arXiv:2012.15463v1 [cs.CV] 31 Dec 2020

LEARNED MULTI-RESOLUTION VARIABLE-RATE IMAGE COMPRESSION
WITH OCTAVE-BASED RESIDUAL BLOCKS

Mohammad Akbari*, Jie Liang*, Jingning Han', Chengjie Tu*

akbari @sfu.ca, jiel @sfu.ca, jingning @ google.com, chengjietu @tencent.com
Simon Fraser University, Canada*, Google Inc.f, Tencent Technologies?

ABSTRACT

Recently deep learning-based image compression has shown
the potential to outperform traditional codecs. However, most
existing methods train multiple networks for multiple bit rates,
which increase the implementation complexity. In this paper,
we propose a new variable-rate image compression framework,
which employs generalized octave convolutions (GoConv) and
generalized octave transposed-convolutions (GoTConv) with
built-in generalized divisive normalization (GDN) and inverse
GDN (IGDN) layers. Novel GoConv- and GoTConv-based
residual blocks are also developed in the encoder and decoder
networks. Our scheme also uses a stochastic rounding-based
scalar quantization. To further improve the performance, we
encode the residual between the input and the reconstructed
image from the decoder network as an enhancement layer. To
enable a single model to operate with different bit rates and
to learn multi-rate image features, a new objective function
is introduced. Experimental results show that the proposed
framework trained with variable-rate objective function outper-
forms the standard codecs such as H.265/HEVC-based BPG
and state-of-the-art learning-based variable-rate methods.

Index Terms— learned image compression, variable-rate,
deep learning, residual coding, generalized octave convolu-
tions, multi-resolution autoencoder, multi-resolution image
coding

1. INTRODUCTION

In the last few years, deep learning has made tremendous
progresses in the well-studied topic of image compression.
Deep learning-based image compression [1} 12} 13} 14} 5 |6} [7]
has shown the potential to outperform standard codecs such as
JPEG2000, the H.265/HEVC-based BPG image codec [8]], and
also the new versatile video coding test model (VTM) [9, [10],
making it a very promising tool for the next-generation image
compression.

In traditional compression methods, many components are
fixed and hand-crafted such as linear transform and entropy
coding. Deep learning-based approaches have the potential of
automatically exploiting the data features; thereby achieving
better compression performance. In addition, deep learning

allows non-linear transform coding and more flexible context
modellings [[L1]. Various learning-based image compression
frameworks have been proposed in the last few years.

In 12} [13], a scheme involving a generalized divisive nor-
malization (GDN)-based nonlinear analysis transform, a uni-
form quantizer, and an inverse GDN (IGDN)-based synthesis
transform was proposed. The encoding network consists of
three stages of convolution and GDN layers. The decoding
network consists of three stages of transposed-convolution and
IGDN layers. Despite its simple architecture, it outperforms
JPEG2000 in both PSNR and SSIM.

A compressive auto-encoder framework with residual con-
nection as in ResNet (residual neural network) was proposed
in [3]], where the quantization was replaced by smooth ap-
proximation, and a scaling approach was used to get different
rates. In [14], a soft-to-hard vector quantization approach was
introduced, and a unified framework was developed for both
image compression and neural network model compression.

In [1], a deep semantic segmentation-based layered im-
age compression (DSSLIC) was proposed, by taking advan-
tage of the Generative Adversarial Network (GAN). A low-
dimensional representation and segmentation map of the in-
put along with the residual between the input and the synthe-
sized image were encoded. It outperforms the BPG codec
(RGB4:4:4) in both PSNR and MS-SSIM [135].

Most previous works used fixed entropy models shared be-
tween the encoder and decoder. In [16]], a conditional entropy
model based on Gaussian scale mixture (GSM) was proposed
where the scale parameters were conditioned on a hyper-prior
learned using a hyper auto-encoder. The compressed hyper-
prior was transmitted and added to the bit stream as side in-
formation. The model in [16] was extended in [4, [17] where a
Gaussian mixture model (GMM) with both mean and scale pa-
rameters conditioned on the hyper-prior was utilized. In these
methods, the hyper-priors were combined with auto-regressive
priors generated using context models, which outperformed
BPG in terms of both PSNR and MS-SSIM. These approaches
are jointly optimized to effectively capture the spatial depen-
dencies and probabilistic structures of the latents, which lead
to a significant compression performance. However, some
of these latents are spatially redundant. In [10], a learned
multi-resolution image compression approach was proposed

Encoder

6,94
» /™ | —
o754 G54 % £ g fo
~ ! ’ =] =]
x fe—* @ —> fp 3 3 X
T i 3 r
- > L %

Fig. 1: Overall framework of the proposed codec. x: input image; fz: deep encoder; {y*?, y’}: factorized code map (including
high and low resolution maps); Q: uniform scalar quantizer; {7, j*}: quantized code map; fp: deep decoder; T: generated
image by the deep decoder; r: residual image; r": decoded residual image; Z: final reconstructed image.

that uses generalized octave convolutions (GoConv) and gener-
alized octave transposed-convolutions (GoTConv) to factorize
the latents into high and low resolutions. As a result, the spa-
tial redundancy corresponding to the latents is reduced, which
improves the compression performance.

