Abstract:
Online handwritten diagram recognition (OHDR) has attracted considerable attention for its potential applications in many areas, but it is a challenging task due to the c...Show MoreMetadata
Abstract:
Online handwritten diagram recognition (OHDR) has attracted considerable attention for its potential applications in many areas, but it is a challenging task due to the complex 2D structure, writing style variation, and lack of annotated data. Existing OHDR methods often have limitations in modeling and learning complex contextual relationships. To overcome these challenges, we propose an OHDR method based on graph neural networks (GNNs) in this paper. In particular, we formulate symbol segmentation and symbol recognition as node clustering and node classification problems on stroke graphs and solve the problems jointly under a unified learning framework with a GNN model. This GNN model is denoted as Instance GNN since it gives the symbol instance label as well as the semantic label. Extensive experiments on two flowchart datasets and a finite automata dataset show that our method consistently outperforms previous methods with large margins and achieves state-of-the-art performance. In addition, we release a large-scale annotated online handwritten flowchart dataset, CASIA-OHFC, and provide initial experimental results as a baseline.
Published in: IEEE Transactions on Multimedia ( Volume: 24)