
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 

for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works. 



IEEE TRANSACTIONS ON MULTIMEDIA, MANUSCRIPT 1

V-SVR+: Support Vector Regression with
Variational Privileged Information

Yangyang Shu, Qian Li, Chang Xu, Shaowu Liu, and Guandong Xu

Abstract—Many regression tasks encounter an asymmetric
distribution of information between training and testing phases
where the additional information available in training, the so-
called privileged information (PI), is often inaccessible in testing.
In practice, the privileged information in training data might
be expressed in different formats, such as continuous, ordinal,
or binary values. However, most the existing learning using
privileged information (LUPI) paradigms primarily deal with
the continuous form of PI, preventing them from managing
variational PI, which motivates this research. Therefore, in this
paper, we propose a unified framework to systematically address
the aforementioned three forms of privileged information. The
proposed V-SVR+ method integrates continuous, ordinal, and
binary PI into the learning process of support vector regression
(SVR) via three losses. For continuous privileged information,
we define a linear correcting (slack) function in the privileged
information space to estimate slack variables in the standard SVR
method using privileged information. For the ordinal relations of
privileged information, we first rank the privileged information
and then, regard this ordinal privileged information as auxiliary
information used in the learning process of the SVR model.
For the binary or Boolean privileged information, we infer a
probabilistic dependency between the privileged information and
labels from the summarized privileged information knowledge.
Then, we transfer the privileged information knowledge to
constraints and form a constrained optimization problem. We
evaluate the proposed method in three applications: music emo-
tion recognition from songs with the help of implicit information
about music elements judged by composers; multiple object
recognition from images with the help of implicit information
about the object’s importance conveyed by the list of manually
annotated image tags; and photo aesthetic assessment enhanced
by high-level aesthetic attributes hidden in photos. Experiment
results demonstrate that the proposed methods are superior to
the classic learning paradigm when solving practical problems.

Index Terms—support vector regression, variational privileged
information

I. INTRODUCTION

In most traditional regression algorithms, the same infor-
mation distribution is required to both train and test the
model. However, one can access not only the input/output
training pairs of the task we want to learn but also additional
information on the training examples (the so-called privileged
information (PI)), which can include photo aesthetic attributes
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in photo assessment tasks. Typically, this additional informa-
tion is more informative to learning tasks than using training
data alone; thus, PI has been extensively researched to enhance
various learning tasks. However, privileged information is
typically not easily obtained for reuse in testing due to the
higher data collection costs and/or a lack of access to domain
expertise.

To address this issue, Vapnik and Vashist et al. [1] first
proposed the learning using privileged information (LUPI)
paradigm to integrate privileged information into the learning
process and achieved success with various machine learning
algorithms, including regression tasks, which is the focus of
this paper. By exploiting privileged information, a regression
model can be trained better when PI is involved during learn-
ing or parameter optimization. Taking music as an example,
the tempo, mode, brightness, and loudness of music elements,
which implicitly exist in songs, can improve the musical
quality of each song. Because these music elements can be ex-
tracted during training, they are only available during training
but not during testing. Learning from privileged information
is also common in many other applications. For example,
in multiple object recognition, the ordinal relations among
different objects, which are implicitly supplied by annotators,
imply the importance of the image’s context. For photo aes-
thetic assessment, high-level aesthetic attributes such as the
rule of third, complementary and motion blur are provided
by database promulgators. Photos with these implicit high-
level attributes are beneficial for aesthetics. To use the LUPI
paradigm, Vapnik and Vashist [1] first upgraded the support
vector machine (SVM), proposed the SVM+ method and
extended the SVM+ method (e.g., a mixture model of slacks
of learning using privileged information). Because SVM+ is
computationally expensive, various studies of optimization
techniques have been conducted to solve SVM+, such as
extended L1-norm SVM [2], L2-norm SVM+ [3] and W-SVM
[4].

Although many LUPI algorithms have been proposed in
recent literature, the efficient modelling of variational forms
of privileged information remains a challenging task, which
prevents the wider adoption of this technique in practice. Most
existing algorithms assume that the privileged information
is provided in the same form, which is often not true in
real-world applications. For example, as shown in Figure 1,
privileged information exists as continuous, ordinal and binary
values. An example of continuous privileged information is
the tempo of a piece of music which is an essential musical
element that can evoke emotions of excitement in the audience.
For ordinal privileged information in the middle of Figure 1,
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music emotion recognition

implicit cues/PI

forms of PI

tempo

continuous PI: 

tempo=120 bps

multiple object recognition

person, motorbike, road, barrier 

ordinal PI:

person>motorbike>road>barrier  

photo aesthetic assessment

rule of third

binary PI:

left photo without PI : 0

right photo with PI : 1 

topic/task

Fig. 1: Examples of different forms of privileged information in regression applications

the implicit importance ranking from photo tags indicates that
a photo has good content and information, which can be
leveraged for multiple object recognition. For binary privileged
information, we provide an example of a photo aesthetic
assessment task shown on the right of Figure 1. Certain
high-level descriptive attributes, such as the rule of third,
explicitly predict possible image cues that can be used to
evaluate aesthetics. We indicate whether these attributes exist
by denoting them as either 0 or 1. Therefore, considering
different forms of PI in training will be of more benefit to
learning than using unified privileged information.

In this paper, we enhance regression learning with differ-
ent forms of privileged information. Unlike previous studies,
we integrate three forms of privileged information into the
regression model to improve regression learning performance.
Specifically, the proposed approach with continuous, ordinal,
and binary values is based on the maximum margin regression
model. For continuous privileged information in the proposed
paradigm, we solve this problem using the Lagrangian mul-
tiplier method [5]. For ordinal privileged information in the
proposed paradigm, we use the alternating direction method
of multipliers (ADMM) due to the large constraints in the
constraint condition and its compactness in solving this prob-
lem [6]. For binary privileged information, we use stochastic
gradient descent (SGD) to solve this optimization problem
because the objective function is a differential equation and
the partial derivative of the required parameter is easily
calculated,. The proposed V-SVR+ framework is evaluated in
three applications: music emotion recognition from songs with
the assistance of implicit information about music elements
judged by composers; multiple object recognition from im-
ages with the assistance of implicit information about object
importance conveyed by the list of manually annotated image
tags; and photo aesthetic assessment enhanced by high-level
aesthetic attributes hidden in the photos. For music emotion
recognition, we conduct experiments on the benchmark dataset
MediaEval and the All Music Guide 1608 database (AMG
1608). For multiple object recognition and photo aesthetic
assessment, we conduct experiments on the Pascal VOC

2007 database and the Aesthetics Visual Analysis database
(AVA), respectively.

The contributions of this paper are as follows:
• We propose a unified framework that integrates contin-

uous, ordinal, and binary privileged information into the
learning process of SVR. To our knowledge, the proposed
V-SVR+ algorithm with the corresponding optimization
strategies, is the first to learn from variational privileged
information.

• Despite their success in certain applications, LUPI algo-
rithms have received little attention in applications with
noncontinuous privileged information. In this paper, we
make the first attempt to introduce LUPI algorithms to
new domains, such as multi-object recognition, in which
privileged information exists in non-continuous forms.

• We conduct extensive experiments on four public data
sets to study the behaviour and performance of the
proposed V-SVR+ framework. Also, we annotate two
music data sets (MediaEval 2015 and AMG 1608)
with privileged information, which are publicly available
at: https://github.com/GANPerf/Music PI

II. RELATED WORKS

Privileged information acts similar to a teacher that informs
his/her students of helpful comments, comparisons and ex-
planations to improve regression performance. PI is available
during training but not testing. Successfully leveraging PI will
benefit the learning process of a model. Vapnik and Vashist
[1] first proposed learning using privileged information (LUPI)
paradigm by upgrading a support vector machine (SVM),
proposing the SVM+ method and then extending the SVM+
method (e.g. the mixture model of slacks of LUPI).

