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Abstract—The goal of this work is to recognize words, phrases,
and sentences being spoken by a talking face without given the
audio. Current deep learning approaches for lip reading focus on
exploring the appearance and optical flow information of videos.
However, these methods do not fully exploit the characteristics
of lip motion. In addition to appearance and optical flow, the
mouth contour deformation usually conveys significant informa-
tion that is complementary to others. However, the modeling of
dynamic mouth contour has received little attention than that of
appearance and optical flow. In this work, we propose a novel
model of dynamic mouth contours called Adaptive Semantic-
Spatio-Temporal Graph Convolution Network (ASST-GCN), to
go beyond previous methods by automatically learning both the
spatial and temporal information from videos. To combine the
complementary information from appearance and mouth con-
tour, a two-stream visual front-end network is proposed. Exper-
imental results demonstrate that the proposed method signifi-
cantly outperforms the state-of-the-art lip reading methods on
several large-scale lip reading benchmarks.

Index Terms—Lip Reading, Semantic-Spatio-Temporal, Adap-
tive Graph Convolution Network, Two-Stream.

I. INTRODUCTION

AUTOMATIC Lip Reading (ALR), also known as Visual
Speech Recognition (VSR), aims to decode the content

of a speech from the speaker’s mouth movements. ALR
has been attracting increasing attention in recent years since
it plays a significant role in many applications such as
audio-video speech recognition (AVSR), health care, public
security, and human-computer interaction [1], [2], [3], [4], [5].
Recently, advances in deep learning and the availability of
large-scale datasets have brought significant progress for
ALR [1], [6], [7], [8], [9], [10], [11]. However, the low
accuracy of state-of-the-art ALR approaches is still far from
meeting the requirements of real-world applications. ALR
has many challenges [12], such as visual ambiguities, speaker
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dependency, pose variations, environment illumination, video
resolution, etc.

Current deep learning based lip reading methods consist
of two main sub-networks [9]: a visual front-end network for
extracting spatio-temporal visual features and a sequence back-
end network for modeling the temporal dependency from the
extracted features. For the visual front-end part, two types of
network architectures are commonly used, i.e., a shallow 3D
CNN + deep 2D CNNs (e.g., ResNet [13]) and 3D CNNs (e.g.,
I3D [14]). The low dimensional visual features are extracted
directly with the front-end network followed by global aver-
age pooling [10]. The back-end part further explores temporal
context information from the extracted visual features. Cur-
rent sequence back-end networks are designed by borrowing
ideas from speech recognition or natural language processing.
They can be divided into three categories: Temporal Convolu-
tional Networks (TCN) [10], [15], Recurrent Neural Network
(RNN) [7], [10], [16], and Transformer [1], [11], [17].

Despite the recent progress, current visual front-end net-
works have the following shortcomings. Firstly, current meth-
ods do not fully exploit the characteristics of lip dynamics.
They focus on exploring the appearance and optical flow in-
formation of videos [9]. In addition to appearance and optical
flow, the mouth contour deformation usually conveys signif-
icant information that is complementary to others. Secondly,
different parts of the talking mouth (mouth corner, teeth, chin,
etc.) contain rich semantic information, which is critical for
ALR. However, normal CNNs can hardly capture the complex
semantic relationship among these local parts.

To address these drawbacks, in this paper, we aim to
go beyond previous methods by explicitly modeling the
dynamic mouth contours to capture the motion of mouth
contour, local subtle movements, and semantic information
contained in the underlying structure. To achieve this goal,
several facial landmark points, named Lip Reading related
Landmark Points (LRLPs), on the lip region [18] are selected
to model the mouth contour deformation. Human landmark
information has been widely explored for deep learning based
human-centric understanding tasks. Such as visual fashion
analysis [19], [20], human parsing [21], [22], [23], etc.

Recently, graph convolutional networks (GCNs), which ex-
tend convolution operations for graph data, have been success-
fully adopted in many applications [24], [25], [26], [27], [28],
[29]. Inspired by the recent great success of GCNs, we propose
to introduce GCNs to model the mouth contour deformation.
However, there are some difficulties in the process of graph
construction. (1) Different from ordinary graph data, there is
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no natural connectivity between those LRLPs. If we intro-
duce a predefined adjacency matrix, it is not guaranteed to
be optimal for the lip reading task. (2) For deep GCNs, we
believe that different layers contain different levels of relations.
However, the topology of the graph applied in ordinary GCN
is fixed over all the layers, which lacks the flexibility and
capacity to model the multilevel relations contained in differ-
ent layers [30]. (3) A single type of graph structure may not
be sufficient for lip reading tasks. Both the natural semantic
relations and the dynamic spatio-temporal relations of those
LRLPs should be considered.

Motivated by this, a novel model of dynamic mouth con-
tours, called Adaptive Semantic-Spatio-Temporal Graph Con-
volution Network (ASST-GCN), is proposed in this work. It
parameterizes two kinds of adaptive graphs for graph convo-
lution. One of them is referred as the semantic graph, which
is obtained by learning the shared adjacency matrix from the
datasets. Another is referred as the dynamic spatio-temporal
graph, whose adjacency matrix is built based on the input data.
Furthermore, to combine the complementary information from
appearance and mouth contour, a two-stream visual front-end
network is proposed. The major contributions of this work are
summarized as follows.

• We propose a novel model of dynamic mouth contours
called Adaptive Semantic-Spatio-Temporal Graph Convo-
lution Network (ASST-GCN), which goes beyond previ-
ous methods by automatically learning both the semantic
and spatio-temporal information from videos.

• In order to combine the complementary information from
appearance and mouth contour, a two-stream visual front-
end network is proposed.

• Experiments on both word-level and sentence-level lip
reading tasks clearly show that the proposed method sig-
nificantly outperforms the baseline lip reading methods
on several large-scale lip reading benchmarks.

