
594 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

AVN: An Adversarial Variation Network Model for
Handwritten Signature Verification
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Abstract—Handwritten signature verification is a crucial yet
challenging problem. While previous studies have made great
progress in this problem, they learn signature features passively
from given existing data. In this paper, we propose a novel
adversarial variation network (AVN) model for handwritten
signature verification which mines effective features by actively
varying existing data and generating new data. Powered by a
proposed novel variation consistency mechanism, the AVN contains
three different types of modules unified under one end-to-end
framework: the extractor seeks to extract deep discriminative
features of handwritten signatures, the discriminator aims to make
verification decisions based on the extracted features, and the
variator is designed to actively generate signature variants for
constructing a more discriminative model. The proposed model
is trained in an adversarial way with a min-max loss function,
by which the three modules cooperate and compete to enhance
the entire model’s ability and therefore the signature verification
performance is improved. We test the proposed method on four
challenging signature datasets of different languages: CEDAR,
BHSig-Hindi, BHSig-Bengali, and GPDS Synthetic Signature.
Extensive experiments with in-depth discussions validate the
effectiveness of the proposed method.

Index Terms—Handwritten signature, variation consistency,
adversarial enhancement, neural network.

I. INTRODUCTION

S IGNATURE modeling is a significant issue in numerous
vision and multimedia applications [1]–[4]. With a huge

number of signature data emerging worldwide every day, there is
a pressing need to develop an intelligent and effective technique
for verifying signatures.

The objective of signature verification is to verify the authen-
ticity of a test signature compared with a reference signature.
Information sparsity and style vulnerability are two major chal-
lenges of signature verification [5]. For signatures in images,
signature verification mainly depends on signature stroke struc-
tures but not the image colors or intensities. Information sparsity
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Fig. 1. A signature verification model seeks to determine whether the test
signature is genuine compared with the reference signature. The test signature
2 is obtained by multiplying the image pixel values of test signature 1 by a
constant 0.85. The same model makes opposite decisions on the two signatures,
even if the signature structures were not changed, which is inconsistent with our
intuition.

means signature strokes which mainly determine the verification
result always only account for a very small proportion of a sig-
nature image, for signature strokes are always extremely thin,
as shown in Fig. 1. Style vulnerability means a same person
may signs arbitrarily with different writing styles on different
occasions and on the other hand some intentional forgers can
skillfully forge another person’s genuine signatures. These two
challenges are both related to representing and mining signature
stroke features.

However, modeling the effective stroke features for signature
verification is not an effortless task. As shown in Fig. 1, we aim
to verify the authenticity of the test signature compared to the
reference signature. For the test signature 1, a signature verifica-
tion model based on neural networks [6] predicts a probability
0.9943 that the test signature is genuine. When the pixel values
of the original test signature image slightly vary (multiplying all
the pixel values by 0.85), e.g. the test signature 2 in Fig. 1, the
model predicts the probability as 0.0071, i.e. the test signature 2
is forged. The same model makes a diametrically opposite ver-
ification decision. However, according to our experience, this
slight linear variation of pixel values should not change the veri-
fication result, because the signature stroke structures and styles
do not change, as the test signature 1 and the test signature 2
shown in Fig. 1. We introduce a consistency rule of multiplica-
tive variations in pixel intensity for signature verification, which
is defined as variation consistency.

Variation consistency means for a signature verification
model slightly varying the colors or intensities of signature

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-3057-4975
https://orcid.org/0000-0002-8535-9527
mailto:lh875056558@stu.xjtu.edu.cn
mailto:pingwei@xjtu.edu.cn
mailto:helenhu@xjtu.edu.cn
https://doi.org/10.1109/TMM.2021.3056217


LI et al.: AVN: AN ADVERSARIAL VARIATION NETWORK MODEL FOR HANDWRITTEN SIGNATURE VERIFICATION 595

images should not change the verification decision of the signa-
tures.

A desired verification model should meet the variation con-
sistency rule, i.e. it can capture stroke structure information
and make the same decisions even the image colors are slightly
changed. This observation inspires us that if a model was explic-
itly trained to make the same decisions for the original signature
images and their variants with respect to color, this model would
be forced to focus on the stroke information rather than the im-
age colors. Consequently the trained model would gain stronger
discriminative and verification abilities.

This paper proposes a novel adversarial variation network
(AVN) for writer-independent handwritten signature verifica-
tion. Our model is writer-independent which means the model
is independent of specific writers and one unified model is ap-
plied to verification of different signatures. This network con-
tains three major types of modules: extractors, discriminators,
and variators. The extractor is used to extract deep features from
signature images. The discriminator receives the features and
makes verification decisions. The variator aims at generating
variants of the original signature images to enhance the entire
model. The extractor, discriminator, and variator are integrated
into one unified end-to-end framework.

We propose to train the AVN model in an adversarial enhance-
ment way with a new loss function. In the training process, the
variator strives to maximize the loss function by producing in-
creasingly complex signature variants online to challenge the ex-
tractor and the discriminator. On the adversarial side, the extrac-
tor and the discriminator cooperate to minimize the loss function
by making correct decisions even being challenged by the gen-
erated variants. Based on this min-max game with cooperation
and competition, the extractor, discriminator, and variator are all
enhanced to improve performance. Since the color of a signa-
ture image is varying as the variants are generated in training,
the model would be forced to focus on the latent invariant struc-
tures and styles of signature strokes. In this way, the effective
information for signature verification is captured and mined.

This network is powered by the proposed variation consis-
tency mechanism which is expressed by the variator design in
our AVN model. The variator produces variation maps from
original extracted features. These variation maps are used to
generate variants of the original signature samples to continually
challenge the extractor and the discriminator. The effect of the
variation consistency is realized by the adversarial enhancement
training, by which the extractor, discriminator, and variator are
all enhanced in an adversarial min-max game. In this sense, the
variation consistency mechanism and the adversarial enhance-
ment training are inseparable aspects, which jointly power the
AVN model to improve signature verification performance.

We test our method on four challenging signature datasets
of different languages: CEDAR (English) [7], BHSig-Bengali
(Bengali) [2], BHSig-Hindi (Hindi) [2], and GPDS Synthetic
Signature (Spanish) [8]. Extensive experiments demonstrate the
effectiveness of the proposed model.