Because SVM+ is computationally expensive to train, vari-
ous studies of optimization techniques and SVM+-based algo-
rithms have been proposed to solve SVM+. Niu et al. [2] pro-
posed an extended l1 SVM model that uses nonlinear kernels.
Instead of the original data domain, the proposed model allows
the PI to be explored in a transformed feature space compared
to the l2 SVM+ model. Lapin et al. [4] replicated an SVM+

https://github.com/GANPerf/Music_PI
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solution via a weighted SVM. Privileged information is first
related to importance weighting, and then, prior knowledge
was encoded as expressible privileged features using weights.
Finally, they chose weights for the weighted SVMs when the
privileged features were unavailable. Li et al. [3] proposed
efficiently solving linear and kernel SVM+s using an efficient
dual coordinate descent algorithm to solve a new optimization
problem that is formulated by absorbing the bias term into the
weight vector. For kernel SVM+, they used the l2-loss based
on the ρ-SVM formulation. In addition to using clean training
and testing data in SVM+, Li et al. [7] derived a robust SVM+
(R-SVM+) algorithm to study the lower bound of perturbations
of both example feature data and privileged feature data based
on the SVM+ framework in the LUPI paradigm when potential
noise exists in the training and testing data.

Initial work on SVM+ was used for binary classification.
Several studies then applied SVM+ to multi-class and multi-
label tasks. Wang et al. [8] proposed applying privileged
information to learn multi-label classifiers and captured the
relationship between PI and the available features using simi-
larity constraints, and the dependencies among multiple labels
using ranking constraints. You et al. [9] proposed the privi-
leged multi-label learning (PrML) model to comprehensively
explore and exploit the relationships among different labels
and explained the hypothesis of a label that is evaluated by
itself and the other labels. Yang et al. [10] proposed the use
of a two-stream fully convolutional network to use bag-level
privileged information (privileged bags) that are available in
multi-instance multi-label learning. Ji et al. [11] proposed
the multitask multi-class privileged information support vector
machines (M2SVMS) learning paradigm to take full advan-
tage of multitask learning and privileged information. Liu
et al. [12] proposed the v-K-SVCR+ method for multi-class
classification using privileged information, which solves a one-
class classification problem.

In addition to SVM+ classification problems, privileged
information is also used in certain regression methods. Cai et
al. [13] proposed a regression model called the SVM+MTL-
based multi-task learning method. Sarafianos et al. [14] used
ratios of anthropometric measurements as privileged informa-
tion in a regression-based method to estimate height using
human metrology. Shu et al. [15] proposed a deep convolu-
tional neural network as a rating system and used photo-based
and photography-based attributes as privileged information to
enhance the learning process of the regression model.

Privileged information has also been used in various fields,
such as image categorization [16] [17], facial expression
recognition [18], domain adaptation [19] [20] and deep learn-
ing [21] [22]. However, to our knowledge, few studies have
considered the different forms of privileged information with
their corresponding paradigms.

Discussion We consider examples of multimedia computing
tasks that can be used and improved upon by the proposed
method. Example 1. It is assumed that in social multimedia
networks, the modelling goal is to predict future links in a
growing network based on the use of the existing network
structure [23]. We have two networks: one is the existing link
information in a mature network, and the other is a relatively

new network. The derived attributes between node pairs, such
as structural similarity or attribute similarity, can be used as
privileged information during training to generate predicting
links in the new network. Example 2. Let the proposed goal
be to group recommendations (e.g. recommending Flicker
groups) [24]. Specifically, we must design a system that can
index and retrieve groups to help users conveniently search
and discover groups of interest. It is beneficial to regard
similar latent interests and themes as privileged information
between users and recommended groups to allow users access
desired groups more easily. Example 3. It is assumed that the
proposed goal is to find a typicality ranking scheme for natural
scene categorization [25]. In this problem, we consider certain
high-level photo attributes such as object emphasis and color
because they represent the human perspective. However, in
the training data, we have observations about these attributes.
Can these be used as privileged information to construct a
better prediction rule of typicality ranking? Example 4. Let
the proposed goal be automatic semantic annotation of video
or video segments [26]. For certain frames, specifically key
frames, we can manually annotate the object’s importance
conveyed in frame tags, which can be used as privileged
information during training to improve content-based video
searching. PI also can be used in community detection [27].

To summarize, privileged information is ubiquitous in mul-
tiple areas and also typically exists for nearly any machine
learning problem.

III. METHOD

In this section, we define the problem and introduce the
method of SVR+ integrating different forms of privileged
information. The framework of the proposed method is shown
in Figure 2.

C O B

Continuous PI
𝑤1, 𝑏1

Ordinal PI
𝑤2, 𝑏2

Binary PI
𝑤3, 𝑏3

C

O

B

𝐿1

𝐿2

𝐿3

Fig. 2: The framework of the proposed V-SVR+ model,
consisting of three modules to manage three forms of PI
respectively. The input of {C,O,B} represents continuous,
ordinal and binary forms of privileged information. w1, b1,
w2, b2, w3, b3 are their parameters.

We denote a set of V = {X,X∗(c),X∗(o),X∗(b),Y},
where X ∈ RN∗d is a feature matrix, Y ∈ RN is the
ground-truth vector, X∗(c) ∈ RN∗d∗(c) , X∗(o) ∈ RN∗d∗(o) and
X∗(b) ∈ RN∗d∗(b) are their corresponding continuous, ordinal
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and binary privileged information matrices. The objective
function of the proposed V-SVR+ is given as:

L = λ1L1 + λ2L2 + λ3L3 (1)
s.t. λ1 + λ2 + λ3 = 1

where L1, L2 and L3 are the different losses corresponding
to the continuous, ordinal and binary forms of PI respectively.
λ1, λ2 and λ3 are the weights to balance the tradeoff among
losses. The goal of this method is to predict unknown labels for
new samples via a real-valued regression function y = f(x).

A. PI with Continuous Information

Given the continuous form of privileged information, we
consider the following three linear functions:

f(Xi) = (w, φ(Xi)) + b,

f∗1 (X
∗(c)
i ) = (w∗1, φ(X

∗(c)
i )) + b∗1,

f∗2 (X
∗(c)
i ) = (w∗2, φ(X

∗(c)
i )) + b∗2

(2)

where w, w∗1 and w∗2 are the weight coefficients of the
general feature regressor and privileged information regressor,
respectively, b, b∗1 and b∗2 are their bias. φ(Xi) and φ(X

∗(c)
i )

project the i-th training data Xi and X
∗(c)
i into the kernel

space; (,) indicates the matrix product of the two terms in the
bracket; and f∗1 and f∗2 are the correcting functions for slacks
η+ and η− respectively.