The rest of paper is organized as follows. Sec. II introduces
the related work of lip reading and adaptive graph convolution
network. Sec. III describes the overall pipeline of our lip read-
ing model and the proposed ASST-GCN module. The com-
ponents of our proposed ASST-GCN module are introduced
in detail in Sec. III. The ablation study and the comparison
with the state-of-the-art methods are shown in Sec. IV. Sec. IV
also provides some quantitative results and discussions. Sec. V
concludes the paper.

II. RELATED WORK

A. Lip Reading

The input video of ALR contains a large amount of
redundant information (such as pose, illumination, gender, et
al.) that is unrelated to the ALR task, while the information
really related to the ALR task is lip movement. The key
to ALR tasks, spatio-temporal feature extraction, is to
effectively filter out redundant information while keeping
lip movement information as much as possible. Before the
emergence of deep learning based methods, researchers
did a lot of work on ALR research which mainly focuses
on the spatio-temporal feature extraction of videos. There

are two main types of traditional methods: appearance-
based and shape-based. The former uses the pixel value
of ROI as the original feature space, then utilizes different
data dimension reduction methods to obtain compact and
effective feature representations. For dimension reduction
methods, linear transformation methods such as Principal
Component Analysis (PCA) [31], Discrete Cosine Transform
(DCT) [32], Linear Discriminant Analysis (LDA) [32] and
Maximum Likelihood Linear Transformation (MLLT) [33]
are commonly used; Besides, optical flow, Local Binary
Patterns from Three Orthogonal Planes (LBP-TOP) [34],
manifold learning and graph embedding methods such
Locality Discriminant Graph (LDG) [35], Random Forest
Manifold Alignment (RFMA) [36] and so on are also used
for feature extraction. Shape-based methods perform feature
extraction based on the shape of the ROI (lips, chin, cheeks, et
al.). Compared to appearance-based methods, those methods
have better interpretability and generalization while needing
more manual annotation. Main attributes of lip contour
(height, width et al.) or Articulatory Features (AFs) [37], [38]
are mainly used to small-scale recognition tasks; Active
Shape Model (ASM) [39] is one of the most commonly
used shape-based methods that use facial landmarks to
extract spatio-temporal features. In addition, some researchers
proposed a more powerful method, the Active Appearance
Model (AAM) [40], that furtherly improve the performance
by combining appearance-based and shape-based methods.
For classifier, Support Vector Machine (SVM), template
matching, Maximum a Posteriori (MAP), and Regularized
Discriminant Analysis (RDA) are mainstream classifiers for
isolated recognition tasks; Hidden Markov Model (HMM) is
widely used for continuous recognition tasks.

The works on deep lip reading mainly focus on the archi-
tecture design of these two sub-networks: visual front-end net-
works and sequence back-end networks. As for the design of
visual front-end networks, a lot of works utilize deep CNNs to
perform visual features extraction. For example, [10] proposes
a simple variation of ResNet (changing the first 2D convolu-
tion layer to 3D convolution layer). This model consists of
a shallow 3D CNN and deep 2D CNN, and it achieves 83%
recognition accuracy for word-level lip reading on LRW [8]
dataset. Due to the considerable performance of the model,
most lip reading models [1], [11], [41] adopt it as the backbone
network for visual features extraction. Besides, deep 3D CNNs
are also used to extract visual features. In paper [9], the authors
successfully migrate the two-stream (the raw grayscale video
stream and the dense optical flow stream) I3D model to lip
reading, and achieve comparable performance on word-level
lip reading. However, dense optical flow calculation is very
time consuming, resulting in low recognition efficiency.

For the design of sequence processing back-end networks,
there are two main lip reading tasks: word-level and sentence-
level. The former is to recognize isolated words from the input
videos, usually trained with multi-classification cross-entropy
loss. Stafylakis et al. have created the baseline word-level
lip reading model with BiLSTM based back-end network
[10]. Martinez et al. improved the state-of-the-art model
by replacing the BiLSTM back-end with Multi-Scale TCN
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(MSTCN) [42]. The latter is to do sentence-level sequence
prediction, both connectionist temporal classification loss
(CTC) [43] and sequence-to-sequence loss [44] can be
used to train the model. LipNet [7], consisting of 3D
CNNs and BiGRUs, is the first end-to-end sentence-level
lipreading model that simultaneously learns spatio-temporal
visual features and sequence model. Besides, Afouras
et al. introduce transformer self-attention architecture to
lip reading. They propose Transformer-CTC model and
Transformer-seq2seq model [1], and further discuss the
difference between the two models in detail.

B. Adaptive Graph Convolution Networks
Encouraged by the great success of CNNs in the field of

computer vision, extensive works further explore how to apply
convolution operations to graph related data. The principle of
constructing GCNs mainly follows two streams: spatial-based
[28], [45], [46] and spectral-based [47], [48], [49], [29], [50].

Spectral-based methods treat graph convolution as graph
signal processing. They assume graphs to be undirected, and
perform graph convolution in the frequency domain with the
favor of the graph Fourier transform. In contrast, spatial-based
methods define graph convolution on graph nodes based on
their spatial adjacency relations, just like CNNs on image
pixels. This work follows the spatial-based methods.

Normal spatial-based GCNs are only built for known
and fixed graph structure. However, in some cases (e.g.
classification of point cloud, skeleton-based action recognition,
human-centric understanding), the fixed graph structure may
lack the flexibility and capacity to model the complex graph
data. In [51], Qi et al. propose Graph Parsing Neural Network
(GPNN) for human-object interaction (HOI) recognition. The
proposed GPNN offers a general framework that explicitly
represents HOI structures with graphs and automatically
parses the optimal graph structures in an end-to-end manner.
In [21], Fan et al. propose a novel spatio-temporal reasoning
graph network for human gaze communication in social videos
from both atomic-level and event-level. The proposed model
can iteratively learns gaze communication structures and
node representations. Besides, some researchers try to make
the network adaptively learn the expanded graph structure.
To adapt GCNs to arbitrary graph structure and size, Li et
al. [52] propose an Adaptive Graph Convolutional Network
module, called SGC-LL, to learn residual graph Laplacian
via learning the optimal metric and feature transform.
Shi et al. [53] propose an adaptive graph convolution neural
network (2s-AGCN) for skeleton-based action recognition.
They redefine the graph architecture of the skeleton data and
embed it into the network parameters to be jointly learned
and updated with the model.