Our AVN is different from the well-known Generative
Adversarial Nets (GAN) [9] or GAN-based models [10], [11].
First, our variator aims to generate variation maps rather than

the simulated data samples. Second, our discriminator is used
to make final verification decision rather than compute the
scores of the generated samples. Third, our model introduces
the new variation consistency mechanism. These three aspects
differentiate our AVN model from previous methods.

Three major contributions are made in this paper compared
with other studies:

1) It proposes a novel variation consistency mechanism and a
new adversarial variation network model for handwriting
signature verification.

2) It proposes a novel adversarial enhancement method with
a min-max loss function for training the network and re-
alizing the variation consistency mechanism.

3) It tests the proposed approach on four signature datasets
of different languages. The proposed method outperforms
the other comparison approaches.

II. RELATED WORK

We review the related work from the following three main
streams of research.

A. Signature Verification

While previous research efforts have made great progress over
the past decades [1]–[3], [5], [12]–[17], there is still much space
to address the underlying essential challenges and improve the
signature verification performance. The early research efforts
extract hand-crafted features and compare the distance between
two signatures for verification, such as signature geometric fea-
tures [1], [18] and local features [12], [19]–[22]. Ferrer et al. [23]
tried to measure the robustness of gray level features in com-
plex backgrounds and extracted stable features from signatures
with different backgrounds. Most previous studies show that
hand-crafted features are disturbed by noise and geometric vari-
ations. Furthermore, it is difficult for the hand-crafted features to
characterize the effective information of signature strokes which
involves signature styles and structures. Consequently, the per-
formance of the early approaches still has much room for im-
provement.

With rapid development of large scale data and hardware
resource, various new techniques have been applied to signa-
ture verification. One major stream is deep learning and neural
network models [3], [11], [14], [24]–[26], which will be de-
tailed in the following section. Other typical methods include
meta-learning [27] and one-class method [28]. While these ap-
proaches have made impressive progress on signature verifica-
tion, most of them regard the signification problem as a binary
image classification problem and did not specifically consider to
mine the information of signature stroke itself but rather the sig-
nature image. This may lead to overfitting problems and reduce
the model’s generalization ability.

B. Neural Network Models

Neural network models are currently widely used in a variety
of tasks, such as recognition [6], [29], [30], detection [31], [32],
segmentation [33], [34], and action recognition in videos [35],
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[36]. Neural network models for signature verification include
two major kinds of frameworks [3], [37]–[39]. The first one is
that the reference signature image and the test signature image
are concatenated into one single image from which the deep
convolutional features are extracted for classification. The sec-
ond one is extracting deep convolutional features in two streams
from the reference signature image and the test signature image
respectively. Then the two stream features are concatenated for
classification. Siamese neural network [14], [37] extracts deep
features of the reference signature image and the test signature
image for verification. The analogous two-stream networks were
also used in face verification [40], [41] where the two streams of
neural network modules share the same architecture and weights
to compare the similarity of two face images. Engin et al. [42]
utilized neural network model to address a real-world writer
independent offline signature verification problem.

These previous studies have achieved remarkable progress in
signature verification. However, they did not specifically con-
sider the variation mechanism for mining effective stroke in-
formation nor formulate it into the network framework. In this
paper, we introduce a novel variation consistency mechanism
for learning and mining effective signature information.

C. Adversarial Models

Adversarial models aim to utilize adversarial examples to en-
hance the models’ discriminative or generative abilities. Gener-
ative adversarial network (GAN) [9] is one of most well-known
adversarial models and has been broadly applied to data gen-
eration [4], [10], [43] and other related tasks [44]–[46]. Peng
et al. [47] utilized an adversarial learning method to formulate
a data augmentation network for human pose estimation. The
cycle-consistent mechanism was proposed in the CycleGAN
model [48] for image-to-image translation. It utilizes a cycle
consistency loss to drive the mappings between the original im-
age and the target image to be cycle consistent. This mechanism
was later applied to numerous other tasks [49]–[51], such as
image-text matching [52], domain adaptation [53], and video
understanding [44]. Different from the previous models, our
method introduces the new variation consistency mechanism to
train a stronger discriminative model. Furthermore, the genera-
tor in our model aims to produce true variation maps rather than
the fake data samples. Third, the discriminator in our model is
to make the final verification decision rather than compute the
scores of the generated samples.

Some other studies in machine learning use adversarial ex-
amples [29], [54], [55] to boost the security of the methods.
Hafemann et al. [56] evaluated the impact of the different at-
tack types in signature verification. These studies did not design
variation consistency mechanism nor adversarial network archi-
tectures for signature verification. Wei et al. [5] introduced in-
verse streams to extract effective information of signatures and
force the original-inverse signature pairs to have the same la-
bels. We introduce a variation consistency mechanism and the
corresponding adversarial learning scheme into signature veri-
fication, which pushes the model to extract effective features of
signatures to improve the signature verification performance.

III. MODEL

In this section, we will introduce the problem representation,
the ideas behind the model, and the architecture of the proposed
adversarial variation network in detail.

Suppose r is a reference signature image and x is a test signa-
ture image. The model aims to decide if x is genuine or forged
compared to r. The output y ∈ {0, 1} is the verification decision
label where y = 1 indicates the test signature is genuine and
y = 0 means forged. The signature verification problem can be
represented as

y = f(x, r;θ), (1)

where f(·) is a decision function which maps the input signature
images x and r to a verification label y. θ is the set of parameters
to be learned from training samples.

It should be noted that the signature verification problem de-
fined in Eq. (1) is similar to but different from traditional bi-
nary classification problems in computer vision. Firstly, the tra-
ditional binary classification problem generally has one input
while the signature verification problem has two inputs x and
r. Secondly, in most traditional binary classification problems,
the primary objective is to model and represent the appearance
patterns of input data which are based on colors, intensities, and
textures. In the signature verification problem, the key task is
to characterize the style difference between the bilateral inputs.
Writing style is an indescribable attribute defined by signature
strokes rather than colors or intensities. Thus how to mine sig-
nature stroke features from images is the key point for signature
verification.