Since most learned image compression methods need to
train multiple networks for multiple bit rates, variable-rate
image compression approaches have also been proposed in
which a single neural network model is trained to operate at
multiple bit rates. This approach was first introduced in [18]],
which was then generalized for full-resolution images using
deep learning-based entropy coding in [6].

In [18]], long short-term memory (LSTM)-based recurrent
neural networks (RNNs) and residual-based layer coding was
used to compress thumbnail images. Better SSIM results than
JPEG and WebP were reported. This approach was gener-
alized in [6], which proposed a variable-rate framework for
full-resolution images by introducing a gated recurrent unit,
residual scaling, and deep learning-based entropy coding. This
method can outperform JPEG in terms of PSNR.

In [19], a CNN-based multi-scale decomposition transform
was optimized for all scales. Rate allocation algorithms were
also applied to determine the optimal scale of each image block.
The results in [[19] were reported to be better than BPG in MS-
SSIM. In [20], a learned progressive image compression model
was proposed, in which bit-plane decomposition was adopted.
Bidirectional assembling gated units were also introduced to
reduce the correlation between different bit-planes [20]].

In [21], we proposed a variable-rate image compression
scheme, by applying GDN-based residual blocks as in ResNet
and two novel multi-bit objective functions. The residual be-
tween the input and the reconstructed image was also encoded
by BPG to further improve the performance. Experimental
results show that our variable-rate model can outperform state-
of-the-art learning-based variable-rate methods.

In this paper, we extend and improve our previous ap-
proach in [21] and propose a new deep learning-based multi-
resolution variable-rate image compression framework, which
employs GoConv and GoTConv layers developed in [[10] to
factorize all the feature maps into high resolution (HR) and
low resolution (LR) information. Two novel types of octave-

based residual sub-networks are also developed in the encoder
and decoder networks, by incorporating separate shortcut con-
nection for HR and LR feature maps. Our scheme uses the
stochastic rounding-based scalar quantization as in [[18}, 22} 23]].
As in [21], to further improve the performance, we encode the
residual between the input and the reconstructed image from
the decoder network by BPG as an enhancement layer. To
enable a single model to operate with different bit rates and to
learn multi-rate image features, a new variable-rate objective
function is introduced [21]]. Experimental results show that the
proposed framework trained with variable-rate objective func-
tion outperforms the standard codecs including H.265/HEVC-
based BPG in the more challenging YUV4:2:0 and YUV4:4:4
formats, as well as state-of-the-art learning-based variable-rate
methods in terms of MS-SSIM metric.

This paper is organized as follows. The architecture of the
proposed deep encoder and decoder networks will be described
in Section [2.1] Following that, the formulation of the deep
encoder and decoder are presented in Sections [2.2] and [2.4]
In Section [2.6] the objective functions are formulated and
explained. Finally, we will present the experimental results on
Kodak image set as well as the ablation studies in Section 3]

2. THE PROPOSED METHOD

The overall framework of the proposed codec is shown in Fig.
At the encoder side, two layers of information are encoded:
the encoder network output (code map) and the residual image.
The code map is composed of HR and LR parts denoted by
{y* y*}, which are obtained by the deep encoder fz. The
maps are quantized by a uniform scalar quantizer (), and then
separately encoded by the FLIF lossless codec [24]. The
reconstruction of the input image (denoted by) is obtained
from the quantized maps {7, 5%} by the deep decoder fp.
To further improve the performance, the residual r between the
input and the reconstruction is encoded by the BPG codec as an
enhancement layer [[1]. At the decoder side, the reconstruction
Z from the deep decoder and the decoded residual image r’
are added to get the final reconstruction Z.

