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Abstract—Coronavirus Disease 2019 (COVID-19) is a highly
infectious virus that has created a health crisis for people all over
the world. Social distancing has proved to be an effective non-
pharmaceutical measure to slow down the spread of COVID-19.
As unmanned aerial vehicle (UAV) is a flexible mobile platform, it
is a promising option to use UAV for social distance monitoring.
Therefore, we propose a lightweight pedestrian detection network
to accurately detect pedestrians by human head detection in real-
time and then calculate the social distancing between pedestrians
on UAV images. In particular, our network follows the PeleeNet as
backbone and further incorporates the multi-scale features and
spatial attention to enhance the features of small objects, like
human heads. The experimental results on Merge-Head dataset
show that our method achieves 92.22% AP (average precision) and
76 FPS (frames per second), outperforming YOLOv3 models and
SSD models and enabling real-time detection in actual applications.
The ablation experiments also indicate that multi-scale feature
and spatial attention significantly contribute the performance
of pedestrian detection. The test results on UAV-Head dataset
show that our method can also achieve high precision pedestrian
detection on UAV images with 88.5% AP and 75 FPS. In addition,
we have conducted a precision calibration test to obtain the
transformation matrix from images (vertical images and tilted
images) to real-world coordinate. Based on the accurate pedestrian
detection and the transformation matrix, the social distancing
monitoring between individuals is reliably achieved.

Index Terms—UAV, COVID-19, pedestrian detection, spatial
attention, social distancing monitoring.
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I. INTRODUCTION

S INCE December 2019, the novel Coronavirus Disease 2019
(COVID-19) has caused severe acute respiratory syndrome

globally and created a health crisis for people all over the
world [1]–[3]. Social distancing is considered the most effec-
tive non-pharmaceutical measure to slow down the spread of
COVID-19 [4]. How to calculate the social distancing between
pedestrians in real time and accurately is of great significance.

With the rapid development of artificial intelligence, big data
and other digital technologies, these technologies have played
a supporting role in social distancing monitoring. The ordinary
methods of social distancing monitoring [5], [6] are based on a
monocular and intelligent surveillance camera that can only cap-
ture a certain area. In contrast, unmanned aerial vehicle (UAV)
is flexible, convenient and wide in coverage. Social distanc-
ing monitoring based on UAV mobile platform is thus an ideal
choice. UAV-based social distancing monitoring can basically
include two steps, such as pedestrian detection and social dis-
tancing calculating.

In recent years, due to the strong learning ability of convolu-
tion neural networks (CNN), the state-of-the-art object detection
algorithms are all based on deep learning [7]–[20]. These algo-
rithms can be divided into two main categories. One type is
two-stage methods [7]–[12], which divide detection into two
parts, region proposal and classification. These methods can
achieve high detection accuracy but consume time. Another
one refers to single-stage methods [13]–[18], which treat de-
tection as an end-to-end process to directly predict the location
and categories of targets. These methods can achieve fast ob-
ject detection, but have a lower accuracy than that of two-stage
methods. A good detector should provide high accuracy as well
as fast inference speed. The current pedestrian detection meth-
ods based on deep learning, include body detection [21], [22],
shoulder detection [23], [24], and head detection [25]–[27]. In
actual scenes, there exits occlusion between pedestrian, where
only human heads can be seen. Therefore, the body detection
methods are confronted with great limitations, while the human
head detection is relatively more accurate.

Human heads belong to small objects in UAV images. As hu-
man head is larger in the vicinity and smaller in the distance
in the UAV image, it still has multi-scale features. Multi-scale
feature is an important feature of human head. The performance
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of human head detection can be improved by multi-scale fea-
ture enhancement. Generally, multi-scale feature fusion and
super-resolution reconstruction are used to enhance the fea-
ture of small targets like human heads. The methods based on
multi-scale feature fusion, such as [28]–[30], are to expand the
size of small-scale feature map through up-sampling, and then
fuse it with feature map of the same size. The super-resolution
reconstruction methods, such as [31]–[35] are based on the idea
of image super-resolution, which can increase the resolution of
small-scale feature map by super-resolution reconstruction, and
obtain large-scale feature map to enhance the feature of small
targets.

UAV images exhibit complex backgrounds due to diversified
illumination, viewpoints, altitudes and scenarios. The complex
background has great interference on the object detection. It is
hard to detect the target quickly and accurately in such a con-
dition. Can we pay more attention to our targets in the complex
background? The spatial attention mechanism can achieve this
purpose. Recent studies [36]–[40] have shown that spatial atten-
tion can enhance the feature that we are interested in and ignore
the irrelevant information. The UAV is a flexible mobile device,
whose memory and computing power are very limited during
the timely image processing, which makes real-time object de-
tection based on UAV image a great challenge. However, for the
huge amount of data collected by UAV, it is necessary to process
such data in order to obtain useful information in a timely man-
ner. Although the current state-of-the-art object detection algo-
rithms, such as Faster R-CNN [10], YOLOv3 [16], R-FCN [11],
RetinaNet [13], perform well on natural images, their model size
are relatively large, so that they are unsuitable for mobile devices
like UAV. In recent years, numerous lightweight and accurate
CNN based models have been proposed for mobile platforms,
such as MobileNet [41] and ShuffleNet [42]. However, these
networks rely heavily on deep separable convolution and lack
effective implementations in some deep learning frameworks.
Recently, an efficient lightweight network, PeleeNet [43], is pro-
posed, which can be achieved just with traditional convolution
and can fully extract features with fewer parameters.

From the above analysis, we perform UAV based pedestrian
detection by fast and accurate human head detection in this paper.
In particular, we propose a lightweight pedestrian detection net-
work specifically for head detection, which follows the PeleeNet
as the backbone and further incorporates the multi-scale fea-
tures and spatial attention. Because there exist few large-scale
pedestrian datasets for UAV images, in order to train an efficient
pedestrian detection model based on UAV images, we firstly
employ a large number of existing video surveillance datasets
for network training and then make use of a small UAV im-
age dataset that we built to fine-tune the model trained on the
surveillance video datasets. As a matter of fact, the UAV image
is highly similar to the video surveillance image, as shown in
Fig. 1. Therefore, using the existing human head datasets from
different video surveillance for pre-training and then fine-tuning
the network model on the small UAV dataset can save a lot of
resources and obtain an efficient model that we want. The video
surveillance datasets consist of three human head datasets, in-
cluding Brainwash [44], SCUT-HEAD [45] and our FerryHead,

Fig. 1. (a) are the samples from VisDrone2018 [46] UAV dataset. (b) are the
samples from video surveillance. The samples in these two data sources look
very similar.

which are from various scenes with diversified viewpoints, il-
luminations and scales. The small UAV dataset that we built,
called UAV-Head, contains 745 images in size of 1920× 1080
pixels.

