0.356 0.345 0.378 0.328 0.397 0.406

A 0.484 0.495 0.503 0.505 0.586 0.519 0.523 0.536 0.494 0.511 0.548
R 0.276 0.218 0.159 0.140 0.276 0.201 0.215 0.184 0.234 0.143 0.162

TABLE IV
EVALUATION OF 8 ADVANCED TRACKERS ON THE GOT-10K DATASET IN TERMS OF AO, SR0.5 , AND SR0.75 . THE TOP THREE RESULTS ARE SHOWN IN

RED, BLUE AND GREEN COLOURS RESPECTIVELY.

MDNet CF2 ECO CCOT GOTURN SiamFC CFNet A3DCF
AO 0.299 0.315 0.316 0.325 0.342 0.348 0.374 0.427

SR0.5 0.303 0.297 0.309 0.328 0.372 0.353 0.404 0.467
SR0.75 0.099 0.088 0.111 0.107 0.107 0.098 0.144 0.138

TABLE V
EVALUATION OF 7 ADVANCED TRACKERS ON THE TRACKINGNET DATASET IN TERMS OF SUCCESS, PRECISION, AND NORMALIZED PRECISION. THE

TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN COLOURS RESPECTIVELY.

STAPLE CA ECO SiamFC CFNet MDNet GFSDCF A3DCF
Success (%) 53.6 56.1 57.1 57.8 61.4 60.9 62.5

Precision (%) 46.7 48.9 53.3 53.3 55.5 56.6 58.0
Norm.Prec. (%) 60.8 62.1 66.3 65.4 71.0 71.8 72.8

TABLE VI
THE OP SCORES OF TRACKERS ON THE OTB2013, UAV123 AND LASOT DATASETS. THE TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN

COLOURS RESPECTIVELY.

Staple CSRDCF BACF SRDCF ECO STRCF ASRCF GFSDCF A3DCF

Avg. OP(%)
OTB2015 70.2 70.5 77.6 71.1 84.9 84.6 87.6 89.0 89.4
UAV123 53.7 49.9 53.7 54.9 63.7 60.9 61.7 67.8 67.6
LaSOT 24.0 22.4 26.3 24.5 32.9 32.5 36.6 41.4 42.3
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OTB100 - Success plots

Fig. 6. The experimental results on OTB2015. This figure shows the precision
and success plots in terms of the OPE protocol. The DP and AUC score of
each tracker is shown in the legend.
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Success plots of OPE

Fig. 7. The experimental results on DTB70. This figure shows the precision
and success plots in terms of the OPE protocol. The DP and AUC score of
each tracker is shown in the legend.
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UAV123 - Success plots

Fig. 8. The experimental results on UAV123. This figure shows the precision
and success plots in terms of the OPE protocol. The DP and AUC score of
each tracker is shown in the legend.
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Fig. 9. The experimental results on LaSOT. This figure shows the precision
and success plots in terms of the OPE protocol. The DP and AUC score of
each tracker is shown in the legend.

obtained by A3DCF on OTB2015 as a function of different
values of λ1 and λ2. Our A3DCF achieves stable performance
(within 2% in terms of AUC) with λ1, λ2 ∈ [0.01, 100].
Feature Configurations Analysis: Additionally, we employ
different feature configurations to test our method and compare
the results obtained by the state-of-the-art trackers using the
same features. In Table I, the OP scores and tracking speed
on OTB2015 of different trackers are provided. Our A3DCF
performs better than the other trackers regardless of the
features adopted, demonstrating the merits of the proposed

formulation.
Ablation Experiments and Analysis: We further perform
ablation studies to demonstrate the effectiveness of the key
components of the proposed A3DCF tracker, including the
attribute-aware attention (AAA) and post processing (PP)
modules. Besides, we conduct an experiment to demonstrate
the benefits of learning the attention maps for feature channels
separately over the learning of a general attention map (GAM)
for all the channels jointly. The baseline tracker is the original
DCF equipped with the same hand-crafted and deep features,
and the same updating rate as our A3DCF. We construct 5
trackers, including BaseLine, BaseLine AAA, BaseLine PP,
BaseLine GAM, BaseLine ALL (A3DCF).