Therefore, the objective function of continuous PI is as
follows:

min
w,w∗1 ,w

∗
2

N∑
i=1

1

2
(||wi||2 + ||w∗1i||2 + ||w∗2i||2) (3)

+ γ

N∑
i=1

[(w∗1i, φ(X
∗(c)
i )) + b1i]

+ γ

N∑
i=1

[(w∗2i, φ(X
∗(c)
i )) + b∗2i]

s.t. Yi −wi
Tφ(Xi)− b ≤ ε+ (w∗1i, φ(X

∗(c)
i )) + b∗1i

wi
Tφ(Xi) + b− Yi ≤ ε+ (w∗2i, φ(X

∗(c)
i )) + b∗2i

[(w∗1i, φ(X
∗(c)
i )) + b∗1i] ≥ 0

[(w∗2i, φ(X
∗(c)
i )) + b∗2i] ≥ 0, ∀i

To solve this convex optimization problem, we apply the
Lagrangian multiplier method [5] to simplify the formulation
and improve computational efficiency. The Lagrangian func-
tion is shown as follows:

L1 =
N∑
i=1

1

2
(||wi||2 + ||w∗

1i||2 + ||w∗
2i||2)

+ γ

N∑
i=1

[(w∗
1i, φ(X

∗(c)
i )) + b∗1i] + γ

N∑
i=1

[(w∗
2i, φ(X

∗(c)
i )) + b∗2i]

+

N∑
i=1

αi(Yi − f(Xi)− ε− f∗
1 (X

∗(c)
i )) +

N∑
i=1

βi(0− f∗
1 (X

∗(c)
i ))

+

N∑
i=1

α∗
i (f(Xi)− Yi − ε− f∗

2 (X
∗(c)
i )) +

N∑
i=1

β∗
i (0− f∗

2 (X
∗(c)
i ))

(4)

where α, α∗, β, β∗ are Lagrangian multipliers.
Then, we obtain the dual problem for this object as follows:

min
α,α∗,β,β∗

N∑
i=1

γi(αi − α∗i ) + ε(αi + α∗i ) (5)

+
1

2

N∑
i=1

N∑
j=1

(αi − α∗i )(αj − α∗j )K(Xi,Xj)

+
1

2

N∑
i=1

N∑
j=1

(α∗i + β∗i − γ)(α∗j + β∗j − γ)K∗(Xi
∗(c),Xj

∗(c))

+
1

2

N∑
i=1

N∑
j=1

(αi + βi − γ)(αj + βj − γ)K∗(Xi
∗(c),Xj

∗(c))

s.t.
N∑
i=1

(α∗i − αi) = 0,

N∑
i=1

(α∗i + β∗i − γ) = 0

N∑
i=1

(αi + βi − γ) = 0

α∗i , αi, β
∗
i , βi ≥ 0 i = 1, ..., N.

where K(·, ·) and K∗(·, ·) are the kernels that define the inner
products for φ(X) and φ(X∗(c)) respectively; and α, α∗, β, β∗

are the model parameters for solving this optimization prob-
lem.

Then, based on the KKT condition, we obtain the parame-
ters w and b using the details in [28] as follows:

w =

N∑
i=1

(α∗i − αi)Xi,

b =
1

|S|+ |S′ |

∑
s∈S

(Ys − ε− wXs) +
∑
s∈S′

(Ys + ε− wXs)

 ,
(6)

where S and S
′

are sets that correspond to two correcting
functions The two correcting functions are shown as follows:

f∗1 (X) = (w∗1 , φ(X∗(c))) + b∗1

=

N∑
i=1

(αi + βi − γ)K∗(Xi
∗(c),X∗(c)) + b∗1,

f∗2 (X) = (w∗2 , φ(X∗(c))) + b∗2

=

N∑
i=1

(α∗i + β∗i − γ)K∗(Xi
∗(c),X∗(c)) + b∗2

(7)

Thus, the decision function for solving this problem is given
as follows:

f(X) =

N∑
i=1

(α∗i − αi)K(Xi,X) + b. (8)

We use the conditional gradient method to solve Eq. 5. The
obtained parameters w and b as w1 and b1 in the first module
of the proposed framework as shown in Figure 2.
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B. PI with Ordinal Information

For ordinal privileged information, we consider two forms
of ranking for different tasks: monotonically ascending rank-
ing and monotonically descending ranking. Thus, we pro-
vide the following ranking sets of privileged information:
E = {(i, j)|X∗(o)i ≤ X

∗(o)
j or X

∗(o)
i > X

∗(o)
j }, where

i, j ∈ {1, 2..., d∗(o)}. Specifically, (i, j) when X
∗(o)
i ≤ X

∗(o)
j

denotes an ascending relationship among PI. Conversely, when
X
∗(o)
i > X

∗(o)
j , a descending relationship is indicated.

In this situation, two mappings can be represented as
follows:

f(Xi) = (w, φ(Xi)) + b,

f∗(X
∗(o)
i ) = (w∗, φ(X

∗(o)
i )) + b∗,

(9)

where w∗ and b∗ are the weight coefficients and bias of the
privileged information respectively; (,) indicates the matrix
product of two terms in brackets. Then, we have the following
constraints:

|Yi − f(Xi)| ≤ ε+ ηi,

|Yi − f∗(X∗(o)i )| ≤ ε+ ηi,
(10)

where ηi is the slack variable that measures the failure to meet
ε distance.

Then, we consider the defined set E and provide the
following inequation:

f∗(X∗(o)i)− f∗(X∗(o)j) ≥ 1− ξ∗ij , (11)

where ξ∗ij is the slack variable to allow some number of
disorders where the important privileged information is ranked
below the unimportant privileged information, and i and j
satisfy ranking sets E.

Thus, the objective function handling with ordinal PI is as
follows:

min
θ,η,ξ

1

2
(||w||2 + ||w∗||2) + γ1

N∑
n=1

N∑
k=1

(η
(n)+
k + η

(n)−
k )+

(12)

γ2

N∑
n=1

∑
(i,j)∈E

ξ
∗(n)
ij

s.t. wTX
(n)
k + w∗TX∗(o)

(n)

k + b+ b∗ − Y (n)
k ≤ ε+ η

(n)+
k

Y
(n)
k −wTX

(n)
k −w∗TX∗(o)

(n)

k − b− b∗ ≤ ε+ η
(n)−
k

w∗T (X∗(o)
(n)

i −X∗(o)
(n)

j ) ≥ 1− αijξ∗(n)ij

η
(n)+
k , η

(n)−
k , ξ

∗(n)
ij ≥ 0

(i, j) ∈ E, n = 1, ..., N

where θ = [w;w∗; b; b∗] are the parameters to be optimized.
The first four sets of constraints are used to fit the regression
model to the ground-truth labels. The fifth set of constraints
is used to exploit the ordinal privileged information. The
additional parameter α = {αij} = { 1

|i−j|},∀i 6= j is used
to satisfy temporal smoothness.

We use ADMM when the optimization problem contains
a large number of constraints. The usage of augmented
Lagrangian multipliers can accelerate convergence [6]. The

complexity for solving Eq (12) is O(n2), where n is the
number of samples.

Because ADMM cannot be directly applied to Eq. (12), we
first transform Eq. (12) and define µ = [γ1; γ2α], where γ1
is the coefficient of the first four sets of constraints, γ2α is
the fifth set of constraints in Eq. (12) and µ ∈ RM1+M2 is a
vector whose first M1 entries are γ1 and the last M2 entries
are γ2α. Let t = [η

(n)+
k , η

(n)−
k , ξ

∗(n)
ij ] ∈ RM1+M2 , where M1

is the number of constraints corresponding to [η
(n)+
k , η

(n)−
k ]

loss and M2 is the number of constraints corresponding to
ξ
∗(n)
ij loss. Based on these definitions, we formulate Eq. (12)

as
min
θ,t

1

2
θTΛθ + µT t

s.t.Aθ − t = c
(13)

where Λ ∈ R(d+d∗(o)+2)×(d+d∗(o)+2) is a diagonal matrix and
A ∈ R(M1+M2)×(d+d∗(o)+2) is a matrix and c ∈ RM1+M2 .
Specifically,

A =

 X X∗(o) 1 1
−X −X∗(o) −1 −1
0 −XE 0 0

 c =

 ε1 + Y
ε1−Y
−1

 (14)

where XE is a matrix whose rows are the difference between
two PIs whose indices belong to set E. 1 and 0 are vectors
with the proper dimensions containing all 1s and 0s, respec-
tively. Y is a vector of the known labels.