Pedestrian detection is used for social distancing monitoring
in the COVID-19 prevention. Social distancing is defined as the
physical contact distance between each individual. Generally
speaking, the safety distance between individuals needs to be
more than 2 m. In order to calculate correctly the social distance,
we need detect the position of each pedestrian accurately in UAV
images and then compute the projection transformation matrix
from UAV images to real-world coordinate.

UAV is a flexible mobile photography platform, which can be
used to photograph ground objects at different altitudes and in
different attitudes. The projection transformation matrix from
the image to real-world coordinate system will vary with the
altitude and attitude of the UAV. Therefore, the transformation
projection matrix cannot be obtained in real time under the con-
dition of unconstrained photography. In this paper, we first make
a precision calibration test including vertical images and tilted
images to gain the relationship between image and real-world
coordinate. Then the UAV takes photography at different sce-
narios under the condition of calibration. Based on calibration
results, the position of each pedestrian in real-world coordinate
system can be readily obtained.

Compared with fixed surveillance video cameras on the
ground, UAVs are more flexible and can provide real-time dy-
namic information in any area. Based on these advantages, UAV
is an idea social distance monitoring platform. Our proposed
pedestrian detection network is lightweight that can be directly
used in small mobile platforms like UAVs, to achieve real-time
and accurate pedestrian detection. Therefore, we designed a so-
cial distancing monitoring system based on UAV, the whole pro-
cess of which is shown in Fig. 2, including 5 steps. 1) The
UAV takes photography under the condition of calibration. 2)
By using our pedestrian detection algorithm, the image pixel
coordinate of each pedestrian’s head can be calculated. 3) The
coordinate of each pedestrian in the real world can be quickly
calculated by projection transformation matrix. 4) Based on the
real-world coordinate, the distance between each pedestrian is
calculated and stored in a distance upper triangular matrix. 5)
Determine whether each distance in the matrix is less than 2
meters. If so, it indicates that there is a clustering situation
in the area. Then alert is performed. In short, this system can
monitor the social distance of each area in real time while
UAV flying and plays an important in COVID-19 pandemic
prevention.
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Fig. 2. The overview of social distancing monitoring system.

The main contributions of our work are summarized as fol-
lows:

1) We performed UAV based pedestrian detection by fast and
accurate human head detection. Particularly, we proposed an ef-
ficient and lightweight pedestrian detection network that adopts
the PeleeNet as the backbone and combines the multi-scale fea-
tures and spatial attention. It can achieve a real-time and accurate
pedestrian detection on the UAV mobile platform.

2) To alleviate the difficulty of insufficient UAV training sam-
ples, we firstly used a large number of existing video surveillance
datasets for network training and then leveraged a small UAV
image dataset that we built to fine-tune the pretrained model.

3) We proposed a social distancing monitoring method based
on the map relationship from UAV images to the real-world
coordinate system.

The rest of this paper is organized as follows. In section II, we
review the related work of pedestrian detection based on UAV,
object detection based on spatial attention and social distancing
monitoring. In section III, we present our method in detail. Sec-
tion IV illustrates the experiments and analysis of our method
in comparison with state-of-the-art methods and shows results
of social distancing monitoring. Finally, Section V draws a con-
clusion of this paper.

II. RELATED WORK

A. Pedestrian Detection Based on UAV

The traditional object detection methods usually extract the
hand-crafted features and then utilize a classifier to predict the
location and category of targets, such as HOG features with
SVM classifier [47], and Haar-like features with AdaBoost clas-
sifier [48]. However, most of the traditional object detection
methods are time-consuming, labor-consuming and poorly ro-
bust [49]. These low-level automation methods often fail to
meet the requirements in the practical applications. Recently,
pedestrian detection based on deep convolutional neural net-
work (CNN) has made great improvements [50]–[56]. In nat-
ural pedestrian detection scenes, pedestrians are photographed
from the side and most of their scales are relatively large. Li et
al. [50] designed a scale-aware Fast R-CNN framework to de-
tect pedestrians with scales from disjoint ranges. Wang et al. [51]
made good use of body part semantic information and contex-
tual information to design a high accurate pedestrian detector.
Zhang et al. [52] explicitly model people’s semantic attributes
in a high-level feature detection fashion to accurately detect
pedestrian in a crowded group. However, pedestrians in UAV

images are different from ordinary pedestrians in video images.
They are captured from diversified perspectives, with various
scales and shapes, which leads to more complex scenarios. For
pedestrian detection in UAV images, Ma et al. [57] proposed a
two-stage blob-based approach (first extracting pedestrian blobs
and then classifying the detected blobs) for pedestrian detection
using thermal infrared images recorded from UAVs. Aguilar et
al. [53] utilized HAAR-LBP cascade classifiers with AdaBoost
training and saliency maps to detect pedestrian in UAV. AlDa-
houl et al. [54] achieved real-time human detection from aerial
captured video with different altitudes using automatic feature
learning methods which combine optical flow and three different
deep models. In order to achieve the accurate object detection
in UAV image on the premise of real-time processing, Zhang et
al. [55] proposed a coarse-to-fine object detection method for
UAV image which combines lightweight convolutional neural
network and deep motion saliency. However, these pedestrian
detection methods do not solve the occlusion situation very well.