C. Audio-Visual Cross-Modal Learning
Cross-modal learning from vision and audio has attracted

increasing interest in recent years. Based on the natural co-
occurring characteristics of audio and video, audio model and
visual model can be jointly trained for diverse tasks. e.g., vi-
sual sound separation [54], [55], [56], visual music genera-
tion [57], [58], [59], visual sound localization [60], [61], etc.

Audio-visual cross-modal learning is also widely used on lip
reading tasks. In [15], Afouras et al. propose a cross-modal
distillation framework to train a lip reading model by dis-
tilling knowledge from a pre-trained ASR model. Based on
the framework, unlabelled video data can be leveraged to im-
prove lip reading performance further. Based on the natural
synchronization characteristics of audio and video, sounds and
lip movements can be treated as mutual supervisory signals.
Motivated by this, a series of works try to learn discrimina-
tive visual representations for lip reading by cross-modal self-
supervised learning [62], [63], [64]. Considering that the cost
of large-scale lip reading annotation can be prohibitive, cross-
modal self-supervised learning for lip reading has received a
growing amount of attention due to its high label efficiency.

III. PROPOSED METHODOLOGY

In this section, we firstly describe the overall pipeline of lip
reading models. Then we illustrate the design motivation of
our two-stream front-end network. Finally, we introduce the
novel proposed ASST-GCN module used in the local stream
in detail.

A. The Overall Pipeline

Given the aligned and mouth-centered cropped input video,
the objective of the visual front-end network is to extract vi-
sual spatio-temporal features representing visual speech pat-
terns and dynamics. The visual front-end network has a rela-
tively small receptive field on the temporal dimension, which
is insufficient for ALR tasks. The sequence back-end network
focuses on further aggregating long-term temporal contextual
information.

Currently, relatively more attention has been paid to the
sequence back-end networks, which are borrowed from the
fields of speech recognition or natural language processing.
The visual front-end, which learns discriminative spatio-
temporal features, plays a critical role in ALR. However, the
current visual front-end networks have some drawbacks that
we have mentioned in Sec. I.

To address these issues, a two-stream front-end network is
proposed in this paper, as summarized in Fig. 1. It consists
of a ”local stream”, focusing on capturing semantic preserved
lip contour information and local motion information around
the lip, and a ”global stream”, aiming at modeling the global
motion information of the lip. The features extracted by the
two streams are concatenated to be input to the sequence back-
end network. The individual modules are described in detail
in the following subsections.

Our proposed two-stream front-end combines both holistic
level and contour level features. The holistic level features
from the global stream capture comprehensive information on
the mouth region. However, it is also sensitive to the speech-
unrelated redundant information that we have mentioned
above. In contrast, contour features focus on the description
of overall shape, and thus are more robust compared to
global features. In other words, the information generated
by these two streams is complementary to each other, so the
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Fig. 1. The overall framework of the proposed lip reading model. For the input video, facial landmark detection is first processed. Based on the video and
landmark points, the global stream extracts global visual features from aligned and lip centered cropped video. Meanwhile, the local stream extracts local
visual features from landmarks centred patch video and landmark coordinates. Then, the local and global visual features are concatenated together as the input
of sequence back-end networks.

appropriate fusion of the two streams promotes robustness
and accuracy.

Global Stream. The goal of the global stream in the visual
front-end network is to extract global features of lip motions.
This module consists of deep CNNs (C3D ResNet18), which
are directly applied to lip-centered video. The pooling layers
are added to reduce the spatial size and improve the receptive
field, which results in the extracted visual features contain
more global lip motion information but little local subtle mo-
tion information and lip contour information. The layers are
listed in full detail in Tab. I.

Layer Type Filters Output dimension
Conv3d

MaxPool3d
5× 7× 7, 64, /[1, 2, 2]
1× 3× 3/[1, 2, 2]

T × 64× H
4
× W

4

Residual Conv2d
Residual Conv2d

[3× 3, 64]× 2/1
[3× 3, 64]× 2/1

T × 64× H
4
× W

4

Residual Conv2d
Residual Conv2d

[3× 3, 128]× 2/2
[3× 3, 128]× 2/1

T × 128× H
8
× W

8

Residual Conv2d
Residual Conv2d

[3× 3, 256]× 2/2
[3× 3, 256]× 2/1

T × 256× H
16

× W
16

Residual Conv2d
Residual Conv2d

[3× 3, 512]× 2/2
[3× 3, 512]× 2/1

T × 512× H
32

× W
32

GlobalPool2d - T × 512× 1× 1
TABLE I

ARCHITECTURE DETAILS FOR THE SPATIO-TEMPORAL VISUAL FRONT-END
(C3D RESNET18).

Local Stream. Complementary to the global stream, this
stream is to learn local motion features based on these seman-
tical local patches and lip contour points. It consists of several
modules: LRLPs patch sequence extraction module, local mo-
tion feature extraction (LMFE) module, landmark coordinate
feature extraction (LCFE) module, and ASST-GCN module,

which will be presented in detail in the following subsections.

B. Modules

LRLP Patch Sequence Extraction. In the proposed frame-
work, facial landmark detection frame-by-frame is essential for
both the global and local streams. Facial landmark detection
aims automatically identifying the locations of the facial key
landmark points on facial images. Those key points are either
the dominant points describing the unique location of a facial
component (i.e., eye corner, mouth corner) or an interpolated
point connecting those dominant points around the facial com-
ponents and facial contour [18]. In the global stream, Facial
landmark points are only used to determine the mouth position
for alignment and cropping.