A. Variation Consistency Mechanism

General scene images have rich information of colors and
textures which play essential roles in discriminating objects
in the images. Different from those images, the effective in-
formation of signature images is very sparse as signatures are
mainly composed of strokes with monotonous colors. On the
other hand, signature images collected from different scenar-
ios or different time have considerable variations of colors
or intensities. How to overcome these challenges and extract
the effective stroke information are critical issues for signature
verification.

We propose a novel variation consistency mechanism to ad-
dress this problem. This mechanism is based on the observation
that slightly varying the image colors or intensities should not
change the signature verification decision results as signature
verification mainly depends on signature stroke structures or
styles rather than image colors or intensities. This idea is illus-
trated in Fig. 2. The original inputs of a test signature image and
a reference signature image obtain a verification decision label
y0. By varying the intensities of the original reference image
and the test image, m reference-test image pairs are generated
and their verification decision labels are y1, y2, . . ., ym, respec-
tively. These generated reference-test pairs should have the same
verification labels as the intensity variation did not change the
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Fig. 2. Illustration of variation consistency mechanism. Slightly changing the
image intensities should not change the verification decisions.

signature structures nor writing styles, i.e. y1 = y2 = · · · = ym,
as shown in Fig. 2.

Another accompanying problem is how to generate the vari-
ants of the signature images. A natural and simple choice is
to manually generate these variants offline, such as multiplying
the original pixel values by a constant weight or a group of ran-
dom weights. However, such hand-crafted operations may not
produce desired results since the variations of the original im-
ages are manually defined but not learned from data. Another
more effective method is to generate the variants by learning,
i.e. incorporating the generation process into the model and pro-
ducing the variant images online, by which the generation mod-
ules can be trained with other parts of the entire model in an
end-to-end framework. We adopt the latter one and propose a
new variant generation method based on neural networks. Our
later ablation study about these two kinds of variant generation
will prove that the proposed variation method is advantageous
to the hand-crafted methods.

B. Architecture

Fig. 3 shows the architecture of the proposed adversarial vari-
ation network (AVN). The network contains three major types of
functional modules: the feature extractorF , the discriminatorD,
and the variator V , as the different blocks shown in Fig. 3. The
whole architecture contains multiple extractors, discriminators,
and variators. All the same type modules share the structures
and parameters. In the following contents, we will elaborate on
the modules first, and then introduce the computing scheme of
the architecture.

1) Feature Extractor F : The feature extractor F extracts
deep convolutional features from signature images:{

b = F (x)
d = F (r),

(2)

whereb andd are the extracted feature maps of the test signature
image and the reference image, respectively.

Fig. 4(a) shows the inner structure of a feature extractor. The
signature images input to the feature extractor are all resized to
the same size of 155 × 220. A feature extractor is composed of
four cascaded convolutional modules that inspired by the VGG
net [6], as shown in Fig. 4(a). Each convolutional module con-
tains two convolutional layers (kernel size 3 × 3 and stride 1)
with ReLu activation function and one max-pooling layer (ker-
nel size 2 × 2 and stride 2). As shown in Fig. 4(a), the kernel

numbers of the four modules are 32, 64, 96, and 128, respec-
tively. The feature map sizes after pooling layers of the four
modules are 78 × 110, 39 × 55, 20 × 28, and 10 × 14, respec-
tively. All the feature extractors F in the AVN architecture share
the structures and parameters that are learned to extract effective
signature stroke features.

2) Discriminator D: As shown in Fig. 3, the discriminator
D takes the extracted signature features b and d as inputs and
outputs the verification decision probability D(b,d) ∈ [0, 1],
where D(b,d) ≥ 0.5 indicates the test signature is genuine and
D(b,d) < 0.5 indicates forged.

Fig. 4(b) shows the structure of the discriminator D. It is
composed of the convolutional module and the fully-connected
layers. The features extracted from the test signature and the ref-
erence signature are concatenated and put into a convolutional
module with two convolutional layers and one max-pooling
layer. The kernel size, stride, and kernel number of the con-
volutional layer are 3 × 3, 1, and 256, respectively. Through a
global average pooling (GAP) layer and a fully-connected layers
with 256 units, the features are used to compute the verification
decision.

3) Variator V: The variator V is designed to produce vari-
ation maps which are applied to the original input signature
images to generate the variants of the signature images. V takes
the feature maps b and d as inputs and outputs the variation
maps V (b) and V (d), respectively. V (b) and V (d) are weight
maps with the same sizes of the input images x and r. As shown
in Fig. 3, the variants of the original input reference and test
signature images are obtained by element-wise multiplying the
original images by the variation maps,

{
x̃ = V (b)⊗ x
r̃ = V (d)⊗ r,

(3)

where x̃ and r̃ are the variants of original test signature image
x and the reference signature image r, respectively. The symbol
⊗ denotes element-wise multiplication.

The variation maps V (b) and V (d) re-weight the pixel in-
tensities of the original images. In this way the intensities of
the original images are changed. The element values of V (b)
and V (d) are not necessarily uniform, which leads to nonlinear
variation of the original signature images.

Fig. 4(c) shows the inner structure of V . It receives the feature
mapb ord as input. After the global average pooling (GAP) and
a fully-connected layer, the intermediate feature is reshaped to
80 × 112. Then an up-sampling with nearest neighbor operation
is performed and a convolutional layer with sigmoid activation
function is used to output the weight mask V (b) or V (d), which
has the same size with the original input signature images.

4) Computing Scheme: In our AVN architecture, the comput-
ing schemes for inference and training are different. As shown in
Fig. 3, the inference scheme contains the solid-line modules and
connections, and the learning scheme contains all the modules
and connections.

In inference, two streams of the feature extractorF receive the
test signature image x and the reference signature image r, and
produce the deep convolutional features b and d, respectively.
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Fig. 3. Architecture of the proposed adversarial variation network (AVN). The inference scheme contains the solid-line modules and connections, and the
learning scheme contains all the modules and connections. The four feature extractors F , the two discriminators D, and the two variators V share the parameters,
respectively.

Fig. 4. The structures of F , D, and V . (a) Extractor F . (b) Discriminator D. (c) Variator V . The input is the feature from F . The output is a variation map.

The feature maps b and d are fed to the discriminator D to com-
pute the final verification result. This process only involves the
original images x, r, extractor F , and discriminator D, without
using the variator V or any variants x̃ and r̃. This process is
shown as the solid-line modules connected by the solid lines in
Fig. 3.