For the reason that there are always occlusions in UAV im-
ages where only the human heads can be visible, human head
detection is a good choice to accurately detect pedestrian. In re-
cent years, various head detectors based on deep learning have
emerged. Vu et al. [58] proposed a context-aware CNN-based
model that extends the R-CNN [9] object detection model by us-
ing two types of contextual cues for head detection from video
data. Gao et al. [59] designed a cascade AdaBoost head detec-
tor based on CNN that uses HOG as the feature representation
and has fewer head region proposals. Li et al. [60] combined
the regional context with the feature fusion strategy to improve
the head detection performance. [27] proposed an end-to-end
head detection method that integrates low-level local informa-
tion with the semantic features of the upper layer. This method
based on SSD [15] shows a good performance on the detection
of small-size human heads. For quick and accurate head detec-
tion in crowded scenes, [26] proposed a lightweight model called
fully constitutional head detector which can perform both classi-
fication and bounding box prediction. This method uses a series
of anchor scales that can adapt to the size of human heads. Li et
al. [25] used an adaptive relational network for head detection,
which can capture context information.

B. Object Detection Based on Spatial Attention

An important feature of the human visual system is that peo-
ple do not try to deal with the whole scene at once. Instead,
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humans take advantages of a series of partial glimpses, selec-
tively focusing on the salient parts in order to better capture the
visual structure [61].

In recent years, to improve the performance of CNNs, numer-
ous studies on object detection combined with spatial attention
have emerged [36]–[40]. Wang et al. [40] designed a residual
attention network, a convolutional network with mixed attention
mechanism in a very deep structure, which can not only gener-
ate attention-sensing features, but also show strong robustness
against noisy labels. To adaptively refine the intermediate fea-
ture map, [39] proposed a lightweight convolutional block at-
tention module (CBAM) by combining the channel and spatial
attention. To relax the local neighborhood constraint, Zhao et
al. [38] used a self-adaptively learned attention map to connect
each position in the feature with all the others. Chen et al. [37]
used multi-scale spatial and channel-wise attention mechanism
to improve the performance in detecting objects with different
backgrounds and sizes in remote sensing images. To deal with
the scale variation, [36] designed a spatial-refinement module in
which the spatial details of multi-scale objects in images can be
repaired. Spatial attention can be used to extract important fea-
ture information that we are interested in and ignore irrelevant
information.

C. Social Distancing Monitoring

Social distancing refers to the physical contact distance be-
tween people. The spread of disease can be reduced through
social distancing control, such as closing public places (e.g,
schools and workplaces), avoiding crowds and keeping enough
distance between people. The minimum social distancing be-
tween people is usually 2 meters, which can effectively reduce
and avoid possible contact. In recent years, a number of emerg-
ing technologies have contributed to the monitoring of social
distancing. In work [62], Nguyen et al. showed how emerg-
ing technologies (e.g, wireless, networking, and artificial intel-
ligence) can enable or even enforce social distancing. The ba-
sic concepts, measurements, models and practical scenarios of
social distancing were discussed in this work. A specific ap-
proach of social distancing monitoring was proposed in [5].
First, they used YOLOv3 and Deepsort respectively to detect
and track pedestrians under surveillance video. Then, the social
distancing was obtained by computing the pair-wise vectorized
L2 norm. Finally, a violation index was calculated for non-social
distancing behaviors. A similar work was done by Yang et al [6].
They proposed an artificial intelligence based real-time social
distancing detection and warning system by using a monocular
camera. However, these two works are based on a fixed surveil-
lance camera that can only capture a certain area. In contrast,
social distancing monitoring based on UAVs is more flexible
and wide-ranging than surveillance cameras.

III. METHOD

A. Pedestrian Detection Network

We detect pedestrians by detecting human heads on UAV mo-
bile platform, and there are three aspects to consider. 1) In order

Fig. 3. The architecture of our network. It consists of three parts, including
PeleeNet, multi-scale spatial attention module and detection layer. The PeleeNet
is used to extract features as backbone. There are three scales of features, namely
19× 19, 38× 38 and 76× 76. Each scale of feature is processed by spatial
attention module (SAM) before putting into detection layer.

to perform pedestrian detection on a small mobile platform such
as UAV, the algorithm must be lightweight to achieve real-time
performance. 2) For such a small target as human head, in the
process of perspective imaging, it still has multi-scale features
and the use of a single scale often leads to missed detection.
3) In a complex background, the head is easy to be confused
with other objects. If we can effectively enhance the features of
human head while ignoring other irrelevant information, we can
effectively distinguish human heads from other objects. To this
end, we proposed a real-time and accurate pedestrian detection
network which adopts the PeleeNet as backbone and combines
the multi-scale feature and spatial attention.

Our network consists of three parts, including PeleeNet,
multi-scale spatial attention module and detection layer, as
shown in Fig. 3. As the backbone, PeleeNet can fully extract fea-
tures based on an improved dense connection. The multi-scale
spatial attention module is used to integrate the features of mul-
tiple scales to enhance the information of small targets. Mean-
while, the spatial attention information of different scales is con-
ducive to object detection. The detection layer is used to predict
the location of target.

1) Backbone: We use PeleeNet [43] as backbone which is a
lightweight network variant based on DenseNet [63]. PeleeNet
follows DenseNet’s innovative connectivity patterns and some
key design principles. There are several tricks in PeleeNet
that contribute to feature learning. More details can be found
in [43]. First, the Stem block adopts convolution and maxpool-
ing branches for down sampling, which can ensure strong feature
expression ability without too much computational complex-
ity. Then the feature information is extracted using the Dense
Layer + Transition structure iteratively. Different from the orig-
inal DenseNet, a Two-way Dense layer is designed in PeleeNet
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Fig. 4. The multi-scale feature fusion.

which combines 1× 1 and 3× 3 convolution to extract the dif-
ferent scales of receptive field. At the same time, the number of
output channels in Bottleneck Layer changes with the shape of
input, so as to ensure that the number of output channels does
not exceed the input channels and the calculation amount of Bot-
tleneck Layer does not increase significantly. In the Transition
Layer, the number of output channels is not compressed, in other
words the output channels have the same number as the input.