In the local stream, for each video frame, a total of 68 facial
landmark points are firstly detected with the facial landmark
detection algorithms [65], [66]. K ( K = 38 in this paper)
facial landmark points from the lip region are selected as Lip
Reading related Landmark Points (LRLPs), as illustrated in
Fig. 2 (a). We empirically show that those 38 LRLPs (located
in the the below half of the face) can sufficiently retain the
visual features related to speech. Then centered at each facial
landmark point, a local patch of size 32×32 pixels is extracted
to describe this point. As a result, for an input gray video, we
extract K LRLPs patch sequences which will be fed into later
steps for further processing. This is clearly shown in Fig. 2
(a). In addition, the coordinates of each LRLP are extracted
as well.

Local Motion Feature Extraction (LMFE). A lightweight
3D CNN is used to extract spatio-temporal feature vectors
from the extracted LRLP patch sequences, as shown in Fig. 2
(b1). In specific, a 3-layer 3D CNN (More details are given in
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Fig. 2. Building blocks of the local stream in Fig. 1. (a) LRLPs patch sequence extraction module aims to crop landmark points-centred patch videos
from raw input video. (b1) Local motion feature extraction module consists of 3 3D CNN layers, aiming to extract low dimension local features from the
patch videos. (b2) Landmark coordinates feature extraction module extracts LRLPs motion features using a 1D CNN layer. (c1) The proposed ASST-GCN
module, including 6 ASST-GCN layers. GAP represents the global average pooling layer. (c2) Simplified diagram of the ASST-GCN Layer. FFN means
the feed-forward network. It contains two types of graph architectures: Semantic graph Ase and spatio-temporal attention graph Ast. Among them, Ast is
calculated by the similarity of graph node representations, and Ase is obtained by training with random initialization parameters. The ASST graph structure
is the sum of Ase and Ast. More details of the ASST-GCN layer are given in Fig. 3.

Tab. II) is applied on all LRLP patch sequences. By this means,
each input LRLP patch sequence of T frames (suppose gray
image here) of size T × 32× 32 is transformed into a D× T
(D = 256) dimensional feature vector. In other words, the
total extracted K LRLP patch sequences result in K output
feature vectors of D dimension, which are organized into a
feature tensor of size K ×D × T .

Layer Type Filters Output dimension
Conv3d

MaxPool3d
5× 7× 7, 64, /[1, 2, 2]
1× 3× 3/[1, 2, 2]

T × 64× H
4
× W

4

Conv3d 1× 3× 3, 128, /[1,2,2] T × 128× H
8
× W

8

Conv3d 1× 3× 3, 256, /[1,2,2] T × 256× H
16

× W
16

AveragePool2d - T × 256
TABLE II

ARCHITECTURE DETAILS FOR THE 3-LAYER 3DCNN USED IN THE LMFE
MODULE.

LRLPs Coordinates Feature Extraction (LCFE). As
shown in Fig. 2 (b2). The size of the input LRLPs coordinates
is K × 2 × T , and a lightweight 1D CNN is introduced
to extract spatio-temporal LRLPs coordinates features. To
ensure consistency with the LMFE module, the 1D CNN
layer has the same temporal receptive field (5 frames) and
output channels (D = 256) as the 3D CNN layers used in the
LMFE module, resulting in the output of size K × D × T .
Finally, the concatenation of coordinates features and local
motion features are treated as the feature representation of
those LRLPs.

LRLPs Semantic Encoding. Besides the local motion in-
formation and coordinates information, each LRLP also con-
tains different semantic information, i.e. facial components.
This kind of information is generally ignored in the previous
work. The semantic information can be encoded as the land-
mark index, and we introduce an embedding layer to model
the semantic information. This is a simple but effective method
to introduce semantic information. The semantic encodings
have the same dimension as the fused features from the LMFE
module and LCFE module so that the two can be summed
directly.

C. Adaptive Semantic-Spatio-Temporal Graph Convolution
Network

The remaining key issue is how to explore lip reading-
related visual features from these LRLPs features. Because
LRLPs are discrete facial feature points, conventional CNNs
are not well suited for this case since CNNs can only operate
on regular grid data like images. Graph neural networks can
collectively aggregate information from graph nodes, and
are used to model our selected LRLPs consisting of discrete
points and their dependency. Motivated by this, we propose
a novel adaptive graph convolution framework to model the
semantic and spatio-temporal relationships of LRLPs. Based
on the adaptive learning strategy, we explicitly model the
relations between LRLPs and show that they are useful for
improving ALR performance.
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Below, we firstly illustrate the background of spatial based
GCNs. Then we elaborate the construction of lip graph, the
detailed design of ASST-GCN module (illustrated in Figure 2
(c)) and how it works in lip reading.

(1) Spatial based Graph Convolution Network. Spatial
based Graph Convolutional Networks (GCNs) define graph
convolution on graph nodes based on their spatial adjacency
relations. Here, we follow the same definition of spatial based
GCN layer proposed in [29]. Let G = (V,E) denotes a graph,
where V is the set of graph nodes and E are edges. The graph
convolution operation on input feature map fin ∈ RDin×K

(Din is the input feature dimension of each graph node and
K is the total number of graph nodes) can be represented as:

fout = Λ− 1
2 (A + I)Λ− 1

2 f inW, (1)

Where fout ∈ RDout×K is the output feature map,
A ∈ RK×K denotes the adjacency matrix, I represents
the identity matrix, and W ∈ RDin×Dout represents for
feature transformation matrix. Λii =

∑
j(Aij + Iij). Let the

normalized adjacency matrix be A = Λ− 1
2 (A + I)Λ− 1

2 .
Eq. 1 can be rewritten as:

fout = Af inW (2)

From Eq. 2, GCN calculation can be divided into two steps:
node features are transformed by a learnable parameter matrix
W and nodes features are aggregated by a specific normalized
adjacency matrix A.