In training, all the modules in the architecture are involved.
Two streams of the variator V receive the feature maps b and d
and generate the variation maps V (b) and V (d), respectively.
The original signature images x and r are multiplied by the
variation maps to generate the variants x̃ and r̃, respectively.
The variants x̃ and r̃ are taken as the new test signature image
and the reference signature image which are input to the feature
extractor respectively to produce the corresponding feature maps
b̃ and d̃. Taking b̃ and d̃ as inputs, the discriminator outputs
the verification decision probability D(b̃, d̃) with respect to the
variants x̃ and r̃, as shown in Fig. 3. It should be noted that
in the model training, generating variants x̃ and r̃ and making
verification decisions on the variants are all online processes.
A series of variants and decisions are produced as the training
proceeds.

An important point in our computing scheme is that the same
type modules share the parameters. All the feature extractors
addressing the reference signature, the test signature, and their
variants share the structures and parameters. In training, the dis-
criminators for original signature images and the variants share

the parameters. The variators for the reference signature and the
test signature also share the parameters. The parameter sharing
between the reference signature modules and the test signature
modules pushes the model to focus on the effective information
such as stroke styles and structures. Furthermore, the feature ex-
tractors and the discriminator are challenged by both the original
signature images and a series of the variants, which strengthens
the abilities of the feature extractors and the discriminator for
signature verification.

IV. LEARNING

In the AVN architecture, the extractor aims at extracting the
most effective features of signatures and the discriminator seeks
to make correct verification decisions. The variator generates
variants of original signature images to challenge the extractor
and the discriminator. All these modules are unified in an end-
to-end framework. We propose a novel adversarial enhancement
method to train the model.

A. Adversarial Enhancement Learning

The adversarial enhancement learning is a strategy for train-
ing the model parameters via a cooperation-competition game
among the different network modules. In the model training
process, the variator produces diverse variants of the original
training signature samples online to challenge the extractor and
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the discriminator; on the other hand, the extractor and the dis-
criminator cooperatively strive to make correct decisions even
being constantly challenged. This strategy is formulated with
an adversarial min-max loss optimization, in which the variator
seeks to maximize the loss while the extractor and the discrim-
inator cooperate to minimize the loss. In this adversarial game
with cooperation and competition, the variator, the extractor,
and the discriminator all strive to enhance their own abilities
so that they will not be defeated by another side. Finally they
become increasingly substantial and the signature verification
performance is improved.

The well-known GAN [9] method proposes a min-max loss
function to train generative models in an adversarial way. The
idea of our adversarial enhancement learning is inspired by but
different from GAN. Our model introduces the new variation
consistency mechanism, which aims to train a stronger discrim-
inative model while GAN aims to produce a reasonable gener-
ator. Second, our variator aims to generate true variation maps
rather than the fake data samples. Third, our discriminator is
used to make final verification decision rather than compute the
truth scores of the generated samples.

B. Adversarial Min-Max Loss Function

Suppose {(xi, ri, yi) | i = 1, . . ., N} is a set of N training
samples, where xi and ri are the ith test signature image and
reference signature image, respectively. yi ∈ {0, 1} is a binary
ground truth label of the sample (xi, ri), where 1 indicates the
test signature xi is genuine compared with ri and 0 indicates
forged. With these training samples, we aim to learn the network
parameters contained inF ,D, and V . Since the learning process
involves both original samples and the variants, our loss function
is composed of two parts: the loss for the original samples and
the loss for the variants.

For the ith original sample (xi, ri, yi), F (xi) and F (ri) are
the features output from the extractor F .D(F (xi), F (ri)) is the
signature verification probability predicted by the discriminator.
We use the cross entropy function of binary classification to
formulate the loss for verification decision. The loss function
LO(xi, ri, yi) of verification decision for the ith original sample
is,

LO(xi, ri, yi) = −yi lnD(F (xi), F (ri))

−(1− yi) ln(1−D(F (xi), F (ri))). (4)

Corresponding to the original sample xi and ri, suppose
x̃i and r̃i are the variants generated by the variator online,
respectively. According to the variation consistency mecha-
nism, we would like to force the model predicting the same
label yi for (x̃i, r̃i) with the original signature images (xi, ri).
The verification decision probability for the variants (x̃i, r̃i) is
D(F (x̃i), F (r̃i)). Thus the loss function LV (x̃i, r̃i, yi) of ver-
ification decision for the variants (x̃i, r̃i) is defined as

LV (x̃i, r̃i, yi) = −yi lnD(F (x̃i), F (r̃i))

−(1− yi) ln(1−D(F (x̃i), F (r̃i))), (5)

Algorithm 1: Alternate Min-Max Optimization Algorithm.
1: Initialization: F , D, V .
2: Discrimination optimization:
set V as V ∗ in the last iteration, optimizing F and D by
(F,D)∗ = argmin

F,D
L(F,D, V ∗);

3: Variation optimization:
set F , D as F ∗, D∗ in the last iteration, optimizing V by
V ∗ = argmax

V
L(F ∗, D∗, V ).

4: Convergence check. Iteratively repeat step 2 and step
3 until the maximum iteration step is satisfied.

where the variants x̃i and r̃i are generated by the variator V ,
i.e. x̃i = V (F (xi))⊗ xi and r̃i = V (F (ri))⊗ ri, as defined
in Eq. (3).

In Eq. (4), the arguments to be optimized are the feature ex-
tractor F and the discriminator D. In Eq. (5), in addition to the
arguments F and D, the variator V should also be optimized.

The loss function for all the training samples is

L(F,D, V ) =

N∑
i

{LO(xi, ri, yi) + λLV (x̃i, r̃i, yi)}, (6)

where the weight λ balancing the two terms is a hyper-parameter.
This loss function contains two parts. LO(xi, ri, yi) corre-
sponds to the original reference and test signature samples.
LV (x̃i, r̃i, yi) characterizes the variants produced by the vari-
ator. The hyper-parameter λ balances the weights of the two
parts.