2) Multi-Scale Spatial Attention: In this paper, we used three
scales to conduct head detection, 19× 19, 38× 38 and 76× 76
respectively. Human head is a small target in UAV image so that
we need to retain and enhance the feature information as much
as possible. We adopt multi-scale feature fusion in our network.
In order to extract the deep semantic feature information, the
general neural network will carry out multiple down-sampling
operations to obtain small-size feature maps. For example, the
size of feature maps in SSD [15] are respectively 38, 19, 10,
5, 3, 1. The minimum size of feature is 1× 1. Although deep
semantic features can be extracted in this way, a large amount
of feature information will be lost for small targets. Therefore,
in this paper, in order to retain the feature information of small
targets, excessive down-sampling is avoided. At the same time,
larger feature maps are used for prediction. The minimum size
of the feature map is 19× 19.

For multi-scale feature fusion, we use deconvolution [64] as
up-sampling. In general, the interpolation methods are used for
up-sampling, but deconvolution carries out up-sampling based
on network learning method which can be trained to obtain better
up-sampling parameters. The multi-scale feature fusion process
is shown in Fig. 4. Firstly, feature map of 19× 19 is up-sampled
via deconvolution to obtain feature map of 38× 38. Then, con-
catenation is conducted between it and the previous feature map.
Finally, 1× 1 convolution is adopted for feature fusion.

Spatial attention is an important feature that can enhance the
feature information and ignore the irrelevant information. The
architecture of spatial attention module can be seen in Fig. 5.

The process of spatial attention module can be denoted as

F ′ = Ms(F )⊗ F (1)

Where the input feature map is denoted as F ∈ RC×W×H .
The spatial attention map is a 2D map denoted as Ms ∈

Fig. 5. The architecture of spatial attention.

R1×W×H . After the spatial attention process, the output refined
feature maps are denoted as F ′ ∈ RC×W×H .

We use AvgPooling and MaxPooling to aggregate channel
information of input feature maps respectively, generating two
maps, denoted as FAvg ∈ R1×W×H and FMax ∈ R1×W×H ,
which represent the average pooling characteristic and the max-
imum pooling characteristic of the whole channels respectively.
Then the FAvg and FMax are concatenated. Finally, the spatial
attention mapMs is generated by a convolution layer, calculated
by

Ms(F ) = σ(f (7×7)([AvgPool(F );MaxPool(F )]))

= σ(f (7×7)([FAvg;FMax]))
(2)

Where σ represents the Sigmoid function and f7×7 represents
a convolution operation with filter size of 7× 7.

3) Detection Layer: We follow the detection principle of
YOLOv3 [16]. Firstly, feature extraction is carried out on the
input image through the network to obtain feature maps of dif-
ferent sizes. The detection principle is to divide the feature map
into S × S grids, such as 19× 19, 38× 38, 76× 76, and then
determine whether each grid contains the center of the target. If
so, then this grid is responsible for detecting the target. Assume
that each grid can predict 3 bounding boxes of different sizes, of
which only the largest intersection over union (IoU) value with
the ground truth is used to predict this object. IoU is a common
metric in object detection. The difference between the predicted
results and ground truths can be measured by calculating the
IoU. The larger the IoU value is, the closer the predicted result
is to the ground truth. Each bounding box consists of 6 predicted
values: x, y, w, h, c, p. Where, (x, y) represents the center point
of the bounding box. (w, h) denotes the ratio of the width and
height of the bounding box to the entire image. c is the bound-
ing box confidence, and indicates the IoU between the predicted
bounding box and ground truth. At the end, each bounding box
contains a probability p of head.

In order to refresh the weights of network parameters, the
cost loss will be evaluated after each iteration in training. When
calculating the loss, x*, y*, w*, h*, c*, p* are considered as the
value of ground truth of object. The size of feature map isS × S,
and each grid can predict B bounding boxes. For each grid, we
need to know whether it contains center point of object. So we
set the Pobj as the measure. If the grid contains center of object,
the value of Pobj is 1; otherwise, the value of Pobj is 0. The loss
of our model in each image includes Lossxy, Losswh, Lossc,
Lossp.
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1) The loss of (x, y) can be calculated in Eq. (3). Where the
BCE is binary cross entropy loss function, λ is defined as Eq.
(4).

Lossxy = λ

S2∑
i=1

B∑
j=1

Pobj × [BCE(xij) +BCE(yij)]

BCE(xij) = x∗
ij logxij + (1− x∗

ij)log(1− xij)

BCE(yij) = y∗ij log yij + (1− y∗ij)log(1− yij) (3)

λ = (2− w∗ × h∗) (4)

2) The loss of (w, h) can be calculated in Eq. (5).

Losswh =
1

2
λ

S2∑
i=1

B∑
j=1

Pobj × [(wij − w∗
ij)

2 + (hij − h∗
ij)

2]

(5)
3) The loss of c can be calculated in Eq. (6). Where the c* is

defined in Eq. (7).

Lossc =

S2∑
i=1

B∑
j=1

Pobj ×BCE(cij) + (1− Pobj)×BCE(cij)

BCE(cij) = c∗ij log cij + (1− c∗ij)log(1− cij) (6)

c∗ = Pobj × IoU (7)

4) The loss of p can be calculated Eq. (8).

Lossp =
S2∑
i=1

B∑
j=1

Pobj ×BCE(pij)

BCE(pij) = p∗ij log pij + (1− p∗ij)log(1− pij)

(8)

The total loss of each image is the sum of each loss, which is
defined as Eq. (9). In addition, the loss of each batch of images
is defined as Eq. (10), where the b is the batch size.

Loss_img = Lossxy + Losswh + Lossc + Lossp (9)

Loss_batch =
1

b

b∑
k=1

Loss_imgk (10)

B. Social Distancing

1) Image to Real-World Coordinate: Image to real-world co-
ordinate refers to the coordinate transformation between two
planes. Here, we take the ground plane as the plane of the real
world, and one of the planes in the image is needed to be trans-
formed. The coordinates of any point on the pedestrian body
are the same in the real-world plane while different in images.
This is caused by the image point displacement in the process
of camera perspective projection imaging due to the height of
pedestrian, as shown in Fig. 6. The more details about image
point displacement can been seen in [65]. Therefore, in order to
avoid the error caused by the image point displacement, we need
determine a plane parallel to the ground in the image to carry out
coordinate transformation. The two most obvious planes in the
image are the planes of the pedestrian’s head and foot. Actually,
the plane of the pedestrian foot is the ground plane in image.