To further improve the representation ability of GCN, [67]
proposes Partition Graph Convolution (PGC) that partitions the
neighbors of a node into Q groups based on certain criteria.
PGC constructs Q sub-adjacency matrices according to the
defined neighborhood by each group. Meanwhile, PGC applies
GCN with a different parameter matrix to each neighbor group
and sums the results:

fout =

Q∑
q=1

Aqf inWq (3)

Based on the natural graph structure of human skeleton and
joints, Yan et al. adopt Eq. 3 as the basic GCN to achieve
skeleton-based action recognition [67]. In the case of lip read-
ing, specific facial landmark points, defined as LRLPs in this
paper, can be treated as graph nodes, just like the those joints
in skeleton graph. However, it is difficult to define a specific lip
graph structure like the bones in skeleton graph. To effectively
learn visual features with GCNs, the topology of the graph is
critical.

(2) Adaptive Semantic-Spatio-Temporal Graph Convo-
lution. The semantic information of LRLPs is human-defined.
Therefore, the semantic graph architectures of LRLPs are
entirely determined by semantic information for lip reading
tasks. In other words, during the test phase, the semantic
graph adjacency matrices are unrelated to the current input
data, and these adjacency matrices remain fixed after the
end of training. Therefore, we define these matrices as
sample-independent graph adjacency matrices. However, the
spatio-temporal graph architectures of LRLPs are utterly

C

Linear Linear Linear

MatMul

Scale &

Softmax

MatMul

Linear

Fig. 3. Illustration of the adaptive semantic-spatio-temporal graph convolution
(ASST-GCN) layer. Where n denotes the number of subgraphs.It consists of
Two parts: a GCN unit and a feed forward unit. The GCN unit contains n
subgraphs. For each subgraph, Ase

q and Ast
q are adjacency matrices. Wst

q
is feature transformation matrices of the subgraph. Wθ,Wφ are projection
matrices for node similarity calculation. The output of the all subgraphs are
concatenated together as the input of feed forward unit. Multiple residual
connections are added to make the network easy to train. All parameters in
the units are learnable.

dependent on what is said. Hence, we define the spatio-
temporal graph adjacency matrices as sample-dependent
graph adjacency matrices.

We argue that the optimal lip graph structure should be
able to make full use of the semantic relationships and spatio-
temporal relationships of LRLPs. Based on this assumption,
we define semantic graph and spatio-temporal graph respec-
tively, and make these graph structure parameters to be adap-
tively learnable. Given K LRLPs as the the lip graph nodes,
we adopt the basic graph convolution unit in Eq. 3. The prob-
lem is that no predefined lip graph topology can be directly ap-
plied to this case. Based on the analysis above, we firstly define
two types of fully connected graph structures: sample inde-
pendent semantic graph Ase ∈ RK×K and sample-dependent
spatio-temporal attention graph Ast ∈ RK×K . Both of these
two graph structure parameters can be optimized together with
the other network parameters in an end-to-end manner. In this
way, we change Eq. 3 into the following formula:

fout =

Q∑
q=1

(Ase
q + Ast

q )f inWq. (4)

The main difference of Eq. 4 from Eq. 3 is that we introduce
two different graph topologies.
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Semantic Graph (Ase). LRLPs contain rich semantic in-
formation which is ignored in previous work. We believe that
semantic relations between LRLPs is inherent of the talking
mouth. To model this kind of relations, we assume that the
semantic graph is a fully connected graph and all of the param-
eters of Ase is learnable. In addition, there are no constraints
on the parameters, which means that the semantic graph is
completely learned from the training data without any prior
information. To make the semantic graph more flexible and ca-
pable, we construct layer-specific semantic graphs for different
layers, as we argue that different hierarchical abstract features
of the nodes contain different semantic relations. In detail, we
independently initialize the semantic subgraph matrices Aseq
with the constant value 10−6 in each subgraph of each layer,
all the semantic subgraph matrices are learned by the network
automatically.

Spatio-temporal attention graph (Ast). In addition to se-
mantics, there also exist abstract relations between LRLPs cor-
responding to spoken words. Therefore, we additionally define
a sample-dependent spatio-temporal attention graph Ast. To
determine the connection strength of two nodes, we utilize
the soft self-attention mechanism [68], [69] to calculate the
similarity of the two nodes in embedding space. In detail, the
similarity of two nodes (vi , vj ) can be defined as follow:

s(vi , vj ) =
(Wθvi)

T (Wφvj)∑K
j=1(Wθvi)T (Wφvj)

, (5)

where Wθ,Wφ ∈ RDe×Din are the parameters of the em-
bedding spaces θ and φ, respectively. De is the dimension of
embedding space. So we define the normalized spatio-temporal
graph adjacency matrix Ast as follow:

Ast = softmax ((Wθf in)T (Wφf in)). (6)

The overall architecture of our ASST-GCN layer is shown
in Fig. 3. In addition to the ASST-GCN unit, a fully connected
feed forward layer is also utilized to improve the feature rep-
resentation. Meanwhile, to make the whole network easy to
train, we also add multiple residual connections [13] in the
ASST-GCN layer.

The ASST-GCN Module (Fig. 2 (c1)) stacks 6 ASST-GCN
layers. Each ASST-GCN layer contains 8 subgraphs The num-
ber of output channels for all ASST-GCN layers are 512.

D. Sequence Back-end Subnetwork

The goal of sequence back-end subnetwork is to map the
fused local and global visual features extracted from the two-
stream visual front-end network to natural language. For fair
performance comparison of front-end network, we adopt the
same back-end network with the baseline models.

As for word-level lip reading task, the baseline model [42]
consists of Multi-Scale dilated TCN layers, a fully connected
(FC) layer and a softmax layer. The detail of this network
architecture is illustrated in Fig. 4. Where k means kernel
size, d means dilation size, and s is the strides. It contains
three blocks of Multi-scale dilated TCN, where the dilation
size of each block is 1,2,4 respectively. Every block consists
of three TCN layers, whose kernel sizes are 3,5,7 respectively.

TCN, k=5

d=1,s=1

TCN, k=3

d=1,s=1

TCN, k=7

d=1,s=1

C

TCN, k=5

d=2,s=1

TCN, k=3

d=2,s=1

TCN, k=7

d=2,s=1

C

TCN, k=5

d=4,s=1

TCN, k=3

d=4,s=1

TCN, k=7

d=4,s=1

C

Fig. 4. The details of MSTCN blocks. Where k means kernel size, d means
dilation size, and s is the strides.