For verification decision, we hope the extractor and discrim-
inator make correct decisions for both the original signature
image pairs and the variant pairs, i.e. the predicted probabil-
ities D(F (xi), F (ri)) and D(F (x̃i), F (r̃i)) should approach
the ground truth label as much as possible. Thus, the loss func-
tions LO and LV should be minimized as much as possible. For
variant generation, we hope the variator can help to generate
more challenging signature samples, e.g. a genuine sample ap-
pear to have some characteristics of the forged ones and a forged
sample seems to be a genuine one. In this sense, the generated
variants may cause a weak discriminator to make incorrect veri-
fication decisions, and therefore the loss function LV should be
maximized with respect to the variator V .

Thus, the model parameters are learned by solving the fol-
lowing min-max optimization problem,

(F,D, V )∗ = argmin
F,D

max
V

L(F,D, V ). (7)

By optimizing Eq. (7), the neural network parameters can be
learned from the training samples.

C. Optimization

In Eq. (7), there are two adversarial sides where F and D aim
to minimize the loss function while V strives to maximize it.
We adopt an alternate scheme to solve the optimization prob-
lem of Eq. (7). First, we fix the parameters of the variator V
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Fig. 5. Illustration of min-max optimization with respect to F , D, and V .

and train the extractor F and the discriminator D by minimiz-
ing the loss function which involves both LO(xi, ri, yi) and
LV (x̃i, r̃i, yi). After some steps, the parameters of F and D
are fixed and the variator V is trained by maximizing the loss
function only involving LV (x̃i, r̃i, yi), which pushes V to gen-
erate variants to challenge the extractor and discriminator. The
two processes iteratively alternate until the maximum iteration
step is achieved. This optimization scheme is summarized in
Algorithm 1. In Algorithm 1, the two optimization problems are
solved using the Stochastic Gradient Descent (SGD) algorithm.
The maximum iteration step is defined empirically. Fig. 5 illus-
trates the min-max optimization process with respect to F , D,
and V with a toy example.

With this alternate adversarial min-max game, the variator, the
extractor, and the discriminator all enhance their own abilities
to avoid being defeated. Finally they become stronger and the
signature verification performance is improved.

V. EXPERIMENTS

The proposed model is tested on four different languages
signature datasets respectively: CEDAR [7] written in English,
BHSig-Bengali [2] signed in Bengali, BHSig-Hindi [2] signed
in Hindi, and GPDS Synthetic Signature Database [8] that be-
longs to Spanish. We also carry out studies including comparison
with traditional data augmentation, ablation studies of adversar-
ial learning, and the robustness to disturbance. These extensive
experiments and discussions in depth prove the effectiveness and
strength of our proposed method.

A. Experimental Setup

1) Evaluation Metrics: In our model, a positive sample is
composed of a reference signature and a genuine signature; a
negative sample is composed of a reference signature and a
forged signature. The evaluation metrics are computed based
on these positive and negative samples. We use five metrics to
evaluate our method and compare it with other approaches: False
Rejection Rate (FRR), False Acceptance Rate (FAR), Equal Er-
ror Rate (EER), Accuracy (Acc), and Area Under the Curve
(AUC). The number of false rejections divided by the number
of positive samples is the FRR. FAR is computed as the ratio of

the number of false acceptances over the total number of neg-
ative samples. EER is an integrated metric that is the error for
FAR = FRR, where the lower EER means the model has a better
performance. Accuracy is the percentage of test samples which
are correctly predicted in all the test samples. AUC is also a com-
prehensive metric that is defined as the area under the receiver
operating characteristic (ROC) curve.

Our method is writer-independent which we mark as WI in
experimental results tables, such as [3], [57]. We also list results
of some writer-dependent methods, which are marked as WD,
such as [2], [39], [58]. Writer-independent (WI) methods use just
one model for all test users and writer-dependent (WD) methods
train a specific model for each user. Therefore WD methods usu-
ally perform much better than WI methods but needs training
samples for each person, which is impractical and can not be
generalized to unobserved people. It should be noted that WD
methods have different experimental protocols from WI meth-
ods. Firstly, datasets are used in different ways. The WI methods
divide all the writers into two parts. Some writers’ signatures are
used to train the model and the rest writers’ signature samples are
used as the test samples. The WD methods divide every user’s
signature samples into two parts. Secondly, the evaluation metric
computation is different. The WI methods compute evaluation
metrics based on the number of positive and negative samples,
while the WD methods compute evaluation metrics based on
the number of the genuine signatures and the forged signatures.
Since the WD methods adopt different training methods and us-
ages of data from WI methods, we list the WD methods here just
as reference baselines. The other differences among the meth-
ods are also marked in the comparison tables. RN denotes the
number of reference samples to verify a test signature. DT de-
notes the decision threshold to make the verification decision,
where ‘G’ indicates a global decision threshold for all users and
‘U’ means using different decision threshold for each user. SK
describes whether using the skillfully forged signatures or not in
the training data, where ‘Y’ and ‘N’ represents ‘Yes’ and ‘No’
respectively.

2) Implementation Details: In experiments, all input signa-
ture images are pre-processed using the OTSU algorithm [59]
and non-standard Binarization, which transform the background
pixel values to 255 and maintain the original pixel values for
signature strokes. Then all the images are resized to the same
scale of 155 × 220. During the training process, we randomly
selected about two thousand paired signature samples (one thou-
sand positive samples and one negative samples) from training
set as validation set that was used to set the hyper-parameters.

The proposed model is trained based on TensorFlow 1.8.0
framework with NVIDIA 1080Ti. We use a SGD optimization
method with a base learning rate of 0.01 to train our model,
where the decay factor is set as 0.5 and the batch size 32. The
hyper-parameters of batch normalization are set as ε = 10−5 and
decay 0.99.

B. CEDAR Dataset

The CEDAR dataset [7] contains 55 people’s signatures, and
each person has 24 genuine and 24 forged signatures. The sig-
nature samples are gray images. Following previous studies, 50
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TABLE I
SIGNATURE VERIFICATION COMPARISON ON CEDAR DATASET (%)

people’s signature samples are used to train the model and the
rest 5 people’s signature samples as the testing set. We pair
a reference signature with a genuine signature as a positive
sample and a reference signature with a forged signature as a
negative sample. In this way, each person has 276 (24 × 23/2)
positive samples. For sample balance, we combine the genuine
signatures and the forged signatures and randomly select 276
reference-forgery pairs as negative samples for each person.
Thus, we have a total of 2760 test samples on CEDAR.