Fig. 6. The image point displacement in vertical image due to the height of
pedestrian.

Fig. 7. The imaging principle of vertical photography at a fixed altitude. O-
XYZ represents the real-world coordinate system and u-o-v represents the image
coordinate system. P is the ground object, and P′ is the corresponding image
point.

Due to the fact that UAV photographs from overhead and there
is an occlusion among pedestrians, it is difficult to obtain the
image coordinate of the foot of each pedestrian. Therefore, it is
inappropriate to use the plane of pedestrian foot as the plane to
be transformed. Instead, the head of each pedestrian is easy to
be recognized whose image coordinate can be obtained through
pedestrian detection method. Therefore, we establish the coor-
dinate transformation relationship between the plane of pedes-
trian’s head and the real-world plane. Here, we assume that the
pedestrian’s head is in the same plane (About 1.7 m above the
ground).

Vertical images. The vertical imaging principle can be simpli-
fied as shown in Fig. 7 where O-XYZ represents the real-world
coordinate system and u-o-v represents the image coordinate
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system. P is the real-world coordinate point, and P′ is the corre-
sponding image point. f is the focal length of the camera and H
is the distance between the focus of the camera and the ground.

Assuming that Prw
i = [xi, yi, 1] is the homogeneous repre-

sentation of the 2D plane real-word coordinate of each head, and
Pv

i = [ui, vi, 1] is the homogeneous representation of the corre-
sponding vertical image coordinate. The following formula can
be derived from the vertical imaging principle.

xi

ui
=

yi
vi

= λ (11)

The λ refers to the ratio of pixel to meter. The mapping from
Pv

i to Prw
i can be expressed as

⎡
⎣
xi

yi
1

⎤
⎦ =

⎡
⎣

λ 0 0
0 λ 0
0 0 1

⎤
⎦
⎡
⎣
ui

vi
1

⎤
⎦ (12)

Tilted images. Tilted image is more complex than vertical
image and can be hardly transformed to the real-world coordi-
nate directly. However, according to the research in [66], there
is a homography between two images of the same area taken by
the same camera at different angles or positions. In other words,
there is a homography between two planes of the same region
corresponding to the tilted image and the vertical image, which
can be transformed by homography transformation. Therefore to
solve this task, we first transform the tilted image to the vertical
image by a homography matrix, and then transform the vertical
image to the real-world coordinate based on the transformation
principle of vertical image to real-world coordinate, as shown
in Fig. 10.

A homography is an invertible mapping of points and lines
on the projective plane. Assuming Pt

i = [u′
i, v

′
i, 1] is the homo-

geneous representation of the titled image coordinate point. The
transformation relationship between Pv

i and Pt
i can be repre-

sented by the following formula:

Pv
i = HPt

i (13)

where H is a homography matrix, and can be represented as:

H =

⎡
⎣
h11 h12 h13

h21 h22 h23

h31 h32 1

⎤
⎦ (14)

As H has eight unknowns, at least four pairs of noncollinear
titled image points and vertical image points are required to
calculate the parameters of H. Once the H is determined, the co-
ordinates of any point in titled image coordinate can be projected
into the vertical image coordinate.

⎡
⎣
ui

vi
1

⎤
⎦ =

⎡
⎣
h11 h12 h13

h21 h22 h23

h31 h32 1

⎤
⎦
⎡
⎣
u′
i

v′i
1

⎤
⎦ (15)

According to Eq. (12) and Eq. (15), the transformation of
tilted image coordinate to real-world coordinate can be realized
by

⎡
⎣
xi

yi
1

⎤
⎦ =

⎡
⎣

λ 0 0
0 λ 0
0 0 1

⎤
⎦
⎡
⎣
h11 h12 h13

h21 h22 h23

h31 h32 1

⎤
⎦
⎡
⎣
u′
i

v′i
1

⎤
⎦ (16)

2) Social Distancing Monitoring: The image coordinate of
each head P′

i(ui, vi) can be derived from the coordinate of
bounding box of head that is predicted by our proposed head
detection method. Then the corresponding real-word coordinate
Pi(xi, yi) can be calculated by Eq. (12) or Eq. (16). Based on
the real-word coordinate Pi(xi, yi), the distance di,j for pedes-
trian i and j can be obtained by pairwise L2 norm between vector
Pi and Pj :

di,j =‖ Pi −Pj‖2 (17)

where i, j ∈ {1, 2, . . ., n}, n is the number of detected pedes-
trians.

All the inter-pedestrian distance D can be represented by an
upper triangular matrix of distance:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 d1,2 · · · d1,j · · · d1,n
...

...
. . .

...
. . .

...
0 0 · · · di,j · · · di,n
...

...
. . .

...
. . .

...
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
n×n

i ∈ {1, 2, . . ., n− 1}, j > i,∈ {2, . . ., n}

(18)

Because the safe social distancing is about 2 meters away,
we set the threshold for social distancing as dc = 2. We use
the total number of social distancing violation v to measure the
condition of social distancing of pedestrian in a scene, which
can be calculated by

v =

n−1∑
i=1

n∑
j=i+1

f(di,j) (19)

where, f(di,j) = 1 if di,j < dc, otherwise 0.

IV. EXPERIMENTAL RESULTS

A. Human Head Datasets

1) Video Surveillance Datasets: Since the UAV image is sim-
ilar to the video surveillance data, to alleviate the difficulty of
insufficient UAV training samples, we adopted the common head
dataset under video surveillance for experiments firstly, includ-
ing Brainwash [44], SCUT-HEAD [45] and our FerryHead. They
are all obtained from video surveillance and are basically similar
to UAV image. The samples from these datasets can be seen in
Fig. 8, which show the following characteristics: 1) the size of
human head is small, 2) they are from diversified scenes with var-
ious viewpoints, 3) there exists occlusion, 4) many pedestrians
wear hats and helmets, and 5) some scenes show complex back-
grounds. Based on these characteristics, we can draw a conclu-
sion that these samples include almost the heads in daily scenes.
In other words, these three datasets make up a representative
head dataset.