The augmented Lagrangian has a quadratic form with re-
spect to θ, t and is linear to v. The augmented Lagrangian can
be formulated as the following equation which can be solved
by ADMM.

L2 = Lρ(θ, t, v) =
1

2
θTΛθ + µT t+ vT (Aθ − t− c)

+
ρ

2
||Aθ − t− c||22

(15)

Then, the gradient of Lp(θ, t, v) w.r.t. θ or t can be computed
as follows, respectively.

∂Lρ(θ, t, v)

∂θ
=θΛ + vTA+ ρAT ||Aθ − t− c||1 (16)

∂Lρ(θ, t, v)

∂t
=µT − vT − ρA||Aθ − t− c||1 (17)

The new iterations of θ, t and v can be produced by letting
∂Lp(θ, t, v)/∂θ = 0 and ∂Lp(θ, t, v)/∂t = 0.

θk+1 := [
1

ρ
Λ +ATA]−1AT (tk − 1

ρ
vk + c) (18)

tk+1
i :=

1

ρ
vk +Aθk+1 − 1

ρ
µ− c (19)

vk+1 := vk + ρ(Aθk+1 − tk+1 − c) (20)

Let f(θ) = θTΛθ and g(t) = µT t. Because f(θ) and
g(t) are convex functions, Lρ in Eq. 15 is also convex.
Thus, Eq. 18 and Eq. 19 can obtain the unique optimal
solution and these updates are convergent [6]. In particular,
t = [η(n)+, η(n)−, ξ∗(n)] is a non-negative, and we set a
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threshold λ to make sure t ≥ 0. Let zi = 1
ρv
k+Aθk+1− 1

ρµ−c,
then

tk+1
i = Tλ(zi) =


zi − λ, if zi > λ

0, if |zi| ≤ λ
zi + λ, if zi < −λ

(21)

where λ ≥ 0 is the soft threshold operator and i is the ith

entry in each vector.
After finishing the optimization problem, the estimated

parameters w and b as w2 and b2 in the second module of
the proposed framework are shown in Figure 2.

C. PI with Binary Information

In this section, privileged information X
∗(b)
im ∈ {0, 1}d∗(b)m=1

is a binary or Boolean value that denotes whether the i-
th training data contains privileged information. Hypothesis
Yi ∈ [a, b] and q is a threshold to divide Yi into good
performance [a, q] as S+ and bad performance (q, b] as S−.
In general, because privileged information provides the model
with helpful comments, comparisons, and explanations, we
conclude that the model with PI is more likely to improve
performance. Conversely, if PI is not involved in the learning
process of the model, the performance will worsen. Thus, the
probabilistic relations are shown as:

p(Ŷ = S+|X∗(b) = 1) > p(Ŷ = S−|X∗(b) = 1)

p(Ŷ = S−|X∗(b) = 0) > p(Ŷ = S+|X∗(b) = 0)
(22)

where p(Ŷ = S+|X∗(b) = 1) and p(Ŷ = S−|X∗(b) = 1)
indicate the probabilities of good performance and poor per-
formance respectively, when there is helpful privileged infor-
mation. p(Ŷ = S−|X∗(b) = 0) and p(Ŷ = S+|X∗(b) = 0)
are the complementary expressions.

In the proposed method, we use the ReLU function to
penalize samples that violate this formula. The corresponding
penalty lim(Xi, X

∗(b)
im , Ŷi) based on Eq. 22 is encoded as

follows:

`im(Xi, X
∗(b)
im , Ŷi) = X

∗(b)
im ∗ [p(Ŷi = S−|X∗(b)

im = 1)

− p(Ŷi = S+|X∗(b)
im = 1)]+ + (1−X∗(b)

im ) ∗ [p(Ŷi = S+|X∗(b)
im = 0)

− p(Ŷi = S−|X∗(b)
im = 0)]+

= X
∗(b)
im ∗ [1− 2 ∗ p(Ŷi = S+|X∗(b)

im = 1)]+

+ (1−X∗(b)
im ) ∗ [2 ∗ p(Ŷi = S+|X∗(b)

im = 0)− 1]+
(23)

where [·] = max(·, 0).
The objective function of binary PI is as follows:

L3 =
1

2
wTw + c1

N∑
i=1

`ε(f(Xi,w)− Yi)

+ c2

N∑
i=1

d∗(b)∑
m=1

`im(Xi, X
∗(b)
im , Ŷi)

(24)

where w is the parameter of the regression model; and c1 and
c2 are the coefficients. For f(X,w), we use a linear function

and apply the sigmoid function to replace the probabilistic
dependencies as follows:

p(Ŷ = S+|X∗(b)) = σ(f(X,w))

p(Ŷ = S−|X∗(b)) = 1− σ(f(X,w))
(25)

where σ(X) = 1
1+e−X .

We use stochastic gradient descent (SGD) to solve the
problem. The updating rule is shown as follows:

w(t+1) = w(t) − η(t) ∂L3

∂w
(26)

where t and η are the number of iterations and the learning
rate respectively.

The gradient of the loss function to the weight can be
computed as follows:

∂L3

∂w
=w + c1

N∑
i=1

∂`ε(f(Xi,w)− Yi)
∂w

+

c2

N∑
i=1

d∗(b)∑
m=1

∂`im(Xi, X
∗(b)
im , Ŷi)

∂w

(27)

where the specific gradient of the loss function to the weight
is computed as:

∂`ε(f(Xi,w)− Yi)
∂w

=

{
0, if |f(Xi)− Yi| ≤ ε
φ(Xi), otherwise.

(28)

∂`im(Xi, X
∗(b)
im , Ŷi)

∂w
=



− 2σ(f(Xi,w))[1− σ(f(Xi,w))]φ(Xi),

if X
∗(b)
im = 1 and 1− 2σ(f(Xi,w)) ≥ 0

2σ(f(Xi,w))[1− σ(f(Xi,w))]φ(Xi),

if X
∗(b)
im = 0 and 2σ(f(Xi,w))− 1 ≥ 0

0, otherwise.
(29)

When the algorithm converges, the estimated parameters w and
b as w3 and b3 in the third module of the proposed framework
shown in Figure 2.

IV. EFFICIENCY ANALYSIS OF THE PROPOSED V-SVR+
FRAMEWORK

TABLE I: Comparison of models in time complexity.

Sample size (n) Time complexity Exec.Time (s)
V-SVR+(Continuous) 25,800/1206 O(n) 47/30

V-SVR+(Ordinal) 5011 O(n2) 180
V-SVR+(Binary) 210,000 O(n) 783
Adv-DCRN [29] 210,000 - 9600
PI-DCNN [30] 210,000 - 6200

In this section, we discuss the time complexity and running
time for convergence or to reach the maximum number of
iterations of the proposed V-SVR+ framework shown in Ta-
ble I. We also discuss two current LUPI methods regarding
photo aesthetics tasks, where n is the number of training
samples. We find that the time complexity of SVR with
the continuous PI (V-SVR+, λ2, λ3 = 0) model and SVR
with the binary PI model (V-SVR+, λ1, λ2 = 0) is O(n).
The time complexity of SVR with the ordinal PI model
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Fig. 3: Musical elements used by composers to communicate
emotions to audiences

(V-SVR+, λ1, λ3 = 0) is O(n2) due to the large number
of constraints on ordinal relations. We also determine the
approximate execution time when the loss decreases below
a given tolerance value or reaches the maximum number of
iterations on the four benchmark databases. Then, we find
that the V-SVR+ framework converges in a shorter execution
time on the aesthetics assessment task compared to the other
methods.