We compare our AVN method with several other approaches:
Morphology [60], Surroundness [61], Chain Code [62], Graph
Matching [58], SigNet-F [39], OC-SVM [63], PDSN [64],
Triplet Nets-Graph [65], OSIVCN [66], Ensemble Learning [67]
and HOCCNN [68]. Table I shows the experiment results of dif-
ferent approaches.

On this dataset, our AVN method achieves FRR, FAR, EER,
Acc as 4.42%, 3.26%, 3.77%, and 96.16%, respectively, which
outperforms other comparison approaches under all metrics.
Furthermore, even if comparing with writer-dependent meth-
ods, our writer-independent AVN method still has better per-
formance, such as the recently proposed HOCCNN [68], which
achieves FRR, FAR, EER as 4.79%, 5.07%, and 4.94%, respec-
tively. These results prove the strength of our AVN method.

The major reasons why our AVN method outperforms other
comparison approaches are the variation consistency and the cor-
responding adversarial enhancement training. In fact, the base
network of our AVN model is composed of just two convolu-
tional blocks for feature extraction and fully-connected layers
for decision output, which is a rather simple network struc-
ture. Under this circumstance, our AVN model still achieves
better performance than other comparison approaches, which
sufficiently proves the advantage and potential of the proposed
framework.

C. BHSig-Bengali Dataset

BHSig260 dataset [2] consists of the BHSig-Bengali subset
and the BHSig-Hindi subset. All the signature samples are bi-
nary images. BHSig-Bengali subset is comprised of 100 peo-
ple’s signature images signed in Bengali and each signer has

TABLE II
SIGNATURE VERIFICATION COMPARISON ON BHSIG-BENGALI DATASET (%)

TABLE III
SIGNATURE VERIFICATION COMPARISON ON BHSIG-HINDI DATASET (%)

24 genuine and 30 forged signatures. Following previous stud-
ies, 50 people’s signature are utilized to train our model and the
rest 50 people’s signature are used as testing set. For each per-
son, we have 276 reference-genuine pairs as positive samples
and 276 reference-forged pairs as negative samples. Totally, we
have 27 600 pair samples for test.

On this dataset, we compare our AVN model with six other
approaches: SigNet [3], Correlated Feature [57], FHTF [69],
IsRFsM [70], DeepHSV [71] and Texture Feature [2]. The ex-
periment results are shown in Table II. Our model achieves FRR,
FAR, EER, and Acc of 7.33%, 5.07%, 6.14%, and 93.80%, re-
spectively, which outperform other approaches by a large mar-
gin. These results validate the effectiveness of our method.

D. BHSig-Hindi Dataset

BHSig-Hindi Dataset is another subset of BHSig260 that in-
cludes 160 people’s signature images written in Hindi. Each
signer also has 24 genuine signatures and 30 forged signatures.
Following other studies, 100 people’s signatures are used as
training samples and the rest 60 people’s signatures as testing
set. For training, we can obtain 100 × 276 reference-genuine
pairs as positive samples and 100 × 276 reference-forgery pairs
as negative samples. For testing set, there are a total of 32 400
(2 × 60 × 276) pair samples for evaluation.

The experimental results of BHSig-Hindi are presented in
Table III. We compare our model with the previous approaches,
including SigNet [3], Correlated Feature [57], FHTF [69], Is-
RFsM [70], Ensemble Learning [67], DeepHSV [71] and Tex-
ture Feature [2]. It is obvious that the proposed method achieves
great improvement upon the previous methods under all metrics.
The proposed model obtains 94.32% Acc, which outperforms
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TABLE IV
SIGNATURE VERIFICATION COMPARISON ON GPDS DATASET (%)

the existing models by a considerable margin. These results show
the advantage of our method over other comparison approaches.

E. GPDS Synthetic Signature Database

GPDS Synthetic Signature Database [8] contains signatures
signed in Spanish. It contains 4000 people’s signatures, which
are gray images. Each person has 24 genuine signature sam-
ples and 30 forged signature samples. Therefore it has a to-
tal of 4000 × 24 = 96, 000 genuine signature samples and
4000 × 30 = 120, 000 forged signature samples, which makes
this dataset one of the largest signature verification dataset. Fur-
thermore, it is also considered to be one of the most challenging
dataset for signature verification.

Following previous work, we use 3200 people’s samples for
training and the rest 800 people’s samples for testing. For each
person, we have 276 reference-genuine pairs and 276 reference-
forgery pairs. There are a total of 883 200 training pairs and
220 800 testing pairs.

We compare our method with other approaches: Correlated
Feature [57], HOT [72], DeepHSV [71]. Table IV shows the
result comparison. On this dataset, our method achieves an Acc
of 90.32% and 9.77% EER respectively. This is a remarkable
improvement considering the large scale of this dataset.

F. Ablation Analysis of Variation Consistency

Our AVN model introduces variation consistency mechanism
with adversarial enhancement learning for signature verification.
In this section, we compare the proposed AVN model with the
base network (BaseNet) model which does not adopt the varia-
tion consistency mechanism. The BaseNet model used in our ex-
periments accepts the same preprocessed signature image pairs
as inputs and uses the same F to extract features as well as D
to make decisions. This BaseNet model is trained in end-to-end
ways. The difference from our AVN model is that the BaseNet
does not have variators nor train variant samples. We carried out
the ablation experiments on CEDAR Dataset, BHSig-Bengali
Dataset, BHSig-Hindi, and GPDS Synthetic Signature Database.
We use three comprehensive evaluation metrics EER, Acc, and
AUC to compare the different methods.

Table V shows the experiment results. It is quite clear that our
AVN model outperforms the BaseNet model under all metrics on
all four datasets, which proves the effectiveness and advantage
of the introduced variation consistency mechanism.

G. Comparison With Data Augmentation

Our AVN model uses the rariator to produce variants of the
original signature images in training. The variator generates vari-
ation maps which are multiplied to the original signature images
to produce the variant signature images. To some extent, this
is like a strategy of data augmentation. Data augmentation is a
widely used technique to expand training datasets. We would like
to compare our AVN model with data augmentation technique
and clarify that our variation generation strategy is superior to
the traditional data augmentation.