Brainwash is a large dataset of human heads, derived from
surveillance video footage from a coffee shop. The Brainwash
dataset contains 11 917 images with 91 146 annotated heads,
which is divided into three parts. The training set includes 10 917
images with 82 906 annotations. The validation set includes
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Fig. 8. The samples from a merged human head dataset (Merge-Head).

TABLE I
THE DETAIL INFORMATION OF HUMAN HEAD DATASETS

500 images with 3318 annotations. The testing set includes 500
images with 4922 annotations.

SCUT-HEAD is a common human head dataset, including
PartA and PartB that are from monitor videos of classrooms in a
university and images of Internet respectively. In this paper, we
just use the PartA whose samples are similar to the UAV image.
The SCUT-HEAD dataset contains 2000 images with 67 321
annotated heads. The number of training set, validation set, and
testing set are respectively 1100, 400, 500.

Ferryhead is a universal human heads dataset that we built,
whose samples are captured form the video surveillance of rural
ferries in China. The FerryHead dataset has 4850 images in 8
scenes, with a total number of 27 289 labeled heads, containing
heads from different scales, directions and viewpoints.

We merge these three datasets to obtain a large and universal
human head dataset, call Merge-Head. The detail information is
shown in Table I.

2) UAV Datasets: We built a small human head dataset,
called UAV-Head, whose samples were captured from UAV im-
ages, containing both tilted images and vertical images. The
UAV-Head contains 745 images in size of 1920× 1080 pix-
els, with 564 images for training and 181 images for valida-
tion. The UAV-Head dataset is used to fine-tune these detec-
tion models that have been trained on video surveillance dataset
(Merge-Head dataset).

B. Evaluation Metrics

To evaluate the detection speed, one of the most common
metrics is frames per second (FPS), which means the number

of images that each detection algorithm can process with the
specified hardware.

We regard the IoU value of the predicted bounding boxes more
than 0.5 and the correct classification results as the true results,
and other predicted results as false results. The predicted results
can be divided into four categories: True Positive (TP), False
Positive (FP), False Negative (FN) and True Negative (TN). The
precision is defined as precision = TP/(TP + FP ), and re-
call is defined as recall = TP/(TP + FN). Average precision
(AP) is used to measure the accuracy of the detection model,
which is the average of precision values under different recall
values.

C. Implementation Details

These experiments run at a desktop with 3. 60 GHz Intel
Core i7-7820X CPU, 32 GB RAM, Ubuntu 18. 04 systems. Our
proposed method and the baseline methods are implemented
by PyTorch 1.5.1 library with Python 3. 6. 9, accelerating by a
NVIDIA GTX 2080Ti GPU with 12 GB GPU memory, CUDA
10.1, and CUDNN 7.5.

1) Detection Details: When detecting small targets, the size
of normalized input images and anchor box have certain influ-
ence on the detection results. Therefore, we chose the larger
input image size and the smaller anchor box compared to
YOLOv3. We resized all images to 608× 608. As the feature
information will be lost as the size of feature maps decrease
in down-sampling operation, we used larger size of feature
maps for prediction, which are respectively to 19× 19, 38× 38,
76× 76.

In PeleeNet module, the number of dense layers in four dense-
blok are set to 3, 4, 8, 6 respectively. The growth rate is set to
32. We adopt the deconvolution with kernel size of 4× 4 and
stride of 2 to carry out up-sampling in multi-scale feature fusion
processing. The learning rate is set to 0.001, the momentum
parameter is chosen as 0.9, and the weight decay is 0.0005.

Our method and the baseline methods are firstly trained by
Merge-Head dataset. Then we used a small UAV dataset to fine-
tune these models.

2) Calibration Test: We calibrated on a square where the
plane of pedestrian head in the image is calibrated with the plane
in the real world. Five pedestrians with an average height of 1.7 m
were selected to be calibration points and stood at different po-
sitions to obtain vertical and tilted images of the UAV. Here, the
focal length of the camera (f ) is 24 mm, the height indicating the
distance between the camera and ground (H) is 14 m, and the
tilted angle is 45◦. The vertical image calibration is shown in the
Fig. 9, where the pixel distance between the pedestrian’s head
in the image and the corresponding actual distance are obtained
by actual measurement. Thus, we can gain the ratio of pixel to
meter that is from the plane of pedestrian’s head in image to
real world, and that is λ = 0.00783 m/pixel. Fig. 10 shows the
calibration from the tilted image to the real world. First, 5 pairs
of homonymic points (pedestrian’s head) are selected between
the tilted image and the vertical image and corresponding pixel
coordinates are obtained. Through these 5 pairs of homonymic
point pairs, H, the homography matrix for the transformation
from the tilted image to the vertical image, can be calculated.
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Fig. 9. The calibration of vertical images.

Note that H here represents the transform relationship between
the planes of pedestrian’s head in tilted images and vertical im-
ages. Then, the tilted image can be transformed to the real world
using the vertical image calibration results.

After the calibration, the vertical images and the tilted images
were acquired under the condition of calibration. The pedes-
trian’s heads in images were detected by our pedestrian detection
algorithm, then the social distance was calculated.

D. Results and Analysis

1) Detection Results on Video Surveillance Datasets: In this
part, we compare our method with two state-of-the-art object
detection models (SSD [15] and YOLOv3 [16]), both of which
show a good performance on Pascal VOC 2007 dataset and can
achieve real-time end-to-end object detection. Here, the SSD300
model and SSD512 model are both based on VGG16, with
the same architecture, and the only difference is the input im-
age size (300× 300 and 512× 512). The SSD320 utilizes the
MobileNet_v2 [39] as backbone, which is a lightweight net-
work, with the input image size of 320× 320. The YOLOv3
uses the Darknet-53 to extract feature information and have
three prediction layers with different scales. The YOLOv3-Tiny
is the reduced version of YOLOv3, which is a lightweight
network with smaller size of model and fast detection speed.
YOLOv3, YOLOv3-Tiny and our method have the same size of
input image (608× 608). All methods are trained and tested on
Merge-Head dataset with one NVIDIA GTX 2080Ti GPU. The
precision-recall curves of these methods on Merge-Head dataset
are shown in Fig. 11, from which we can see that our proposed
method gives the highest average precision (AP) than others.