According to the results reported in Table. II, in general,
the proposed attribute-aware attention and post processing
modules improve the performance of the original DCF (Base-
Line). In comparison with the BaseLine tracker, the attribute-
aware attention and post processing modules improve the
performance by 5.6%/ 6.3% and 6.0%/ 7.2% in terms of
AUC and DP respectively. Note that the contributions of
the proposed attribute-aware attention and post processing
mechanisms to our A3DCF are not linearly additive. The
proposed post processing stage enables the learned channel-
wise attribute-aware attention maps to be more discrimina-
tive by concentrating the energy around the target centre.
Besides, thanks to post processing, some irrelevant channels
in the filters are removed. In this way, implicit feature se-
lection across the channels is realised and the performance
of BaseLine ALL is significantly improved. Moreover, all the
configurations of the BaseLine GAM tracker are the same as
the BaseLine ALL tracker, except that BaseLine GAM learns
a general attention map for all the channels. As shown in
the table, the performance of BaseLine ALL is better than
the performance of BaseLine GAM. This demonstrates that
learning attention for each channel separately is better than
learning a global attention map for all the channels jointly.
These results verify the effectiveness of the proposed spatial
attention mechanism implemented via our adaptive attribute-
aware strategy.
Merit Analysis: To intuitively demonstrate the superiority of
the proposed attention mechanism, we visualize the attention
maps and the corresponding filters of our A3DCF and the other
two trackers in Fig. 4. The existing DCF-based algorithms
usually adopt a general spatial regularisation pattern for all the
feature channels, which is not optimal for individual feature
channels. In the figure, SRDCF and GFSDCF employ a fixed
attention map for all the feature maps, while our A3DCF learns
attention maps for each channel adaptively. It is apparent
that the filters trained by our algorithm concentrate more on
the target area, thus enhancing the prominence of the most
discriminative part of each input feature channel. As a result,
the proposed attention mechanism is able to increase the
discriminative capability and robustness of the learned model.

Tracking Failures and Demerit Analysis: We present several
failed tracking cases in Fig. 5, and analyse the demerits of our
A3DCF. From the figure, our method is incapable of dealing
with the situations when the target is absent for many frames,
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Fig. 10. Success plots of 14 trackers on the OTB2015 dataset in terms of 11 challenging attributes. The AUC scores are shown in the legend.

which causes the tracking failures in the videos such as Bird1
and Soccer of dataset OTB2015. Additionally, DCF-based
trackers are unable to estimate the size of the object precisely,
when the scale of the target changes rapidly, especially when
the aspect ratio of the target varies significantly over short
time. As can be seen in the video sequence Jump, the aspect
ratio of the target changes abruptly. Consequently, the bound-
ing boxes predicted by all the exhibited DCF-based trackers
are inaccurate. Besides, due to the strong semantics of the deep
CNN features and their dominating influence on target local-
isation, the interference of similar objects to the target may
cause tracking failures. As shown in video sequence Coupon,
almost all the trackers using deep CNN features misinterpret

the distractor as the target, while the trackers that use only
shallow hand-crafted features such as BACF and SRDCF are
able to track successfully. In summary, although our A3DCF
has achieved the state-of-the-art performance, there is still a
scope for improvement to rectify the imperfections due to
the inherent limitations of the DCF framework, especially
compared with the recent trackers that are offline trained with
large amounts of video sequences.

D. Comparison with SOTA Methods

VOT2018 has 60 challenging videos. We report the results on
VOT2018 in Table III. Our A3DCF achieves the best EAO
score, 0.406, outperforming recent advanced DCF trackers.
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A3DCF ASRCF STRCF ECO MCPF TRACA CREST BACF SRDCFGFSDCF

Fig. 11. Illustration of qualitative experimental results on challenging sequences including Biker, Ironman, Matrix, Panda, MotorRolling, Rubik, Skating2-1
and ClifBar. The colour bounding boxes are the corresponding results of A3DCF, GFSDCF, ASRCF, STRCF, ECO, MCPF, TRACA, CREST, BACF and
SRDCF respectively.

Besides, A3DCF achieves advanced performance in terms
of Accuracy (0.548) and Robustness (0.162) respectively.
OTB2015 contains 100 video sequences with 11 challenging
attributes. We compare our method with other 10 trackers
with deep structures/features on OTB2015. The precision and
success plots with DP and AUC scores are presented in Fig. 6.
Our A3DCF achieves 92.5% in DP and 69.6% in AUC. Despite
the DP score of A3DCF falling 0.75% behind the best tracker
GFSDCF, our method achieves the top ranking AUC score,
which is the same as the tracker LADCF.
DTB70 is a benchmark dataset of high diversity consisting
of 70 videos captured by drone cameras. The precision and
success plots with DP and AUC scores are exhibited in Fig. 7.
Our A3DCF achieves the best DP and AUC scores, namely
78.4% and 51.8% respectively. Compared with the second best
tracker, our method achieves gains of 4.3% and 1.5% in terms
of DP and AUC respectively.
UAV123 is a dataset composed of 123 challenging video
sequences. We report the precision and success plot in Fig. 8.
The DP and AUC scores are shown in the figure legend. In
terms of DP and AUC scores, our A3DCF outperforms all
the other trackers, achieving 53.5% and 77.8% respectively.
Compared with the second best tracker GFSDCF, A3DCF
achieves gains of 1.4% in DP.
LaSOT is a dataset consisting of 1400 sequences in 70
categories with an average length of more than 2500 frames
in each sequence. In this paper, we use a simplified official
version of LaSOT that contains 280 video sequences, 4 videos
of each category. The precision and success plots are presented
in Fig. 9. From the plots, A3DCF performs the best, achieving
38.2% and 37.6% in terms of DP and AUC scores, respec-
tively.