V. EXPERIMENTS

We use two music databases, the MediaEval [31] and
All Music Guide 1608 databases (AMG 1608) [32], and
two photo databases, the Pascal VOC 2007 [33] and the
Aesthetics Visual Analysis (AVA) databases [34], to conduct
the following experiments.

A. Experimental conditions

1) Continuous PI-related music emotion recognition: Mu-
sic emotion recognition involves the time-continuous estima-
tion of emotion in music, which is typically performed in
two dimensions: the arousal space and the valence space [35].
Many musical elements, including tempo, mode, brightness
and loudness, are used by composers to affect the audience’s
experience [36]. In Figure 3, we summarize the relation-
ship between these four musical elements and emotion, and
highlight the four primary dimensions. These four musical
elements can be extracted by the MIR toolbox [37]. Wang et
al. [38] and Shu et al. [30] found that tempo, brightness and
loudness have a strong relationship with the arousal space,
while mode has a strong relationship with the valence space.
These musical elements exist in songs as continuous values
when audiences listen to music, however, they are difficult
to obtain during testing. Thus, considering their relations
with the emotion dimension, we use tempo, brightness and
loudness as privileged information in arousal space and mode
as privileged information in valence space. The details of
privileged information in music emotion recognition are shown
in Table II.

The MediaEval dataset 1 is split into a training set and
a testing set. The training set contains 430 music clips with
each clip being 45 s in length, and the testing set contains
58 complete music pieces with an average of 234 s per
clip. The AMG 1608 dataset contains 1608 preview clips of
Western songs, which are collected from a popular music
stream service called 7digit. We use four-fold cross-validation
on this database. For these two databases, we use the features
provided by the database promulgator and extract the four
musical elements as privileged information using the MIR
toolbox [37].

2) Ordinal PI-related multiple object recognition: The goal
of multiple object recognition is to detect which instances the
image contains, such as cars, people and dog. The implicit
cues of importance among the objects in the images are bene-
ficial for multiple object recognition, as shown in Figure 4.
We regarded the implicit cues of importance as privileged
information obtained from the image absolute tag rank.

The Pascal VOC 2007 database contains 9963 images
with 20 classes as target labels. The database is divided
into two subsets: 5011 samples for training and 4952 sam-
ples for testing. We use 512-dimensional gist features, 200-
dimensional bag of visual word features [39] [40] and 64
dimensional color histogram features [41] [40] in the exper-
iments. Specifically, the 339-dimensional absolute tag rank
features used as privileged information during training are
provided in [41] where 20 classes as target labels are given
with continuous values. Thus, we can use a regression method
to finish this classification task.

3) Binary PI-related photo aesthetic assessment: The photo
aesthetic assessment task aims to assess photo quality ac-
curately with the assistance of different classifiers and deep
models. The aesthetic attributes of photos are typically used
to evaluate photo quality.

The AVA database contains 250,000 photos collected from
a social network 2, and is divided into a training set of
230,000 photos and a testing set of 20,000 photos. The 20,000
photos are selected randomly from the training set as the
validation set. In this database, promulgators provide 14 types
of aesthetic attributes with a binary value of 0 or 1. The 14 at-
tributes are Soft Focus, Complementary, Light on White, HDR,
Photo Grain, Duotones, Shallow DoF, Long Exposure, Motion
Blur, Negative Photo, Rule of Thirds, Macro, Silhouettes and
Vanishing Point. These attributes are considered to be PI in
binary form, which is available in training but not available in
testing. Some of these attributes are shown in Figure 5.

The features used in the AVA database are extracted by the
proposed designed network. Specifically, each photo is first
rescaled so that the length of the shorter side is 256. Then,
224×224 patches are cropped randomly from the rescaled
photo for data augmentation [42]. Finally, we extract the
2048 dimensional size of the feature representation using the
PyTorch and ResNet [43] model from the pre-trained ResNet-
152.

1http://www.multimediaeval.org/mediaeval2015/emotioninmusic2015/
2http://www.dpchallenge.com

http://www.multimediaeval.org/mediaeval2015/emotioninmusic2015/
http://www.dpchallenge.com
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TABLE II: The statistics for privileged information in the MediaEval 2015. Note that
√

denotes a strong dependency
between privileged information and arousal/valence. In the valence space, only one element (mode) is related.

ID PI Musical dimensions Description Arousal Valence
1 Tempo Rhythm Expresses the rhythm and fluency of the music

√

2 Mode Tonality A system of musical tonality
√

3 Brightness Timbre A powerful component in constructing the musical piece
√

4 Loudness Dynamics Typically, used by musicians to deliver dynamics in a musical piece
√

horse> tree

>person>sky

> building>grass

car> chair

>person

person> bookshelf

>light>candle

>window>earrings

>frame>plate

>curtain>fruit

sheep> grass

>stone

pottedplant

> window

>stone

aeroplane>sky

>person> fan

Fig. 4: Example PASCAL images with relative importance of the objects collected on Mechanical Turk.

Duotone       HDR              Long Exposure Macro       Motion Blur   Negative   Rule of Third  Depth of Field  Silhouette     Soft Focus       Vanishing Point

Fig. 5: Different aesthetic qualities w.r.t. different high-level attributes. The top row includes photos with high aesthetic qualities.
The bottom row includes photos with low aesthetic qualities.

4) Experimental design: For music emotion recognition
with the assistance of implicit information about music ele-
ments, we conduct the following experiments in the arousal
space: music emotion estimation without any PI (none), music
emotion estimation with a single PI (tempo, brightness or
loudness), music emotion estimation with two PIs and music
emotion estimation with all PIs. In the valence space, we
design the following experiments: music emotion estimation
without any PI (none) and with mode (mode). In the valence
space, the mode is the only musical element that affects the
valence space. Also, we miss music elements at random with
certain probabilities (10%, 20%, 30%, 40%, 50%, 60% and
70%).

For multiple object recognition from images with the help of
implicit information, we conduct experiments on 20 category
labels. Although multiple object recognition is a classification
task, we use the regression method to complete this task
because 20 category labels have been given [40], and the de-
viation degree of each predicted classification and the ground
truth must be calculated. Thus, we conduct the following

experiments: using features without any implicit importance
cues (SVM) and using features with the help of implicit
importance cues as privileged information (V-SVR+).

For the photo aesthetic assessment enhanced by high-level
aesthetic attributes, we first conduct experiment on 14 types
of privileged information. Then, we use all PI compared to
SVR and the deep learning method without PI (deep learning
with Euclidean loss only). Specifically, the SVR and V-SVR+
methods use the same features as deep learning at the feature
level. The differences are the decision-level where the methods
use the V-SVR+ model, ignore the PI model (SVR), and deep
learning which uses a fully connected network with Euclidean
loss only (DL). We also miss 14 kinds of aesthetic attributes
at random with probabilities similar to music emotion recog-
nition.

After conducting the contrasting experiment, a statistical t-
test is used to analyse whether there are meaningful differences
between the model using privileged information and the model
that does not use privileged information by considering the p-
values shown in Table VI.
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5) Performance metrics: The root mean square error
(RMSE), average Euclidean distance (AED) and Pearson
correlation (R) are used to evaluate the effectiveness of the
proposed V-SVR+ framework for the music emotion recog-
nition databases. In multiple object recognition, we use the
average precision (AP) as the metric used in the PASCAL
challenge 3 [33]. For the photo aesthetic assessment, on the
AVA database, we use the Spearman rank-order correlation
coefficient (SRCC) and accuracy as the metric evaluation [44].
In these metrics, the smaller the RMSE and AED, the better;
the opposite holds for R, AP, SRCC and accuracy.