Deep Encoder f¢

S

= 8 = & = N & =3
T Ll AR EEARE: R AAmD iyt
= X Jl e S o o S o - S o — S - "y}
as[" Qx 3 & g Q™ 3 R g 2 0
£ : O < ® & O o T RN = ()
= = = | © | ot o 1 et o T =
- ~ Quantizer Q@
. S SN | & | > I - . >‘R"_ & le— Il
1= = z £ 5 = = N ENZ L = 4
s ® 3 & — S - - c - 3
5 X O o @ I " S - 0 G~
Si BE _ 32 |8l _52 |El %% |&| 85 [y
>) 3 S o 3 ~H =
i | 85— 83 {5l 85{ k|l 85 E|l_ 385 [v"m
= = [= o & o =

/

Deep Decoder f)

Fig. 2: Architecture of the proposed deep encoder and deep decoder networks. GoConv/GoTConv (n, kxk, s): generalized
octave convolutions and transposed-convolutions with n filters of size kxk and stride of s. GoRes/GoTRes (n): GoConv- and

GoTConv-based residual blocks with n filters.

2.1. Network Architecture

It has been shown that end-to-end optimization of a model
including cascades of differentiable nonlinear transforms has
better performance over the traditional linear transforms [[12].
One example is the GDN, which is very efficient in gaussian-
izing local statistics of natural images and has been shown to
improve the efficiency of transforms compared to other pop-
ular nonlinearities such as ReLU [25]. GDN also provides
significant improvements when utilized as a prior for differ-
ent computer vision tasks such as image denoising and image
compression. GDN transforms were first introduced in [12]]
for a learning-based image compression framework, which
had a simple architecture of some down-sampling convolution,
each is followed by a GDN layer.

In order to take the advantage of multi-resolution image
compression as well as GDN operations, we incorporate the
GoConv and GoTConv architectures [10] with built-in GDN
and IGDN layers in our framework. By using GoConv and
GoTConv, the feature representations are factorized into HR
and LR maps, where the LR part is represented by a lower
spatial resolution to reduce its spatial redundancy. The archi-
tecture of the proposed deep encoder and decoder networks
are illustrated in Fig. 2] For deeper learning of image statistics
and faster convergence, we consider introduce the concept of
identity shortcut connection in the ResNet [26] to some Go-
Conv and GoTConv layers. The architecture of the proposed
GoConv- and GoTConv-based residual blocks, which are re-
spectively denoted by GoRes and GoTRes, are shown in Fig. [3]
Unlike the traditional residual blocks where Vanilla convolu-
tions followed by ReLLU and batch (or instance) normalization
are employed, we utilize GoConv and GoTConv layers with

build-in GDN and IGDN layers in our residual blocks, which
provide better performance and faster convergence rate.

In Fig. [2] the encoder can be divided into 5 stages. The
first and the last GoConv layers are of size 7x7 with stride
1. Between them, there are three stages, where each of them
includes a 3x3 GoConv layers with stride 2 and a GoRes
block. To avoid edge effects, reflection padding of size 3 is
used before all convolutions at the first and the last stages. The
channel sizes of the convolution layers are 64, 128, 256, 512,
and 8, respectively. The deep encoder encodes the input RGB
image of size w x h x 3 into a factorized code map.

The deep decoder decodes the code map back to a re-
constructed image. This network is basically the reverse of
the deep encoder, where the GoConv and GoRes blocks are
respectively replaced by GoTConv and GoTRes. Similar to en-
coder, reflection padding is used before the convolutions at the
first and last stages. The channel sizes in the deep decoder’s
convolution layers are 512, 256, 128, 64, and 3, respectively.

2.2. Deep Encoder

Let z € R"*wX3 be the original image, the HR and LR
code maps y € R§ X% x8(1-a) gpnd yl e RTX%x8a gre
generated by the parametric deep encoder fg represented as:
{yf y} = fe(x; ®), where {y?, yL} is the code map fac-
torized into HR and LR terms, and & is the parameter vector
that needs to be optimized. The encoder consists of 5 GoConv
layers. Given the input HR and LR maps {7, I}, the output
HR and LR feature maps in GoConv are formulated as follows

GoTRes (n)

QutH

GoRes (n)
T T I
H 1 —_— — H
In —> " -7 Out
Em gm
Qo Q &
[==p Q ™
L) o
L
Int —:—> S —» E-—b@—-b Out
1

Fig. 4: Sample quantized code map generated by the deep
encoder. Left: original input image from Kodak image set;
Middle columns: high resolution feature maps; Right col-
umn: low resolution maps.

[10]):

OH —_ OH~>H +gT2(OL~>L;qDLHH),
OL — OL—>L 4 f¢2(OH—>H; (I)H_>L), (1)
)
)

OL—)L _ f(IL (I)L—>L

3

where f is Vanilla convolution, and f|> and g42 are respec-
tively Vanilla convolution and transposed-convolution with
stride of 2. O 7H and O~ are intra-resolution operations
that are used to update the information within each of HR
and LR parts. Y# =% and Y~ denote inter-resolution com-
munication that enables information exchange between the
two parts. [@7=H L=H] and [@L~L dHL] are the Go-
Conv kernels respectively used for intra- and inter-resolution
operations.