To compare with the traditional data augmentation method,
we remove the variators from our AVN model and train the base
model with data augmentation. We compare our method with
two data augmentation methods. The first one is UDA - the uni-
form variation data augmentation. In this method, we vary the
intensities of the original signature images by multiplying the
pixel intensities of the original image with a random value be-
tween 0.5 and 1. For different images the random values are
different. The second one is RDA - the random variation data
augmentation. Here we vary the intensities of the original signa-
ture images by element-wise multiplying the original image with
a random value matrix. The values of the matrix are randomly
sampled from the range between 0.5 and 1. For different images
the random matrices are different. These new generated images
are taken as augmentation data to put with the original training
data together to train the base model without the variators. The
testing set remains unchanged. Here we limit the multiplying
factor between 0.5 and 1 because too small multiplying factors
in [0, 0.5) may blur the images which is unfair for comparison.

Table VI shows the results of comparison with the two data
augmentation methods. Fig. 6 shows the ROC curves of the
base model (BaseNet), uniform variation data augmentation
(UDA), random variation data augmentation (RDA), and our
AVN method on the four testing datasets. Our method outper-
forms the traditional data augmentation methods by a large mar-
gin, which proves the strength and effectiveness of our method.

H. Comparison of Robustness to Variation

The performance of a signature verification model is prone
to be influenced by image intensity variations. In this section,
we compare the performance of our method with other meth-
ods when changing the intensities of signature images in testing
set, by which we can compare the different methods’ robustness
to intensity variation. We compare our method with other three
methods - BaseNet, UDA, and RDA. BaseNet is the basic net-
work structure of our AVN model without variators. It is trained
without data augmentation. UDA is the BaseNet model trained
by uniform variation data augmentation strategy, as defined in
Section V-G. RDA is the BaseNet model trained by random
variation data augmentation.

We conduct this comparison by varying the intensities of
signature images. The variation is realized by element-wise mul-
tiplying an image with a variation matrix. The variation matrix
has the same size with the image and each element is a value be-
tween 0 and 1. To measure the effect of different variation levels
on the performance of the methods, we define five continuous
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TABLE V
ABLATION ANALYSIS OF VARIATION CONSISTENCY (%)

TABLE VI
COMPARISON WITH DATA AUGMENTATION (DA) (%)

Fig. 6. The ROC curves of the base model (BaseNet), uniform variation data augmentation (UDA), random variation data augmentation (RDA), and our AVN
method on the four testing datasets. (a) CEDAR dataset. (b) BHSig-Bengali dataset. (c) BHSig-Hindi dataset. (d) GPDS dataset.

TABLE VII
COMPARISON OF ROBUSTNESS TO UNIFORM VARIATION (ACCURACY (%))

variation ranges [0.1, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), and
[0.9, 1.0). The elements of a variation matrix are randomly
sampled from these variation ranges. By sampling from dif-
ferent ranges, the variation levels are changed. For example,
multiplying all the pixels of an image with 1 will not change the
image, which means there is no variation; multiplying all the
pixels of an image with a value sampled from the range [0.1,
0.6) will considerably change the image, which causes large
variation to the image.

We vary signature images of the testing set in two ways. The
first one is uniform variation. In this case, an image is multiplied
element-wise by a variation matrix whose elements are the same,
i.e. the intensities of the image are uniformly changed. For an im-
age, one element value is randomly sampled from the variation
ranges. For different images the element values (i.e. variation

matrices) are different. The second variation method is random
variation. In this case, an image is multiplied element-wise by a
variation matrix whose elements are different. These elements
are also randomly sampled from the variation ranges. And also
the variation matrices are different for different images. Fig. 7
illustrates the uniform variation, the random variation, and the
corresponding signatures.

We conduct these experiments on the CEDAR, BHSig-
Bengali, and BHSig-Hindi datasets. By changing the variation
ranges, we compared the performance of our method with other
methods at different variation levels. Table VII shows the accu-
racy comparison in the case of uniform variation and Table VIII
shows the results of random variation. These two tables show
that for uniform or random variation, in most cases our method
outperforms the other methods by a large margin at all variation
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Fig. 7. Visualization of the uniform variation and random variation.

TABLE VIII
COMPARISON OF ROBUSTNESS TO RANDOM VARIATION (ACCURACY (%))

Fig. 8. The average error rate (AER(%)) curves of different methods to uniform and random variations. ‘U’ and ‘R’ represent ‘uniform’ and ‘random’ respectively.
‘BaseNet (U)’ means the BaseNet model is tested on the uniform variation testing data. (a) CEDAR. (b) BHSig-Bengali. (c) BHSig-Hindi.

levels. Furthermore, compared to the baseline method, the
accuracy of our method decreases slower as the variation range
decreases or the image variation increases. Fig. 8 shows the
average error rate (AER) curves of these methods. These figures
show that for both uniform variation or random variation our
AVN method has much lower average error rate. These results
prove the advantage and robustness of our method when the
input signature images are influenced by intensity variation.

I. Discussion

1) How effective is the variation consistency mechanism?
Table I, Table II, Table III, and Table IV present the compari-

son results of the proposed AVN model with other approaches on
the datasets CEDAR [7], BHSig-Bengali [2], BHSig-Hindi [2],
and GPDS Synthetic Signature [8], respectively. These ta-
bles show that our model outperforms other approaches by
large margins. Table V shows the ablation study of variation
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consistency mechanism, which compares the models with and
without variation consistency mechanism. This table shows that
the proposed model with variation consistency mechanism per-
forms much better than the baseline model without variation
consistency mechanism.

These results prove that the proposed variation consistency
mechanism is effective for improving signature verification per-
formance, which can be explained from two aspects. First, com-
pared to other comparison approaches, our AVN model impres-
sively improves the signature verification performance. One of
the major reasons lies in the variation consistency mechanism.
The base network of our AVN model is a very simple neural
network structure which is composed of just two convolutional
blocks for feature extraction and two fully-connected layers for
decision output. The performance of this base network is even
lower than some other comparison models, as shown in Table V,
Table I, Table II, Table III, and Table IV. By incorporating the
variation consistency mechanism with the corresponding adver-
sarial enhancement training, the performance is impressively im-
proved compared to other comparison methods. This is a strong
indicator that the variation consistency mechanism is effective.
Second, in the ablation study as shown in Table V, compared
to the base network without variation consistency mechanism,
our AVN model with this mechanism impressively boosts the
performance on all the testing datasets. This directly indicates
that the introduced variation consistency mechanism is effective
for improving performance of signature verification.