Speed and accuracy analysis. The speed and accuracy
of each methods can be seen in Table II. Our model is a
lightweight CNN object detection network, whose size (8.30 M)
is only larger than SDD320 (3.02 M). Compared with the two
lightweight models SSD320 and YOLOv3-Tiny, the speed of
our method is 76 FPS, which is slower than SSD320 (126 FPS)
and YOLOv3-Tiny (261 FPS) but faster than the other meth-
ods. However, our method can achieve highest AP. The AP of
our method is 92.22%, which is higher than that of YOLOv3
by 1.2% and higher than that of YOLOv3-Tiny by 5.25% and

TABLE II
THE COMPARISON RESULTS ON MERGE-HEAD DATASET OF

DIFFERENT METHODS

TABLE III
THE ABLATION EXPERIMENTAL RESULTS BASED ON MERGE-HEAD DATASET

much higher than that of SSD models. The size of input image
has a certain impact on the detection results. Comparing the AP
of SSD512 (78.74%) and SSD 300 (44. 78%), we can know that
the larger the input size, the higher the AP, but the lower speed.

There is a trade-off problem between accuracy and speed.
In practical applications, we give priority to accuracy and then
consider its speed and model size. The algorithm with high ac-
curacy, fast speed and small size is the best. The experimental
results can explain that our method enjoys the best performance
and can achieve real-time and accurate head detection.

Visualization results on Merge-Head dataset. The test re-
sults of our method in Merge-Head are shown in Fig. 12. The test
scenarios include rural ferries, cafe, classrooms, with diversified
viewpoints, illuminations, and scales. In the video surveillance
of the rural ferries, people wear all kinds of hats, carry vari-
ous luggage and take different travel tools, which increases the
difficulty of pedestrian detection. However, our method can al-
most accurately detect all the people and can distinguish the
human heads from background. In the cafe, the human head
with various scales and different illumination can also be de-
tected accurately by our method. The classroom is a crowded
scene with numerous people in a room, where the human heads
are small size and blocked by each other. It is a hard task to
accurately detect small-size object in a crowded scene, but our
method can achieve it and detect each human head in such a com-
plicated scene. Generally speaking, our method shows a great
performance for human head detection with a high accuracy in
diversified scenarios.

Ablation analysis. In order to verify the effectiveness of our
network, we made specific analysis from the following two as-
pects: multi-scale feature and spatial attention. The experimental
results are based on Merge-Head dataset, which can be seen in
Table III. Fig. 13 shows the visualization of ablation experi-
ments.

1) Multi-scale features. We use the PeleeNet as the base-
line which only uses one scale for prediction. We defined
PeleeNet_M as the network that uses the PeleeNet as back-
bone and has three scales of features for prediction. The AP of
PeleeNet is 15.40%, which is much low. While the PeleeNet_M
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Fig. 10. The calibration of tilted images.

Fig. 11. The precision-recall curves of different algorithms.

can achieve 91.12% AP, which is significantly improved com-
pared with PeleeNet. The detection results in Fig. 13(a) shows
that there are numerous miss detections compared to that of in
Fig. 13(b). The results between PeleeNet and PeleeNet_M can
fully confirm that the network only uses one scale can hardly
detect human heads but multi-scale features are much useful for
improving the accuracy of human head detection.

2) Spatial attention. The AP of PeleeNet_M is 91.12%,
while ours has a further improvement of 1.10% compared with
PeleeNet_M. We use three scales of features for prediction in
our network as same as PeleeNet_M, but we apply spatial atten-
tion module to each feature while PeleeNet_M does not. And
the visualized results in Fig. 13 show that there are some false
detections by PeleeNet_M. The results indicate that spatial at-
tention module indeed improves the accuracy of human head
detection. In short, both multi-scale feature and spatial atten-
tion lead to a significant improvement to the accuracy of human
head detection, and our proposed human head detection method
outperforms other methods.

2) Detection Results on UAV Images: The UAV image is very
similar to the video surveillance image. However, the scenarios
of UAV images are still more complex than those under video
surveillance. Our method works very well on video surveillance
data. Whether can it also work well on low-altitude UAV images?
To validate it, we conducted a detection experiment on UAV-
Head dataset using our method and comparison methods. The
UAV-Head dataset contains vertical images and tilted images.

The performance of object detection based on deep learning
much depends on training data. The data sources, objects, and

TABLE IV
THE COMPARISON RESULTS ON UAV-HEAD DATASET OF DIFFERENT METHODS

scenarios of the dataset are different depending on the require-
ments. There is currently no dataset that meets the requirements
for all data sources, objects and scenarios. Therefore, according
to requirements, corresponding datasets should be made for spe-
cific data sources, objects and scenarios. However, it takes a lot
of manpower and material resources to make such a dataset. In
order to save resources, according to the idea of transfer learn-
ing [67], we used a small UAV dataset to fine-tune these de-
tection models trained on Merge-Head dataset and conducted
a comparison experiment. Using the existing datasets from dif-
ferent sources for pre-training and then fine-tuning the network
model on the small dataset in a specific scenario can save a lot
of resources and obtain an applicable network model.

The test results on UAV-Head dataset based on our method
and comparison methods are shown in Fig. 14 and Table IV. The
results in Table IV show that our pedestrian detection method
achieves 88.5% AP that is higher than the comparison methods:
YOLOv3 (87.9%), YOLOv3-Tiny (82.3%), SSD512 (80.2%).
The FPS of our method is 75. It indicates that our pedestrian de-
tection method can also achieve real time and accurate detection
on UAV images.

We visualized the detection results on UAV images (including
vertical images and tilted images), as shown in Fig. 14. There are
some missed and false detections in the results of comparison
methods while our method can achieve high-precision detection
of each pedestrian in both vertical images and tilted images.
These results can explain that our method enjoys the best per-
formance on UAV pedestrian detection.

3) Social Distancing Monitoring: Social distancing can be
measure by calculating inter-pedestrian distance. We have ex-
perimented with social distancing monitoring on UAV images.
Since we have conducted a calibration test and obtained the
transformation matrix from image to real-world coordinate,
the social distance in UAV can be easily calculated. Fig. 15



SHAO et al.: REAL-TIME AND ACCURATE UAV PEDESTRIAN DETECTION FOR SOCIAL DISTANCING MONITORING IN COVID-19 PANDEMIC 2079

Fig. 12. The visualization results of our method on Merge-Head dataset.