For the challenging sentence-level lip reading task, the back-
end subnetwork produces character probabilities that are di-
rectly matched to the ground truth labels. The commonly used
transformer variant (transformer-seq2seq [1], [68]) network is
adopted as the sequence back-end network. In this variant, we
remove the embedding layer in the transformer encoder part
because the input is visual representations instead of word
class indexes. In addition, the output dimension of the last
fully-connected layer of the decoder is changed to 39 to fit
the size of the vocabulary.

IV. EXPERIMENTS

In this section, we provide experiments for both word level
and sentence level lip reading tasks to demonstrate the ef-
fectiveness of the proposed method. Ablation study is also
provided to show the effect of each module.

A. Datasets and Experimental Setup

Large scale datasets play a key role for the research on lip
reading. There are several large-scale lip reading datasets [6],
[8], [16], [70], [71], such as LRW [8], MVLRS [1], LRS2 [1],
LRS3 [6], LSVSR [70]. However, some of these datasets are
not publicly available, such as MVLRS and LSVSR. Almost
all of the current state-of-the-art sentence-level lip reading
models are pretrained on the private datasets [70] or with
multiple datasets including MVLRS, LRS2 and LRS3 [1].
Therefore, in order to verify the effectiveness of our method
fairly, we reimplement the baseline method on specific public
datasets, and compare the results of our method with those
implemented on our own.
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LRW. The LRW dataset is commonly used for word-level
visual speech classification task. It consists of up to 1000 ut-
terances of 500 different English words, spoken by hundreds
of different speakers.

Dataset Subset #Utter. Word instances Vocabularies

LRW Trainval
Test

514k
25k

514k
25k

500
500

LRS2 Pretrain
Main

96k
48k

2M
344k

41k
20k

LRS3
Pretrain
Trainval

Test

132k
32k

1,452

4.2M
358k
11k

52k
17k

2,136
TABLE III

THE STATISTICS OF THE DATASETS USED FOR TRAINING AND TESTING.

LRS2. The Lip Reading Sentences BBC dataset (LRS2) is
a large-scale lip reading dataset composed of over 140k utter-
ances that selected from BBC television. Each video contains
a sentence with variable length. It contains over 2.3 million
words with a vocabulary size of 41,000.

LRS3. The LRS3 dataset contains three subsets: pretrain,
trainval and test. All videos are selected from TED and TEDx
videos. Totally, it contains over 4.2 million words and the
vocabulary size is about 51k.

The statistics of the datasets used in this paper is given in
Tab. III.

B. Training Details

Preprocessing. For all the datasets, we use dlib or face-
alignment detector [65], [66] to detect 68 facial landmark
points for each video frame. For each frame of the input
video, a lip-centered region of size 112 × 112 pixels is
cropped. For the local stream of the visual front-end network,
K = 38 LRLPs located in the below half of a face are
selected. Around each selected facial feature point i.e. LRLP,
a patch of size 32 × 32 pixels is extracted to represent
this point. Moreover, the tip of nose (one of the 68 facial
landmark points) is selected to be datum point to do LRLPs
coordinates alignment. The videos are converted to grayscale
and all frames are normalized with respect to the overall
mean and variance of all videos.

Evaluation protocol. For the word-level classification
task, classification accuracy (Acc) is reported. In the
sentence-level task, Character Error Rate (CER) and Word
Error Rate (WER) [72] are reported. CER is defined as
CER = (S +D+ I)/N , where S, D and I are the numbers
of substitutions, deletions, and insertions respectively to get
from the reference to the hypothesis, and N is the number of
characters in the reference. WER and CER are calculated in
the same way. The difference lies in whether the formula is
applied to character level or word level.

Implementation details. For the sentence-level lip reading
task, the output dimension is 39, including the 26 letters, 10
digitals, one punctuation “’” and [SPACE] and [EOS].

The training proceeds in three stages: first, the two streams
of the visual front-end network are separately trained with the
LRW dataset. Then the sentence-level back-end network is
trained using the LRS2 and LRS3 pretrain dataset, while the

parameters of pretrained two stream visual front-end network
remain fixed. Finally, the whole network is finetuned with the
LRS3 trainval dataset.

We use the same data augmentation technique as that in
[1] for training the global stream, such as horizontal flipping
and random shifts. In the training phase, the Adam [73] with
the default parameters is employed as the optimizer. When
training on the LRS3 pretrain dataset, we adopt the similar
curriculum learning scheme as that in [16].

For the input of global stream, we also perform data aug-
mentation in the form of horizontal flipping, random shifts of
up to ±4 pixels in the spatial dimension and ±1 frame in the
temporal dimension. For the local stream, we do not perform
any data augmentation.

After training on the LRW dataset, we extract visual features
of the LRS2 and LRS3 pretrain dataset, using the trained front-
end network. We then train the transformer back-end model di-
rectly on the frozen features. The transformer model is trained
with the learning rate schedule strategy as Eq. 7. The trans-
former back-end is trained using teacher forcing - we supply
the ground truth of the previous decoding step as the input to
the decoder in the training process, while during inference we
feed back the decoder prediction.

lr = d−0.5
model ×min((factor × step)−0.5,

(factor × step)× warmupStep−1.5)
(7)

Finally, the whole model is fine-tuned end-to-end on the
trainval set of the LRS3 dataset for one epoch, with learning
rate of 10−6. For all the models we use dropout with p = 0.1
and label smoothing.

In the test phase, the beam search decoder is applied to the
transformer decoder and the beam width is set to 6. Note that
we do not introduce any language model to improve the final
result, in order to make a fair comparison.

C. Ablation Study

To investigate the effectiveness of different parts of the pro-
posed two-stream approach, in particular the local stream and
the novel ASST-GCN module, we conducted several ablation
experiments on the LRW and LRS3 datasets.