GOT-10K is a large benchmarking dataset for visual object
tracking. It has 180 test video sequences in 84 categories. We
report the results obtained on GOT-10K in Table IV. SR0.5

and SR0.75 are the SR metric with a threshold of 0.5 and
0.75 respectively. According to the table, A3DCF achieves the
best AO and SR0.5 scores of 0.427 and 0.467 respectively,
outperforming the second best tracker CFNet by 14.2% and
16.0%.
TrackingNet is a large-scale tracking dataset that consists of
511 test videos. The evaluation of 7 advanced trackers on
TrackingNet is presented in Table V. Our A3DCF surpasses
other trackers on all three evaluation metrics. In detail, A3DCF
outperforms the second best tracker, GFSDCF, with an im-
provement of 2.6%, 2.5% and 1.4% on Success, Precision and
Normalized Precision respectively.

Furthermore, we present the evaluation results on OTB2015,
UAV123 and LaSOT in terms of the OP criterion in Table VI.
The proposed A3DCF achieves 89.4%, 67.6% and 42.3% on
OTB2015, UAV123 and LaSOT respectively. This top ranking
performance achieves gains of 0.4% and 0.9% over the second
best tracker GFSDCF on OTB2015 and LaSOT. On UAV123,
A3DCF achieves the second best OP score, falling behind the
best tracker GFSDCF by 0.2%. Compared with the state-of-
the-art DCF-based tracker GFSDCF, we have realised adaptive
feature selection across spatial and channel in another way.
Overall, as a DCF-based tracker, the performance of our
A3DCF is competitive.
Attribute-based Evaluation: We report an attribute-based
evaluation of 14 trackers on OTB2015. Fig. 10 shows the
success plots with AUC scores in terms of 11 video attributes
including in-plane rotation, low resolution, deformation, out-
of-plane rotation, scale variation, fast motion, background
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clutter, occlusion, out of view, illumination variation and
motion blur. From the AUC scores shown in the legend,
our A3DCF outperforms other trackers in 5 attributes. In
other challenging attributes, our method is among the top
four performers. The merits of our attribute-aware mechanism,
which adaptively selects the most discriminative and relevant
information from a search region and ignores irrelevant and
interfering information, is particularly evident when the target
encounters appearance variations in rotation, deformation, and
scale.
Qualitative Comparison: To intuitively demonstrate the ad-
vantages of our method, in Fig. 11, we provide a qualita-
tive comparison of 10 trackers including A3DCF, GFSDCF,
ASRCF, STRCF, ECO, MCPF, TRACA, CREST, BACF and
SRDCF respectively, on several video sequences. Although
these sequences are challenging with severe appearance varia-
tions, our A3DCF performs accurately and steadily. The model
trained with the attention mechanism accomplished by the
proposed adaptive attribute-aware strategy is able to focus on
the discriminative part of the feature input, while paying less
attention to irrelevant information. Evidently, our A3DCF can
successfully handle these complicated scenarios, delivering
desired performance.

V. CONCLUSION

In this work, to achieve robust visual object tracking,
we developed an adaptive attribute-aware scheme for dis-
criminative correlation filter learning. The major innovation
of the proposed adaptive attribute-aware tracking method is
to enable a channel specific regularisation, which has the
ability to identify the discriminative information present in
each feature channel. This information is typically linked to
different visual attributes of the tracked target. Combined with
an appropriate post processing in the filter learning stage,
irrelevant channels are suppressed and inconsistent channels
are removed by the proposed method. By alleviating the
impact of irrelevant information, our model becomes more
discriminative and robust in dealing with complex tracking
situations. The results of extensive experimental studies on
OTB2015, DTB70, UAV123, VOT2018, LaSOT, GOT-10K
and TrackingNet, demonstrate the superiority of our A3DCF
method over the state-of-the-art trackers.
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