The major reasons why our model is effective lie in three as-
pects. First, our model adopts the neural network modules to
extract basic image features. Second, our model introduces the
variation consistency mechanism and the corresponding varia-
tor design. Third, our model introduces the adversarial enhance-
ment training method. The aspects jointly improve the signature
verification performance.

2) How robust is our AVN model to image intensity vari-
ation?

Table VII and Table VIII present the comparisons of the pro-
posed model with the baseline model and two data augmentation
methods when the signature image intensities or colors are var-
ied. From these two tables, we can observe that as the variation
increases, the performances of our method, data augmentation
methods, and the baseline method are all reduced. However, the
performance reduction speed of our method is much slower than
the baseline method, especially when the variation is not large.
Although the reduction speed of data augmentation methods
are also slower than the baseline method, the performances of
data augmentation methods are lower than our methods almost
in all variation ranges. Second, the random variation harms the
methods more than the uniform variation. However, our method
behaves much better than the other comparison methods. For
example, on the BHSig-Hindi dataset with random variation,
when the variation range becomes from 1 to the values smaller
than 0.7, the accuracy of the baseline method decreases from
90.74% to 50.14%, while the accuracy of our method becomes
from 94.32% to 94.00%. This is a very decent result consid-
ering that the random variations with the ranges smaller than
0.6 may have destroyed the patterns of the original signature
images. Fig. 8 shows the average error rate (AER) curves of

these methods with the uniform and random variations. These
figures show that for uniform variation or random variation our
AVN method has much lower average error rates than the other
methods. Furthermore, the curves of the comparison methods
are steeper than the curves of our method, which indicates that
the variation has a smaller influence over our method than the
comparison methods.

These results show that our method is more robust to image in-
tensity variation than the comparison methods. The major reason
is that our method introduces the variation consistency mecha-
nism and the corresponding adversarial enhancement learning
method. With this mechanism, our model actively varies the
original input images to challenge the model, which not only
improves the model’s performance in signature verification, but
also enhances the model’s ability to resist variation.

3) How does variation consistency differ from data aug-
mentation?

Data augmentation [73] is a widely-used technique for aug-
menting data in training. In our AVN model, the variation
consistency mechanism produces new variants of the original
input signature images for training. In this sense, our varia-
tion consistency mechanism has conceptual affinities with data
augmentation.

However, our variation consistency mechanism is different
from the existing data augmentation [73]–[76], for the following
reasons. First, the goal of existing data augmentation methods is
to solve the overfitting problem or enhance the model’s ability
to resist some transformations, while the major goal of our
variation consistency mechanism is to push the model to mine
effective signature stroke information. Second, the new data
generation of our variation consistency mechanism is an online
process in training while previous data augmentation techniques
usually generate new data offline. Such online processes are
more flexible. Third, the generation of new data in our variation
consistency mechanism is an “active” process, i.e. it learns to
generate the desired variants of the original data which is con-
ducive to enhancing the model’s discriminative ability. Existing
data augmentation usually produces additional training data
by some manually defined rules, such as rotating and flipping,
which is stochastic and nondirectional. Finally, the variation
consistency mechanism is linked to an adversarial enhancement
training method, by which the model’s discriminative ability is
enhanced. Existing data augmentation is not necessarily related
to such a training technique.

We also use an ablation study to analyse the advantage of our
variation consistency mechanism compared to the traditional
data augmentation. Table VI shows the results of comparison.
Fig. 6 shows the ROC curves of our method and the two data
augmentation methods. The results demonstrate the advantage
of the proposed method over traditional data augmentation in
signature verification.

4) What is the potential of our AVN method?
Our model incorporates variation consistency mechanism into

an ordinary base network model for signature verification. On
some datasets, compared with some sophisticatedly-designed
neural network methods, the results of our method are not
state-of-art. The major reason is that the base network used
in our model is a rather simple and ordinary structure, which
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is composed of only two convolutional blocks for feature ex-
traction and two fully-connected layers for decision. Under this
circumstance, our AVN model still achieves better performance
than most of other approaches. In this sense, our method would
have great potential by using more sophisticated base modules,
such as Residual Network [30].

In this work, variation consistency mechanism is used to mine
effective stroke features for signature verification. The essence
of variation consistency mechanism is actively generating vari-
ants of original data to train a model with desired attributes.
Thus we believe it can be generalized to other tasks and play
promising roles in those tasks. The potential applications include
the following aspects. First, it can be applied to some multime-
dia applications such as joint parsing of texts and images. One
of the challenging problems in text modeling is the variation
of descriptions with the same semantic meaning. The variation
consistency mechanism is a possible means for this challenging
problem. Second, it can be generalized to some other biomet-
ric techniques in security, such as recognition of fingerprint,
iris, and face. The frameworks of these applications are similar
to signature verification and therefore the variation consistency
mechanism can be easily generalized. Third, it can be applied
to neural network models for object and scene understanding
in computer vision. In object recognition, a well trained neural
network model is often prone to be harmed by small distur-
bance. If the variation consistency mechanism was incorporated
into object recognition, the disturbance issue might be allevi-
ated and therefore the object recognition performance would be
improved.

VI. CONCLUSION

In this paper, we present a novel adversarial variation net-
work for writer-independent signature verification which con-
tains three functional modules: the extractor seeks to extract deep
discriminative features of handwritten signatures, the discrimi-
nator aims to make verification decisions based on the extracted
features, and the variator is designed to actively generate sig-
nature variants for constructing a more discriminative model.
These modules are unified under a variation consistency frame-
work and learned with an adversarial enhancement learning in
an end-to-end way. The proposed model is tested on four chal-
lenging datasets of different languages.

Experimental results show that our method improve signa-
ture verification performance. Furthermore, the introduced vari-
ation consistency mechanism outperforms the traditional data
augmentation and the proposed method is more robust to im-
age variation than the comparison methods. We also analyse the
possible applications of our method in other fields such as mul-
timedia, biometrics, and computer vision, which suggests the
great potential of our method.

The future work will focus on the generative models of signa-
ture verification and extending our method to other multimedia,
biometrics, and vision problems.
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