Global Stream vs. Local Stream. We evaluate the perfor-
mance of each individual stream and the two-stream on the
LRW and LRS3 datasets, with result listed in Tab. IV. The
results clearly demonstrate the effectiveness of the novel lo-
cal stream for ALR. Importantly, the proposed two-stream ap-
proach significantly outperforms each individual stream. This
indicates that the lip contour deformation conveys significant
information that is complementary to appearance features.

For single-stream methods, The global stream performs
slightly better than the local stream. As the performance of
the local stream depends heavily on the image resolution and
accuracy of facial landmark detection, we believe that the
performance of the local stream can be further improved with
higher image resolution.

Semantic Graph vs. spatio-temporal Graph. We have de-
fined two types of fully-connected graph convolution for local
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Methods LRW Acc LRS2 CER LRS2 WER LRS3 CER LRS3 WER
Two Stream 85.7 36.2 55.7 42.9 62.7
Only Global 85.3 40.1 58.7 48.1 68.8
Only Local 82.6 45.3 61.6 52.1 73.5

TABLE IV
PERFORMANCE (% OMITTED) COMPARISON (LOWER IS BETTER): GLOBAL STREAM vs. LOCAL STREAM vs. TWO-STREAM. LRW TRAINING WITH

MSTCN BACK-END, LRS3 TRAINING WITH TRANSFORMER BACK-END.

visual feature extraction. We argue that the semantic relation-
ship of LRLPs are sample independent, and spatio-temporal
relationship of LRLPs are sample dependent. Only the local
stream was used to test the performance of each individual
graph.
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(a) Semantic graph adjacency matrix (b) Spatial-temporal graph adjacency matrix

Fig. 5. Example of the learned adjacency matrices. (a) Learned Semantic
graph adjacency matrix after training with LRW dataset. (b) spatio-temporal
adjacency matrix based on one video sample from LRW dataset.

The LRW dataset was used to report results. As shown in
Tab. V, it can be observed that both graphs are equally impor-
tant for lip reading and the combination of them significantly
improves performance. Fig. 5 shows an example of the learned
adjacency matrices (the adjacency matrices of subgraph 1) in
the last GCN layer of the ASST-GCN module. The gray scale
of each element in the matrix represents the strength of the
connection between LRLPs. It can be seen from the learned
semantic graph that some specific points (e.g., the 11th and
32nd points in LRLPs) have stronger connection than some
other points (e.g., the 10th, 36th and 37th points in LRLPs). In
contrast, LRLPs focus more on themselves in spatio-temporal
graph.

Configurations LRW Acc
Full model 82.6

Model w/o Ase 79.1
Model w/o Ast 78.3

Model w/o LMFE 60.7
Model w/o LCFE 75.9

Model w/o LRLPs SE 79.7
Model with sparse LRLPs 75.4

TABLE V
PERFORMANCE (% OMITTED) COMPARISON: SEMANTIC GRAPH vs.

SPATIO-TEMPORAL GRAPH, LOCAL MOTION vs. COORDINATES. LRLPS
SE MEANS LRLPS SEMANTIC ENCODING. W/O X MEANS DELETING THE

X MODULE.

Local motion features vs. Coordinate features. As in-
troduced above, the representation of each LRLP is the con-
catenation of local motion features and coordinates. To verify
whether both of them are useful for visual feature extraction,
we evaluate the performance of individual features. The results

Method TOP-1 Acc
MT [8] 61.1

WAS [16] 76.2
ResNet+BLSTM [10] 83.0
ResNet+BGRU [10] 83.4

Two-Stream 3DCNN+BLSTM [9] 84.1
ResNet+MSTCN [42] 85.3

Ours (ASST-GCN+MSTCN) 85.7
TABLE VI

PERFORMANCE (% OMITTED) COMPARISON WITH STATE-OF-THE-ART
MODELS ON THE LRW.

in Tab. V clearly show that the local motion features only
outperforms the coordinate feature significantly. However, they
are both significantly outperformed by their combination.

LRLPs semantic encoding. Every point in LRLPs conveys
human-defined semantic information. We integrate semantic
information into the proposed model through the semantic en-
coding module. To verify its effectiveness, the ablation study
on this module is performed on the LRW dataset. As we can
see from Tab. V, the performance drops significantly (from
82.6 to 79.7) without the semantic encoding module. The re-
sults demonstrate that the introduction of the semantic encod-
ing module is quite useful for lip reading.

68V 

25V 
38V 

Fig. 6. The selection of LRLPs. The number of the facial landmark points
is 68. The number of the facial landmark points located in the below half of
a face (blue box) is 38. The number of the facial landmark points located in
the mouth area (orange box) is 25.

The selection of LRLPs. the dlib face detector [65], [66]
is used to extract facial landmark points as shown in Fig. 6. It
is common sense that the upper part of the face is redundant
for lip reading. Therefore, we select the 38 landmark points
located in the below half of a face as LRLPs. To verify the
selection of LRLPs is effective, the ablation study on more
sparse LRLPs (25 landmark points located in the mouth area)
is conducted on the LRW dataset. The severe performance
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Methods Front-end Back-end LRS2 CER LRS2 WER LRS3 CER LRS3 WER
WAS [16] VGG-M LSTM - 70.4 - -

TM-CTC [1] C3D ResNet18 Transformer - 65.0 - 74.7
TM-seq2seq (Baseline) [1] C3D ResNet18 Transformer 40.1∗ 58.7∗ 48.1∗ 68.8∗

Zhang et al. [11] C3D ResNet18 Transformer (TF Block) - 51.7 - 60.1

Ours ASST-GCN
C3D ResNet18 Transformer 36.2 55.7 42.9 62.7

TABLE VII
PERFORMANCE (% OMITTED) COMPARISON WITH STATE-OF-THE-ART MODELS ON THE LRS2 DATASET AND THE LRS3 DATASET (LOWER IS BETTER). ∗

MEANS THAT THE RESULTS OF TM-SEQ2SEQ (BASELINE) ARE PRODUCED ONLY WITH PUBLICLY AVAILABLE DATASETS. OUR REPRODUCED RESULT
(WER 68.8) IS SIMILAR TO THE RESULT REPRODUCED IN [11] (WER 70.8), THE ORIGINAL RESULT (WER 59.9) REPORTED IN [1] IS BASED ON THE

PRIVATE DATASET MVLRS.