The input to the encoder is not represented as a multi-
resolution tensor. So, to compute the output of the first GoConv
layer in the encoder, Equation|T]is modified as follows:

Of = f(x;@"~H), OF = f,(O"; @5 ~5), (2)

Except for the first and last GoConv layers, each GoConv
is followed by a GoRes transform. GoRes is composed of two
subsequent pairs of GoConv blocks (Equation) with separate
residual connections for the HR and LR maps (Fig. [3).

QOutt

2.3. Stochastic Rounding-Based Quantization

The output of the last stage of the encoder represents the code
map {y, yL'} with 8o and 8(1 —) channels for HR and LR,
respectively. Each HR and LR channel denoted by {y/, v}
is then quantized to a discrete-valued vector using a stochastic
rounding-based uniform scalar quantizer as:

g = Q). i = QyF), 3)

where the function () is defined as in [18] 22} 23]]:

Q(y;) = Round (yz;- 6) + z, 4)

where € € [f%, %] is produced by a uniform random number

generator. A and z respectively represent the quantization step
(scale) and the zero-point, which are defined as:

maz(y;) — min(y;)

A= 2B _ 1 ’ v
and n(yi)
—man(y;
0 Ty <0,
p={9B 1 =min) 9B g ©
%n(yi) otherwise,

where B is the number of bits and min(y;) and max(y;) are
the input’s minimum and maximum values over the ¢th channel,
respectively. The zero-point z is an integer ensuring that zero
is quantized with no error, which avoids quantization error in
common operations such as zero padding [27].

The stochastic rounding approach in Equation @] provides a
better performance and convergence rate compared to round-to-
nearest algorithm. Stochastic rounding is indeed an unbiased
rounding scheme, which maintains a non-zero probability of
small parameters [28]]. In other words, it possesses the de-
sirable property that the expected rounding error is zero as
follows:

E (Round(z)) = . @)

As a consequence, the gradient information is preserved and
the network is able to learn with low bits of precision without
any significant loss in performance.

- -

—o—BPG444

— == Proposed =

36 [| ——BPG420 =

—8— Akbari2020 [20] =

—6— JPEG2000 e g
Webp

—A— Cai2018 [18] 7%]

—<— Zhang2019 [19] 7%

—5— JPEG 7%

—o— Toderici2017 [6]

02 03 04 05 06 07 08 09 1
BPP

: . T \
099 e >
0.98

097 F

O]

x

E 0.96

% : —%-= Proposed

& —8— Akbari2020 [20]

= —&— Cai2018 [18]

095 % —6—BPG444 .
—%— BPG420
—<— Zhang2019 [19]
—6— JPEG2000

0.94 - Webp)
—o— Toderici2017 [6]
—5— JPEG

0.93 ! s s ! ! ‘

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BPP

Fig. 5: Comparison results of proposed variable-rate approach with state-of-the-art variable-rate methods on Kodak test set in

terms of PSNR (left) and MS-SSIM (right) vs. bpp (bits/pixel).

For the entropy coding of the quantized HR and LR code
maps, denoted by {gjg), gg) }, the FLIF codec [24] is utilized,
which is the state-of-the-art lossless image codec. Since FLIF
can also work with grayscale images, each of the quantized
code map channels (considered as a grayscale image) is sepa-
rately entropy-coded by FLIF.

2.4. Deep Decoder

Given the quantized code maps {§*,§*} the parametric de-
coder fp (with the parameter vector W) reconstructs the image
T € RW*wx3 asfollows: 7 = fp({g, 9" };).

All the operations performed in the deep encoder are re-
versed at the decoder side. The deep decoder is composed of 5
GoTConv layers defined as follows [10]:

OH — OH—>H +gT2(O_L—>L;\I,L—>H),
OL _ OL*)L + fiz(OHﬁH;\IjHﬁL)

OL*)L _ g(I’L;\IJL%L)'

®

Similar to the input of the deep encoder, the output of
the last GoTConv at the decoder side is a single tensor repre-
sentation. For this case, Equation [§]is accordingly modified
as:

0= O‘H—)H T gTQ(OLaL; \I/L_)H>,

OL—)L — g(jL; \IJL_>L)7

©))

where g is Vanilla transposed-convolution.
As the reverse of the encoder, each GoTConv at the is
followed by a GoTRes block (except for the last two GoTConv

T T T

4T [—e—BPcass 1

= %= Proposed
—*— BPG420 B
—o— JPEG2000

02 03 04 05 06 07 08 09 1
BPP

Fig. 6: Comparison results of proposed variable-rate approach
with standard codecs on Kodak test set in terms of PSNR
(YUV) vs. bpp (bits/pixel).

layers).GoTRes consists of two subsequent pairs of an GoT-
Conv operations (Equation [8). The reconstructed image Z is
finally resulted from the output of the decoder.