B. Experiment results and analysis

1) Experimental results with continuous PI with the Me-
diaEval 2015 and AMG 1608 databases: The experimental
results for music emotion recognition with continuous priv-
ileged information with the MediaEval 2015 database and
AMG 1608 database are shown in Table III(a) and Table III(b)
respectively. From Table III, we make the following observa-
tions:

First, the proposed model with more musical privileged
information performs better on music emotion recognition
with a lower RMSE and higher R, compared to different com-
binations of music-related privileged information. Specifically,
with the MediaEval 2015 database, the model combining
privileged information about tempo and brightness (i.e. t+b
model) can improve performance by 0.035 for RMSE and
0.102 for R in the arousal space. Adding loudness to the
brightness model (i.e. b+l) can improve RMSE by 0.015 and
R by 0.077 in the arousal space. Augmenting the brightness
model using tempo and loudness privileged information (i.e.
t+b+l) decreases RMSE by 0.049 and increases R by 0.186
respectively. Similar observations and results can be obtained
with the AMG 1608 database. Each musical element repre-
sents a song using different metrics, and their effects on music
emotion recognition are complementary. Therefore, leveraging
more privileged information results in better recognition per-
formance.

Second, the models that leverage larger percentages of
privileged information achieve better performance than those
with smaller percentages. For example, with the MediaEval
2015 database, the proposed method decreases RMSE by 0.01
and 0.068, and increases R by 0.002 and 0.244 for arousal
respectively, compared to missing 10% and 70% of propor-
tions. In the valence space, the proposed method decreases
RMSE by 0.015 and 0.126, and increases R by 0.021 and 0.096
respectively, compared to missing 10% and 70% proportions.
For the AMG 1608 database, we draw similar conclusions.
Larger percentages of privileged information involve more
underlying knowledge and guidance that can benefit the music
emotion recognition task.

2) Experimental results with ordinal PI on the Pascal
VOC07 database: With the Pascal VOC 2007 database,
the recognition performance of every label is shown in Ta-
ble IV where we list our scores for all 20 classes. We compare
the proposed approach (V-SVR+) with the approach without

3http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

privileged information (SVR), the other three methods and
the best performance of the challenge (winner VOC 2007).
As shown in Table IV, the proposed method achieves better
than the SVR method. Our method also achieves better results
than those achieved in the official competition for 18 of 20
categories. For many objects (aeroplane, bicycle, bottle, bus,
cat, cow, dining table, dog, motorbike, sheep, sofa and TV-
monitor), we see good improvements. The proposed method
also achieves better performance on mean AP, which indicates
that ordinal privileged information contribute to better multi-
label classification.

3) Experimental results with binary PI on the AVA
database: Table V shows the experimental results of photo
aesthetic assessment enhanced by binary privileged informa-
tion on the AVA database. Binary PI equal to 1 represents
photos that contain given attributes, while binary PI equal to
0 represents photos that do not contain given attributes. From
Table V, we can make the following observations:

First, compared to the method without PI, the method using
single privileged information achieves better performance,
which indicates that the hidden attributes in a photo as privi-
leged information are beneficial for aesthetic assessment and
regression. Therefore, as expected, the method using combined
privileged information has better performance than the method
without any PI. For example, combining the 14 types of
aesthetic attributes can enhance the performance by 0.152
of SRCC and 16.13% of accuracy. Each aesthetic attribute
focuses on the photo from different aspects, for example,
”complementary” describes whether the photo has pairs of
colours; ”macro” concentrates on whether the camera uses
macro etc. Their effects on photo aesthetic assessment are
diverse and complementary. Therefore, the methods leveraging
more privileged information result in superior recognition
performance.

Second, compared to the method, which misses large per-
centages of privileged information, smaller missing percent-
ages achieve better performance. For example, for the model
that is missing 10% and 70% of the available PI, the proposed
method (considers all PI) increases SRCC by 0.001 and 0.065,
and increases accuracy by 0.47% and 2.19% respectively.
Larger percentages of privileged information involve more
underlying knowledge and guidance that can benefit photo
aesthetic assessment tasks.

4) Analyses of privileged information: We conduct hypoth-
esis testing to evaluate whether the methods that use privileged
information are significantly different from the methods that
ignore privileged information. We use the two-sample non-
parameter hypothesis (the Wilcoxon test) to evaluate the
differences in experimental results that do not follow normal
distributions. Table VI shows the experimental results of the
p-values of the model that uses privileged information and the
model that does not on the four databases. In particular, on
the AVA database, we add a deep learning model that only
considers Euclidean loss as a method that ignores privileged
information for comparison because we use deep learning
features at the feature level. From Table VI, we find that all
p-values are less than 0.05, which demonstrates that there is
a meaningful difference between the proposed model and the

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
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TABLE III: Average recognition results on the MediaEval 2015 database and the AMG 1608 database with different missing
proportions. “t+b” represents “tempo+brightness”, “t+l” represents “tempo+loudness”, “b+l” represents “brightness+loudness”,
“t+b+l” represents “tempo+brightness+loudness”.

(a) The results of RMSE and R on MediaEval 2015 database. “-/-” denotes RMSE/R.
miss 0% 10% 20% 30% 40% 50% 60% 70%

Arousal

none 0.280/0.343 0.280/0.343 0.280/0.343 0.280/0.343 0.280/0.343 0.280/0.343 0.280/0.343 0.280/0.343
tempo 0.242/0.507 0.248/0.492 0.254/0.483 0.259/0.472 0.263/0.454 0.264/0.439 0.268/0.412 0.269/0.393

brightness 0.247/0.496 0.249/0.483 0.252/0.477 0.258/0.452 0.260/0.437 0.266/0.419 0.269/0.403 0.271/0.396
loudness 0.252/0.476 0.254/0.471 0.256/0.464 0.261/0.456 0.264/0.448 0.264/0.422 0.266/0.406 0.269/0.388

t+b 0.212/0.598 0.227/0.544 0.236/0.496 0.241/0.478 0.246/0.443 0.2630.420 0.268/0.413 0.271/0.392
t+l 0.217/0.616 0.231/0.601 0.242/0.588 0.256/0.543 0.259/0.502 0.261/0.479 0.267/0.452 0.272/0.440
b+l 0.232/0.573 0.238/0.553 0.244/0.537 0.253/0.496 0.259/0.457 0.266/0.448 0.268/0.432 0.270/0.395

t+b+l 0.198/0.682 0.208/0.646 0.225/0.607 0.237/0.572 0.246/0.543 0.251/0.501 0.258/0.464 0.266/0.438

Valence none 0.376/0.016 0.376/0.016 0.376/0.016 0.376/0.016 0.376/0.016 0.376/0.016 0.376/0.016 0.376/0.016
mode 0.203/0.128 0.218/0.107 0.234/0.094 0.252/0.086 0.276/0.072 0.288/0.055 0.302/0.048 0.329/0.032

(b) The results of AED and R on AMG 1608 database. “-/-” denotes AED/R.
miss 0% 10% 20% 30% 40% 50% 60% 70%