Fig. 7. Some examples of the learned adjacency matrices of the semantic graph. Rows show different training epochs, and columns show different layers.

degradation (from 82.6 to 75.4) proves that the facial contour
points located in the below half of a face are pretty crucial for
lip reading tasks.

D. Comparative Evaluation

We compare the results of the proposed method with state-
of-the-art on LRW, LRS2 and LRS3 datasets. Results are pre-
sented in Tab. VII and Tab. VI. In the word-level ALR task,
our proposed method outperforms the baseline approach by
a large margin. Compared with the recent approach [9], our
performance improvement is significant. Their approach is also
two-stream, combining appearance with optical flow. Optical
flow calculation is very time consuming. In addition, we can
also include the optical flow stream to further boost perfor-
mance.

For the sentence-level ALR task, we have to point out that
the state-of-the-art models have been pretrained on a large

scale private datasets [70]. Therefore, it is unfair to directly
compare with the state-of-the-art. In addition, we have no per-
mission of MVLRS dataset. In order to demonstrate the ef-
fectiveness of our proposed approach, we reimplemented the
baseline method on the LRS3 dataset. The results in Tab. VII
shows that our proposed method significantly outperforms the
baseline on the challenging sentence-level ALR task.

E. Visualization and Discussion

Graph Visualisation. The are two kinds of graphs in
the ASST-GCN model: the semantic graph and the spatio-
temporal graph. Fig. 7 shows some examples of the learned
adjacency matrices (subgraph #4) of the semantic graph for
different epochs and different layers. During the training
phase, all the semantic graph matrices will slowly converge
to the optimal values, proving that the hidden semantic
relations of LRLPs exist and can be obtained through
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Fig. 8. Average spatio-temporal adjacency matrices of all the subgraphs over
all the top ASST-GCN layers. Rows show different test samples, and columns
show different word classes.

Timestep Decoded string
01 W
02 WE
03 WE
04 WE R
05 WE RE
06 WE REA
07 WE REAL
08 WE REALL
09 WE REALLY
10 WE REALLY
11 WE REALLY D
12 THEY REALLY
13 WE REALLY DON
14 WE REALLY DON’
15 WE REALLY DON’T
16 WE REALLY DON’T
17 WE REALLY DON’T W
18 WE REALLY DON’T WA
19 WE REALLY DON’T WAN
20 WE REALLY DON’T WANT
21 WE REALLY DON’T WANT
22 WE REALLY DON’T WANT A
23 WE REALLY DON’T WANT AN
24 WE REALLY DON’T WANT ANY
25 WE REALLY DON’T WANT ANYM
26 WE REALLY DON’T WANT ANYMO
27 WE REALLY DON’T WANT ANYMOR
28 WE REALLY DON’T WANT ANYMORE

Ground Truth: WE REALLY DON’T WALK ANYMORE
TABLE VII

A DECODING EXAMPLE WITH BEAM SEARCH ALGORITHM.

training. Moreover, the learned semantic graphs are pretty
complex and abstract, which confirms our motivation that the
semantic graphs for lip reading tasks can not be predefined
initially. Besides, the learned semantic graphs are totally
different in different layers. It proves the effectiveness of the
layer-specific semantic graphs.

As we have discussed, that spatio-temporal graphs mainly
depend on what the speaker says (sample-dependent). To

Transcription
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e

Fig. 9. Average attention map of all the encoder-decoder attention heads over
all the decoder layers.

prove this statement, we conducted a comparative experiment
about spatio-temporal graphs visualization on the LRW
dataset. There are totally 500 word categories in the LRW
dataset, and we selected two test set samples from two of
those categories (ABOUT & WESTERN). As shown in Fig. 8,
the spatio-temporal graph matrices of sample #1 and sample
#2 are highly similar, as well as that of sample #3 and sample
#4. On the contrary, the spatio-temporal graph matrices of
samples of different categories are very different. Meanwhile,
the visualization results also convinced us that it makes
sense to construct sample-independent semantic graphs and
sample-dependent spatio-temporal graphs separately.

Decoding Example. Tab. VII shows an decoding example
with beam search algorithm. We list the best prediction of
each timestep. Where red color denotes the error output of the
current prediction results compared with ground truth. The last
line contains the ground truth transcriptions of the example.
During timestep 11 to timestep 13, the decoder predicts an
error word and then correct it, demonstrating that beam search
can effectively improve prediction. The pronunciation of the
word want and the word walk produces similar lip movements,
so the final prediction of the decoder makes a small error.

Attention Visualisation. The encoder-decoder attention
mechanism of the TM-seq2seq model generates explicit
alignment between the input video frames and the ground
truth character output. Fig. 9 visualises the dependency of
the characters “WE REALLY DON’T WALK ANYMORE”
and the corresponding video frames. Since the architecture
contains multiple attention heads, we obtain the alignment
by averaging the attention masks over all the decoder layers
in the log domain [1]. The attention map shows that the
prediction of the decoder has obvious short-term dependency.

V. CONCLUSION

In this work, we introduce graph convolution to capture lip
contour, local subtle motion information and semantic infor-
mation, aiming to improve the visual feature representation
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capability for lip reading task. And we propose ASST-GCN
module to learn semantic preserved local visual features. It as-
sumes that both the semantic graph and spatio-temporal graph
structure parameters can be adaptively learned with other pa-
rameters in the network. Furthermore, the local visual feature
can be easily fused with global visual features with a two
stream framework. The two stream visual front-end network
framework is proved to be effective on both word-level and
sentence-level lip reading task. The final model achieves state-
of-the-art performance on LRW dataset, and significantly im-
prove the baseline performance on the LRS2 and the LRS3
dataset.
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