2.5. Residual Coding

As an enhancement layer to the bit-stream, the residual r
between the input image x and the deep decoder’s output &
is further encoded by the BPG codec [} 21]. To do this,
the minimal and the maximal values of the residual image r
are first obtained, and the range between them is rescaled to
[0,255], so that we can call the BPG codec directly to encode it
as a regular 8-bit image. The minimal and maximal values are
also sent to decoder for inverse scaling after BPG decoding.

(C) BPG444 (0.18bpp, 23.66dB, 0.891)
W N 3 pr
N -

(d) BPG420 (0.18bpp, 23.59dB, 0.888) (&) JPEG2000 (0.17bpp, 22.47dB, 0.866) (f) JPEG (0.21bpp, 19.42dB, 0.749)

Fig. 7: Kodak visual example 1 (bits/pixel, PSNR, MS-SSIM). BPG444: YUV (4:4:4) format; BPG420: YUV (4:2:0) format.

(d) BPG420 (0.11bpp, 32.22dB, 0.948) (&) JPEG2000 (0.10bpp, 30.71dB, 0.936) (f) JPEG (0.16bpp, 22.50dB, 0.727)

Fig. 8: Kodak visual example 2 (bits/pixel, PSNR, MS-SSIM). BPG444: YUV (4:4:4) format; BPG420: YUV (4:2:0) format.

2.6. Objective Function and Optimization

Our cost function is a combination of L2-norm loss denoted
by Lo, and MS-SSIM loss [29] denoted by L,/ as follows:

L(D,T) = 2L5 + Lags, (10)

where ® and ¥ are the optimization parameter vectors of
the deep encoder and decoder, respectively, each is defined
as a full set of their parameters across all their layers as:
¢ = {@L=H eH=LY and ¥ = {WE2H YH=LY In order
to optimize the parameters such that our codec can operate at
a variety of bit rates, we propose the following novel variable-
rate objective functions for the £, and £, g losses:

Lr=7 llz— 25,

BER

QY

and

BER

M
Lyvs=—Y_ Iu(z.zp) [Cj(x,25).5(x,25), (12)
j=1

where Zp denotes the reconstructed image with B-bit quan-
tizer (Equations[5|and[6)), and B can take all possible values
in a set R. In this paper, R = {2,4, 8} is used for training
variable-rate network model. The MS-SSIM metric use lumi-
nance [, contrast C, and structure S to compare the pixels and
their neighborhoods in = and Z defined as:

_ 2ppz + C1
I(Z‘,l‘) =3 5 5
pg + pz +Ch
_ 20,05 + Cs
C = "= 13
(7,7) 2402+ Cy (13)
_ Oxz + CB
S . = ——
(@8)= 2,

where p1,, and pz are the means of x and z, o, and o3 are
the standard deviations, and o,z is the correlation coefficient.
C1, C2, and C3 are the constants used for numerical stability.
Moreover, MS-SSIM operates at multiple scales where the
images are iteratively downsampled by factors of 27, for j €
[1, M].

Our goal is to minimize the objective L(®, ¥) over the
continuous parameters {®, U}. However, both terms depend
on the quantized values of § whose derivative is discontinuous,
which makes the quantizer non-differentiable [12]. To over-
come this issue, the fact that the exact derivatives of discrete
variables are zero almost everywhere is considered, and the
straight-through estimate (STE) approach in [30]] is employed
to approximate the differentiation through discrete variables
in the backward pass. Using STE, we basically set the incom-
ing gradients to our quantizer equal to its outgoing gradients,
which indeed disregards the gradients of the quantizer. The
concept of a straight through estimator is that you set the in-
coming gradients to a threshold function equal to it’s outgoing

BD-Rate (%) | BD-PSNR (dB)

JPEG2000 | -16.0516 0.7636
BPG420 2.4469 0.1132
BPG444 3.0992 0.1345

Table 1: Bjontegaard-based comparison results between
our method and standard codecs JPEG2000, BPG420, and
BPG444. The PSNR results are in YUV.

gradients, disregarding the derivative of the threshold function
itself.

Note that many methods optimize for PSNR and MS-SSIM
separately in order to get better performance in each of them,
while our scheme jointly optimizes for both of them, which
can still achieve satisfactory results in both metrics.