Arousal

none 0.286/0.802 0.286/0.802 0.286/0.802 0.286/0.802 0.286/0.802 0.286/0.802 0.286/0.802 0.286/0.802
tempo 0.239/0.870 0.246/0.862 0.249/0.859 0.254/0.851 0.258/0.847 0.263/0.836 0.266/0.828 0.271/0.816

brightness 0.241/0.867 0.249/0.860 0.252/0.856 0.258/0.847 0.261/0.842 0.267/0.833 0.272/0.824 0.274/0.812
loudness 0.244/0.868 0.248/0.858 0.254/0.851 0.259/0.846 0.261/0.837 0.266/0.826 0.274/0.821 0.281/0.813

t+b 0.237/0.873 0.245/0.867 0.249/0.861 0.253/0.852 0.258/0.843 0.262/0.832 0.269/0.828 0.274/0.818
t+l 0.234/0.877 0.239/0.868 0.244/0.859 0.251/0.851 0.256/0.842 0.266/0.838 0.271/0.826 0.276/0.821
b+l 0.238/0.874 0.242/0.866 0.248/0.863 0.256/0.855 0.261/0.847 0.265/0.839 0.272/0.831 0.277/0.825

t+b+l 0.221/0.882 0.233/0.873 0.242/0.864 0.253/0.853 0.259/0.850 0.264/0.842 0.268/0.833 0.272/0.828

Valence none 0.292/0.350 0.292/0.350 0.0.292/0.350 0.292/0.350 0.292/0.350 0.292/0.350 0.292/0.350 0.292/0.350
mode 0.234/0.560 0.242/0.543 0.257/0.504 0.262/0.482 0.268/0.438 0.271/0.425 0.278/0.402 0.282/0.398

TABLE IV: Average precision (AP) scores per-class results on the Pascal VOC 2007 database. The results of the proposed
method rank first in 11 out of 20 classes.
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latent SVM [45] 38.83 38.86 65.77 12.14 19.10 36.91 55.62 55.10 29.33 22.31 34.31 45.80 14.81 61.80 52.90 38.95 18.81 32.55 40.17 49.87 51.58
tags LSVM [46] 39.51 38.99 65.87 12.56 20.16 30.07 57.17 55.26 32.41 22.49 35.17 45.04 16.64 61.31 53.38 38.61 21.77 32.94 40.52 50.88 51.96
Context-DA [47] 64 68.9 73.1 62.5 57.6 38.9 72.5 74.8 77.2 42.9 69.7 59.5 63.9 76.1 70.2 69.2 43.9 58.3 59.7 77.2 64.8

winner VOC 2007 [33] 59.4 77.5 63.6 56.1 71.9 33.1 60.6 78.0 55.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2
SVR 55.7 74.2 70.3 52.7 66.4 38.2 46.3 68.5 51.2 43.1 42.6 53.2 50.7 71.6 59.2 64.9 32.8 52.5 49.8 70.6 55.4

V-SVR+ 65.2 85.2 74.8 59.8 72.4 39.8 68.8 81.3 62.8 58.7 52.9 64.2 55.8 79.4 70.8 77.6 35.7 57.2 62.4 82.3 62.8
Our rank 1 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 3 2 1 1 2

model that ignores privileged information.

C. Comparison to related works

We use the MediaEval 2015 and AMG 1608 databases
to demonstrate the effectiveness of the proposed method
with continuous privileged information. We choose the fol-
lowing eight well-known methods for comparison on the
MediaEval 2015 database.
• Multiple linear regression (MLR) is the most common

form of linear regression and is typically viewed as a
baseline method for music emotion recognition [31].

• RNN [48] uses sequence modelling and prediction
smoothing to predict the V-A values in music.

• SVR [49] uses a radial basis kernel function.
• Double-scale support vector regression (DS+SVR) [50]

dynamically recognizes music emotion.
• The LSTM-RNN model extracts hidden acoustic and

psychoacoustic features from the songs that have been

previously shown to be effective for dynamic arousal and
valence regression [51].

• Deep BLSTM (DBLSTM) exploits the high context cor-
relation among music feature sequences and sequence
information for music emotion recognition [52].

• DNN uses the latest findings in deep learning by stacking
convolution layers for music emotion recognition [53].

• The DKLR model uses the domain knowledge of music
elements and transfers that knowledge to constraints for
music emotion analysis [30].

A comparison of the results of this experiments is shown in
Table VII(a). Compared to these methods, we use the simplest
features but achieve the best performance, which indicates the
vital role of PI in our methods. The proposed method uses
continuous PI (i.e. four musical elements) that yield better
performance compared to other methods.

Using another music emotion recognition database, AMG
1608, we compare our method with five popular meth-
ods shown in Table VII(b). Two of these are the same as
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TABLE V: Average estimation results of different attributes on the AVA database with different missing proportions. “-/-”
denotes SRCC and accuracy respectively, ”total” represents all the aesthetic attributes.

miss 0% 10% 20% 30% 40% 50% 60% 70%

none 0.536/64.30% 0.536/64.30% 0.536/64.30% 0.536/64.30% 0.536/64.30% 0.536/64.30% 0.536/64.30% 0.536/64.30%
Complementary 0.611/71.62% 0.602/70.74% 0.593/69.93% 0.574/67.62% 0.566/67.23% 0.561/66.58% 0.554/66.12% 0.542/65.48%

Duotones 0.597/69.82% 0.591/68.45% 0.578/67.64% 0.565/66.92% 0.548/66.17% 0.541/65.53% 0.539/65.17% 0.537/64.98%
HDR 0.595/69.74% 0.590/68.62% 0.581/67.96% 0.569/67.14% 0.557/66.53% 0.546/65.77% 0.540/65.16% 0.538/64.83%

Photo Grain 0.618/72.36% 0.607/70.88% 0.598/69.43% 0.577/67.66% 0.563/67.19% 0.552/66.54% 0.541/66.11% 0.539/65.39%
Light on White 0.608/70.44% 0.596/69.34% 0.588/68.88% 0.573/67.96% 0.564/67.18% 0.557/66.54% 0.546/66.27% 0.542/65.41%
Long Exposure 0.604/70.12% 0.594/69.78% 0.581/68.83% 0.572/68.12% 0.558/67.47% 0.551/66.52% 0.543/66.23% 0.541/65.47%

Macro 0.612/71.23% 0.602/70.04% 0.591/69.41% 0.583/68.33% 0.575/67.54% 0.558/66.52% 0.544/66.18% 0.538/65.21%
Motion Blur 0.598/69.75% 0.587/68.47% 0.580/67.72% 0.569/67.13% 0.562/66.49% 0.547/65.84% 0.542/65.26% 0.538/64.78%

Negative Photo 0.603/70.18% 0.592/69.84% 0.586/68.53% 0.568/67.42% 0.557/66.49% 0.552/65.72% 0.544/65.18% 0.539/64.96%
Rule of Thirds 0.621/72.36% 0.611/71.44% 0.603/70.65% 0.585/69.14% 0.573/68.37% 0.562/67.28% 0.554/66.54% 0.542/65.52%
Shallow DoF 0.594/69.84% 0.587/69.13% 0.576/68.77% 0.561/67.69% 0.549/66.54% 0.542/65.92% 0.539/65.07% 0.537/64.95%
Silhouettes 0.592/69.12% 0.584/68.76% 0.578/67.91% 0.563/67.02% 0.547/66.88% 0.542/65.93% 0.540/65.26% 0.538/64.88%
Soft Focus 0.607/70.11% 0.597/69.56% 0.582/68.71% 0.577/68.13% 0.564/67.26% 0.549/66.83% 0.544/65.89% 0.540/65.32%

Vanishing Point 0.597/69.53% 0.589/68.56% 0.576/67.92% 0.563/67.14% 0.558/66.58% 0.552/66.06% 0.547/65.67% 0.539/65.16%
total 0.688/80.43% 0.681/79.96% 0.672/79.64% 0.664/79.38% 0.653/79.12% 0.641/78.65% 0.628/78.36% 0.623/78.24%

TABLE VI: Experimental results on the MediaEval 2015 database, the AMG 1608 database, the Pascal VOC 2007
database, and the AVA database.