Fig. 13. The visualization of ablation experiments. (a), (b) and (c) are the
detection results of PeleeNet, PeleeNet_M and Ours respectively.

TABLE V
THE TILTED IMAGE AND REAL-WORLD COORDINATE OF EACH PEDESTRIAN

shows the pedestrian detection results on UAV image by us-
ing our proposed method and the calculated corresponding co-
ordinates in the real world. Taking the tilted image for exam-
ple, the concrete corresponding coordinate of each pedestrian
in Fig. 15(c) and Fig. 15(d) can be seen in Table V. Pi indi-
cates the ID of each detected pedestrian. (u, v) represents the
image pixel coordinate of each pedestrian. (X,Y ) denotes the
coordinate of each pedestrian in the real world that was cal-
culated by projection transformation matrix H and the ratio of
pixel to meter λ. The inter-pedestrian distance upper triangular
matrix D is shown in Table VI. As seen from the Table VI, there

are 6 couple of pedestrians less than 2 meters apart, namely
d1,6, d2,7, d4,5, d9,10, d9,12, d10,12. The total number of social
distancing violation in this scene is v = 6. That means there are
6 couple of pedestrians in a close social distancing.

We conducted experiments of social distancing monitoring on
numerous UAV images, and the monitoring results are shown
in Fig. 16. We display the total number of pedestrians in each
scene and calculate the value of v. If v = 0, it means that there
is no pedestrian with close social distancing in the scene and
the pedestrian keep a safe social distancing, then the Normal
is showed. If v > 0, it means there is a pedestrian with a close
social distancing in the scene, then the Warning is shown. Based
on our social distancing monitoring algorithm, the UAV can
quickly detect the crowd.

Furthermore, we have evaluated the accuracy of social dis-
tance estimation with four different pedestrian position patterns.
Fig. 17 is the results of the social distance monitoring on tilted
UAV images using our method. We compared the detected social
distance with the ground truth and calculated the absolute errors.
Taking the Fig. 17(a) and Fig. 17(b) for example, the results are
shown in Table VII and Table VIII, from which we can cal-
culate the mean absolute error respectively. The mean absolute
errors in Fig. 17(a) and Fig. 17(b) are respectively 0.1099 m and
0.1050 m. In the same way, the mean absolute errors in Fig. 17(c)
and Fig. 17(d) are respectively 0.1061 m and 0.1084 m. Finally,
the mean absolute error in these four different pedestrian posi-
tion patterns is 0.1073 m. Considering that each pedestrian has a
volume, we treated each pedestrian as a point in our experiment,
which is an ideal state. Therefore, in the real world, the mean
absolute error of 0.1073 m is within the allowable error range.
Form the above analysis, we can make a conclusion that our
method has a good performance in social distancing estimation.

Although our method has a good performance in social dis-
tancing estimation, there are some limitations. On the one hand,
when UAVs fly in the air, they are inevitably disturbed by the
wind. The issue of instability caused by the wind is not solved
by algorithms at present, generally through hardware devices to
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Fig. 14. The visualization detection results on UAV-Head dataset (including tilted images and vertical images).

TABLE VI
THE INTER-PEDESTRIAN DISTANCE UPPER TRIANGULAR MATRIX D (METER)

reduce the interference as much as possible. With the rapid de-
velopment of UAV technology, more and more UAVs can with-
stand the instability caused by a certain intensity wind. On the
other hand, in our study, we assume that the surface is flat. This
is the simplest situation. However, sometimes the surface is not

always flat or there are different levels in one scene. Our social
distancing estimation method is unsuitable in this situation and
it is a huge challenge to make a precise social distancing estima-
tion. In addition, there is no similar solution so far. In our future
work, this will be a direction worthy of further study.
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Fig. 15. The pedestrian detection results on UAV images and the mapped
corresponding coordinates in the real world.

Fig. 16. The results of social distancing monitoring on UAV images (including
tilted images and vertical images).

Fig. 17. The results of social distancing monitoring on tilted images with four
different pedestrian position patterns.

V. CONCLUSION

In this paper, we have proposed a lightweight pedestrian de-
tection network which can accurately detect pedestrian by hu-
man head in real time, and then calculated the social distancing
of each pedestrian on UAV images. Our pedestrian detection

TABLE VII
THE COMPARISON RESULTS BETWEEN THE DETECTED SOCIAL DISTANCE AND

THE GROUND TRUTH IN FIG. 17 (A) (METER)

TABLE VIII
THE COMPARISON RESULTS BETWEEN THE DETECTED SOCIAL DISTANCE AND

THE GROUND TRUTH IN FIG. 17 (B) (METER)

network consists of three parts, PeleeNet, multi-scale spatial at-
tention module and detection layer. In order to explore the fea-
tures of small-size object like human head, we fuse three scales
of feature maps (19× 19, 38× 38, 76× 76) by deconvolution
and concatenation. The spatial attention module is particularly
used to enhance the feature information and ignore the irrele-
vant information. Then the location of human head is predicted
in detection layer.

We compared our method with the state-of-the-art object de-
tection methods (SSD model and YOLOv3 model) on a merged
human head dataset. The experimental results show that our
method achieves 92.22% AP and 76 FPS, which turns out accu-
rate and real-time detection in actual applications. Especially, the
ablation experiments show that multi-scale feature and spatial
attention can substantially improve the performance of pedes-
trian detection. The test results on UAV-Head dataset show that
our method can also achieve high precision pedestrian detection
on UAV images with 88.5% AP and 75 FPS. The visualization
results of our method on UAV images also show that our method
can detect each individual with different viewpoints, illumina-
tions and scales in various scenes. In addition, we conducted
a precision calibration test to obtain the transformation matrix
from tilted image and vertical image to real-world coordinate.
Based on the accurate pedestrian detection and the map relation-
ship from image to real-world coordinate system, the social dis-
tancing monitoring is achieved reliably, enabling an automatic
distance-sensing approach for preventing COVID-19.
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