3. EXPERIMENTAL RESULTS

The ADE20K dataset [31] was used for training the proposed
model. The images with at least 512 pixels in height or width
were used (9272 images in total). All images were rescaled
to h = 256 and w = 256 to have a fixed size for training.
As in [10], we set the low resolution ratio a = 0.5 to respec-
tively get the HR and LR code maps of size 32x32x4 and
16x16x4. The code maps corresponding to one sample image
from Kodak image set are shown in Fig. @] The deep encoder
and decoder models were jointly trained for 200 epochs with
mini-batch stochastic gradient descent (SGD) and a mini-batch
size of 16. The Adam solver with learning rate of 0.00002 was
fixed for the first 100 epochs, and was gradually decreased to
zero for the next 100 epochs. All the networks were trained
in the RGB domain. In this section, we compare the perfor-
mance of the proposed scheme with two types of methods:
1) standard codecs including JPEG, JPEG2000 [32], WebP
[33], and the H.265/HEVC intra coding-based BPG codec [8];
and 2) the state-of-the-art learning-based variable-rate image
compression methods in [6]], [19], [20], and [21]], in which a
single network was trained to generate multiple bit rates. We
use both PSNR and MS-SSIM [15] as the evaluation metrics.

The model was trained using 3 different bit rates, i.e.,
R = {2,4,8} in Eq. However, the trained model can
operate at any bit rate in range [1, 8] at the test time.

The comparison results on the Kodak set (averaged over
24 images) are shown in Fig. [5] Different points on the
R-D curve of our variable-rate results are obtained from 5
different bit rates for the code maps in the base layer, i.e.,
R = {3,4,5,6,7}. The corresponding residual images r in
the enhancement layer are coded by BPG (YUV4:4:4) with
quantizer parameters of {50, 40, 35, 30, 25}, respectively. Bet-
ter results can be obtained by performing some rate allocation
optimizations.

As shown in Fig. 5] our method outperforms the state-of-
the-art learning-based variable-rate image compression mod-

w
[}
T

w
a
T

w
5
T

[}
@
T

R
-
-
s
-

PSNR (RGB)
w
N
‘

—-%-—8Ch + GoRes (Proposed)
—&8—8Ch + ResGDN (Akbari2020 [20])
—&— 8Ch + noRes b
8Ch +noGDN + ResReLU
4Ch + GoRes
—8—4Ch + ResGDN
—&—4Ch + noGDN + ResRelLU
—<— 4Ch + noGDN + noRes

02 03 04 05 06 07 08 09 1
BPP

0.99

0.985
0.98
B 0975+

0.97

MS-SSIM (R

—-%-—8Ch + GoRes (Proposed)
—8—8Ch + ResGDN (Akbari2020 [20])
/ —&—8Ch + noRes
096/ 8Ch +noGDN + ResReLU]

4Ch + GoRes
0.955 / —8—4Ch + ResGDN 4
—6—4Ch + noGDN + ResRelLU

—<— 4Ch +noGDN + noRes
|

02 03 04 05 06 07 08 09 1
BPP

0.95 &

Fig. 9: Ablation studies with different model configurations. nCh: n channels for the code map; ResGDN: ResGDN/ResIGDN
transforms in the network architecture as in [21]]; ResReLU: conventional residual block with ReLU; noRes: no residual block
is used; noGDN: GDN and IGDN layers in our main architecture replaced by ReL.U.

els and JPEG2000 in terms of both PSNR (RGB) and MS-
SSIM (RGB). Our PSNR results are slightly lower than BPG
(YUV4:4:4) and almost the same as BPG (YUV4:2:0), but we
achieve better MS-SSIM, especially at low rates. The com-
parison results in PSNR (YUV) are also presented in Fig. [6]
in which our method is slightly better than BPG (YUV4:2:0).
Table [I] summarizes the Bjontegaard (BD)-based average gain
in PSNR (YUYV) and also average saving bitrates compared to
other standard codecs. Our approach has a bitrate saving and
PSNR gain of ~16% and ~0.77dB compared to JPEG2000,
and also a saving and gain of ~2.5% and ~0.12dB compared
to BPG (YUV4:2:0).

The BPG-based residual coding in our scheme is exploited
to avoid re-training the entire model for another bit rate and
more importantly to boost the quality at high bit rates. For
the 5 points (low to high) in Fig. [5] the percentage of bits
used by residual image is {2%, 34%, 52%, 68%, 76%}. This
shows that as the bit rate increases, the residual coding has
more significant contribution to the R-D performance.

Two visual examples from the Kodak image set are given
in Figures [7] and [] in which our results are compared with
BPG (YUV4:4:4), BPG (YUV4:2:0), JPEG2000, and JPEG.
JPEG has very poor performance due to the ringing artifacts
at edges. The BPG has the highest PSNR and also smoother
results compared to JPEG2000. However, the details and fine
structures in BPG results (e.g., the grooves on the door in Fig.
[7]and the grass on the ground in Fig. [8)) are not well-preserved
in many areas. Our method achieves the best MS-SSIM and
also provides the highest visual quality compared to the other
methods including BPG.