Database Method
RMSE

(Arousal)
RMSE

(Valence)
R

(Arousal)
R

(Valence)
Mean AP SRCC Accuracy p-Value in t-test

MediaEval 2015 SVR 0.280 0.376 0.343 0.016 - - - 1.62E-07∗(Arousal)
V-SVR+ 0.198 0.203 0.682 0.128 - - - 0.0034∗(Valence)

AMG 1608 SVR 0.286 0.292 0.802 0.350 - - - 0.0112∗(Arousal)
V-SVR+ 0.221 0.234 0.882 0.560 - - - 0.0259∗(Valence)

Pascal VOC 2007 SVR - - - - 55.7 - - 4.28E-09∗

V-SVR+ - - - - 65.2 - -
AVA SVR - - - - - 0.536 64.30% 2.62E-04∗

DL - - - - - 0.5210 62.82% 3.84E-04∗

V-SVR+ - - - - - 0.688 80.43%
*Difference is significant if p-value < 0.05

MediaEval 2015, and the other three models are described
below:
• The acoustic emotion Gaussians (AEG) model [54] is a

generative model which learns from the emotion anno-
tations of multiple subjects in the valence and arousal
spaces.

• CDCC [55] explores the cross-dataset generalizability of
music mood regression models in VA spaces with music
from different cultures.

• The twin Gaussian process (TGP) [56] is used for struc-
tured regression to model the VA spaces of mood.

Compared to other methods, the proposed method achieves the
best performance for R in arousal and AED on valence but it
also achieves the second-best performance for AED on arousal
and R on valence. Unlike the results on the MediaEval
2015 database, the improvements are not significant when
compared to the other methods, which may be due to the
constraints of the AMG 1608 database where a song is
provided with a label and the value of the musical elements
represents the entire song rather than the musical bars, Thus,
the privileged information has not been used thoroughly.

We use the Pascal VOC 2007 database to demonstrate
the superiority of the proposed regression method with ordinal
privileged information. Related studies are described below:
• Latent SVM [45] combines a margin-sensitive approach

for data mining hard negative examples with a formalism
called latent SVM, to allow the effective use of more
latent information for object detection tasks.

• Tags LSVM [46] combines SVM and three novel implicit
features from an image tag to improve both accuracy and
efficiency when detecting the tagged objects.

• The Context-DA method [47] uses a convolutional neural
network to improve object detection and a CNN network
is used to predict the suitability of an image region for
placing a given object.

A comparison of results is shown in Table IV. Compared
to the other three methods, the proposed method obtains the
highest score in 12 categories, the second-highest score in 8
categories and the best performance on mean AP. We compare
the proposed method with the latent SVM and tags LSVM
because the proposed method is based on a support vector
regression. We also compare the proposed method with the
content-DA [47] model in the single-category experiment.
Both the Content-DA model and the proposed are trained
independently for each category rather than all categories at
the same time. The proposed method can achieve more im-
provements by considering the dependencies among multiple
labels. Because this is not the focus of this paper, we will
address this topic in future work.

For the photo aesthetic assessment task on the AVA
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TABLE VII: Comparison with related work

(a) Comparison with the related works on the MediaEval
2015 database

Models Arousal Valence

RMSE R RMSE R

MLR [31] 0.27 0.36 0.37 0.01
RNN [48] 0.247 0.588 0.365 0.029
SVR [49] 0.255 0.510 0.366 0.022
DS+SVR [50] 0.234 0.61 0.366 0.02
LSTM-RNN [51] 0.242 0.611 0.373 0.0004
DBLSTM [52] 0.239 - 0.318 -
DNN [53] 0.214 - 0.240 -
DKLR [30] 0.234 0.597 0.318 0.044
Ours 0.198 0.628 0.203 0.128

(b) Comparison with the related works on the AMG 1608 database

Models Arousal Valence

AED R AED R

MLR [31] 0.288 0.806 0.288 0.346
AEG [54] 0.287 0.809 0.287 0.400
CDCC [55] - 0.854 - 0.435
DKLR [30] 0.240 0.817 0.254 0.374
Regression with TGP [56] 0.203 0.808 0.236 0.661
Ours 0.221 0.882 0.234 0.560

(c) Comparison with the related works on the AVA database

Models ρ Accuracy

RRAC [44] 0.5581 77.3%
DCM [57] - 78.08%
MTRLCNN [58] - 79.08%
Adversarial-DCRN (ResNet) [29] 0.6313 -
PI-DCNN [15] 0.6578 76.2%
Ours 0.688 80.43%

database, we compare the proposed method to some state-
of-the-art works that primarily use aesthetic attributes because
the proposed method uses aesthetic attributes as PI,. Kong et
al. [44], Wang et al. [57], Kao et al. [58], Pan et al. [29] and
Shu et al. [15] etc. propose to assess photo aesthetics using
aesthetic attributes. Thus, we compare the proposed method
with their methods as follows:
• RAPA [44]: a branch is added to predict the aesthetic

attributes in the penultimate layer of the original network
and the final aesthetic score is given based on the features
of the aesthetic attributes and content.

• DCM [57]: Deep Chatterjees Machine (DCM) is tailored
to learn attributes through parallel supervised pathways.
Then, a high-level synthesis network is trained to as-
sociate and transform those attributes into the overall
aesthetics rating.

• MTRLCNN [58]: a multi-task framework where the
aesthetic assessment problem is the primary task, and
the semantic recognition task is critical to addressing this
problem.

• Adversarial-DCRN [29] is a multi-task adversarial learn-
ing method to learn the aesthetic attributes and aesthetic
score simultaneously. The authors of this method de-
signed a rating network as a generator and a discriminator
for the rating network output attributes and the score.
Then, the generated attributes and score are input to the

discriminator.
• PI-DCNN [15]: In the PI-DCNN model for aesthetic

assessment, the domain knowledge of the aesthetic at-
tributes is firstly summarized as privileged information,
and then a deep convolutional neural network enhanced
with privileged information is integrated as a type of loss,
replacing the softmax loss.

A comparisons of important results is shown in Table VII(c).
In the first three methods, networks must learn the additional
branch for high-level features before the aesthetic assessment.
Also, some methods, such as the MTRLCNN model only
use an attribute that does not thoroughly exploit the aesthetic
attributes. Compared to the adversarial-DCRN and PI-DCNN
methods, privileged information is learned more easily and
absorbed in the support vector regression model. Therefore,
the proposed method achieves the best performance.

VI. CONCLUSION

In this paper, we propose a unified framework called V-
SVR+ that involves three forms of privileged information:
continuous, ordinal, and binary. We design different loss
functions and optimization algorithms specific to different
forms of PI. We also use three different tasks, music emotion
recognition, multiple object recognition, and photo aesthetic
assessment to demonstrate the proposed methods. In music
emotion recognition, musical elements such as tempo and
brightness are used as continuous privileged information and
are integrated into the objective functions. For multiple object
recognition, the implicit information about object importance
is considered to be ordinal privileged information to enhance
the recognition task. For the photo aesthetic assessment,
we consider whether a photo contains high-level aesthetic
attributes as binary privileged information in the proposed
model. We conducted extensive experiments to demonstrate
the superiority of the proposed V-SVR+ framework compared
to several other methods with four benchmark databases.
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