3.1. Other Ablation Studies

In order to evaluate the performance of different components
of the proposed framework, the ablation studies reported in
our previous work [21] are re-discussed and compared with
the proposed method. The results are shown in Fig. [0

+ Code map channel size: Fig. [9]shows the results with
channel sizes of 4 and 8 (i.e., ¢ € {4, 8}). It can be seen
that ¢ = 8 has better results than ¢ = 4 in both GoRes
and ResGDN cases. In general, we find that a larger
code map channel size with smaller quantization bits
provide a better R-D performance because deeper tex-
ture information of the input image is preserved within
the feature maps.

* GDN vs. ReLU: In order to show the performance of
the GDN/IGDN transforms, we make a comparison with
a ReLLU-based variant of our model in [21]], denoted as
noGDN in Fig. E[In this model, all GDN and IGDN
layers in the deep encoder and decoder are removed;
instead, instance normalization followed by ReL.U are
added to the end of all convolution layers. The last
GDN and IGDN layers in the encoder and decoder are
replaced by a Tahn layer. As shown in Fig. [0} the models
with GDN structure outperform the ones without GDN.

» Conventional vs. GDN/IGDN-based residual trans-
forms: In this scenario, the model composed of the
ResGDN/ResIGDN transforms proposed in [21] (de-
noted by ResGDN in Fig. [9) is compared with the
conventional ReLLU-based residual block (denoted by
ResReLU) in which all the GDN/IGDN layers are re-
placed by ReLLU. The results with no residual blocks,
denoted by noRes, are also included. As demonstrated

in Fig. O] the models with GoRes or ResGDN achieve
better performance compared to the other scenarios with-
out residual blocks.

In terms of complexity, the average processing time of
the deep encoder and deep decoder on Kodak are ~65ms and
~51ms on a TITAN X Pascal GPU, respectively. The encoding
and decoding times for Toderici2017 [6] are ~1600ms and
~1000ms. The other previous works have not reported the
complexity of their methods.

4. CONCLUSION

In this paper, we proposed a new variable-rate image compres-
sion framework, by applying GoConv and GoTConv layers
and incorporating the octave-based shortcut connections. We
also used a stochastic rounding-based scalar quantization. To
further improve the performance, the residual between the in-
put and the reconstructed image from the decoder network was
encoded by BPG as an enhancement layer. A novel variable-
rate objective function was also proposed.

Experimental results showed that our variable-rate model
can outperform all standard codecs including BPG in MS-
SSIM as well as state-of-the-art learning-based variable-rate
methods in both PSNR and MS-SSIM. Despite the good MS-
SSIM performance of our method compared to other standard
codecs, it is not still as good as BPG444 nor VVC in terms of
PSNR. Further gains can be achieved by optimizing multiple
networks for different bit rates independently. Another future
topic is the rate allocation optimization between the base layer
and the enhancement layer.

Acknowledgement

This work is supported by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada under grant
RGPIN-2015-06522.

5. REFERENCES

[1] M. Akbari, J. Liang, and J. Han, “DSSLIC: Deep seman-
tic segmentation-based layered image compression,” in
IEEE International Conference on Acoustics, Speech and
Signal Processing, 2019, pp. 2042-2046.

[2] N.Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh,
T. Chinen, S. J. Hwang, J. Shor, and G. Toderici, “Im-
proved lossy image compression with priming and spa-
tially adaptive bit rates for recurrent networks,” arXiv
preprint arXiv:1703.10114, 2017.

[3] M. Li, W. Zuo, S. Gu, J. You, and D. Zhang, “Learn-
ing content-weighted deep image compression,” arXiv
preprint arXiv:1904.00664, 2019.

[4] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autore-
gressive and hierarchical priors for learned image com-
pression,” in Advances in Neural Information Processing
Systems, 2018, pp. 10771-10780.

[5] L. Theis, W. Shi, A. Cunningham, and F. Huszdr, “Lossy
image compression with compressive autoencoders,”
arXiv preprint arXiv:1703.00395, 2017.

[6] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang,
D. Minnen, J. Shor, and M. Covell, “Full resolution
image compression with recurrent neural networks,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5306-5314.

[7] B.Li, M. Akbari, J. Liang, and Y. Wang, “Deep learning-
based image compression with trellis coded quantization,”
in 2020 Data Compression Conference (DCC), 2020, pp.
13-22.

[8] F. Bellard, “BPG image format (http://bellard.org/bpg/),’
2017.

[9] H. Fraunhofer, “VVC official test model VTM,” https://
vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM, 2020.

[10] M. Akbari, J. Liang, J. Han, and C. Tu, “Generalized
octave convolutions for learned multi-frequency image
compression,” arXiv preprint arXiv:2002.10032, 2020.

[11] J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston,
E. Agustsson, S. J. Hwang, and G. Toderici, “Nonlin-
ear transform coding,” arXiv preprint arXiv:2007.03034,
2020.

[12] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end
optimization of nonlinear transform codes for perceptual
quality,” in Picture Coding Symposium, 2016, pp. 1-5.

[13] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-
end optimized image compression,” arXiv preprint
arXiv:1611.01704, 2016.

[14] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli,
R. Timofte, L. Benini, and L. V. Gool, “Soft-to-hard
vector quantization for end-to-end learning compressible
representations,” arXiv preprint arXiv:1704.00648, 2017.

[15] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale struc-
tural similarity for image quality assessment,” in Record
of the Thirty-Seventh Asilomar Conference on Signals,
Systems and Computers, vol. 2, 2003, pp. 1398-1402.

[16] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. John-
ston, “Variational image compression with a scale hyper-
prior,” arXiv preprint arXiv:1802.01436, 2018.

[17] J. Lee, S. Cho, and S. Beack, “Context-adaptive entropy
model for end-to-end optimized image compression,”
arXiv preprint arXiv:1809.10452, 2018.

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

(29]

(30]

G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent,
D. Minnen, S. Baluja, M. Covell, and R. Sukthankar,
“Variable rate image compression with recurrent neural
networks,” arXiv preprint arXiv:1511.06085, 2015.

C. Cai, L. Chen, X. Zhang, and Z. Gao, “Efficient vari-
able rate image compression with multi-scale decom-
position network,” IEEE Transactions on Circuits and
Systems for Video Technology, 2018.

Z.Zhang, Z. Chen, J. Lin, and W. Li, “Learned scalable
image compression with bidirectional context disentan-
glement network,” in IEEE International Conference on
Multimedia and Expo. 1EEE, 2019, pp. 1438-1443.

M. Akbari, J. Liang, J. Han, and C. Tu, “Learned variable-
rate image compression with residual divisive normaliza-
tion,” in 2020 IEEE International Conference on Multi-
media and Expo (ICME). 1EEE, 2020, pp. 1-6.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and
P. Narayanan, “Deep learning with limited numerical pre-
cision,” in International Conference on Machine Learn-
ing, 2015, pp. 1737-1746.

T. Raiko, M. Berglund, G. Alain, and L. Dinh, “Tech-
niques for learning binary stochastic feedforward neural
networks,” in International Conference on Learning Rep-
resentations, 2015.

J. Sneyers and P. Wuille, “FLIF: Free lossless image
format based on maniac compression,” in /EEE Interna-
tional Conference on Image Processing, 2016, pp. 66-70.

J. Ballé, “Efficient nonlinear transforms for lossy image
compression,” in 2018 Picture Coding Symposium (PCS).
IEEE, 2018, pp. 248-252.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770-778.

R. Krishnamoorthi, “Quantizing deep convolutional net-
works for efficient inference: A whitepaper,” arXiv
preprint arXiv:1806.08342, 2018.

R. M. Gray and T. G. Stockham, “Dithered quantizers,”
IEEE Transactions on Information Theory, vol. 39, no. 3,
pp- 805-812, 1993.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: from error visibility to struc-
tural similarity,” IEEE transactions on image processing,
vol. 13, no. 4, pp. 600-612, 2004.

Y. Bengio, N. Léonard, and A. Courville, “Estimating or
propagating gradients through stochastic neurons for con-
ditional computation,” arXiv preprint arXiv:1308.3432,
2013.

10

(31]

(32]

[33]

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and
A. Torralba, “Scene parsing through ADE20K dataset,”
in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, vol. 1, 2017, p. 4.

C. Christopoulos, A. Skodras, and T. Ebrahimi, “The
JPEG2000 still image coding system: an overview,’
IEEE transactions on consumer electronics, vol. 46,
no. 4, pp. 1103-1127, 2000.

Google Inc., “WebP
(https://developers.google.com/speed/webp/),” 2016.

	1 Introduction
	2 The Proposed Method
	2.1 Network Architecture
	2.2 Deep Encoder
	2.3 Stochastic Rounding-Based Quantization
	2.4 Deep Decoder
	2.5 Residual Coding
	2.6 Objective Function and Optimization

	3 Experimental Results
	3.1 Other Ablation Studies

	4 Conclusion
	5 References

