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Abstract—Object detection is playing a key role in multimedia
content analysis and understanding. However, recent develop-
ment of deep learning-based object detection is hindered by a
limited amount of labeled data. Therefore, this paper focuses
on the problem of semi-supervised object detection (SSOD) and
aims to make good use of unlabeled data to boost performance.
Recently, while knowledge distillation (KD) has been widely
used for semi-supervised image classification, we remain faced
with the following obstacles for an empirical adaptation of
KD in SSOD. (1) The teacher model serves a dual role as a
teacher and a student, such that the teacher predictions on
unlabeled images may be close to those of the student, which
limits the upper bound of the student. (2) The data imbalance
issue caused by the large quantity of consistent predictions
between the teacher and student hinders an efficient knowledge
transfer from teacher to student. To mitigate these issues, we
propose a novel SSOD model called Temporal Self-Ensembling
Teacher (TSET). In this model, we devise a temporally evolved
teacher model. First, our teacher model ensembles its temporal
predictions for unlabeled images under stochastic perturbations.
Second, our teacher model ensembles its model weights with
those of the student model by an exponential moving average
(EMA), which allows the teacher to gradually learn from the
student. These ensembling strategies ensure data and model
diversity, and lead to better teacher predictions for unlabeled
images. In addition, we adapt the focal loss to formulate
the consistency loss for handling the data imbalance issue.
Together with a thresholding method, which eliminates confident
background predictions, the focal loss automatically reweights
the inconsistent predictions. This preserves the whole knowledge
from unlabeled images, especially for objects that are difficult to
detect. The mAP of our model reaches 80.73% and 40.52% on the
VOC2007 test set and the COCO2014 minival5k set, respectively,
and outperforms a strong fully supervised detector by 2.37%
and 1.49%, respectively. Furthermore, the mAP of our model
(80.73%) sets a new state-of-the-art performance in SSOD on
the VOC2007 test set. The source code is made available at
http://github.com/syangdong/tse-t.
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Fig. 1. The Framework of the Proposed TSET Model for SSOD. At
training time, unlabeled images under stochastic transformations like random
horizontal flip are predicted by a series of consecutive teacher models. The
results are then aligned and ensembled to obtain the teacher predictions which
are subsequently used as targets to regularize the training of the student model.
We keep the teacher model evolved using an EMA which results in temporally
diverse teacher model. At testing time, the trained student model is deployed
for object detection for unseen images.

I. INTRODUCTION

Object detection is the cornerstone of computer vision, as
many high-level vision tasks fundamentally rely on the ability
to recognize and localize visible objects. Object detection
thus touches many areas of artificial intelligence and infor-
mation retrieval, such as image/video search, data mining,
question answering, autonomous driving, medical diagnosis,
and robotics [1]–[6]. The recent resurgence of interest in
artificial neural networks, in particular deep learning, has
tremendously advanced the field of generic object detection;
and in the past few years, a large number of detectors [1],
[7]–[13] have sprung up to improve the detection performance
from aspects like accuracy, efficiency, and robustness.

Current state-of-the-art detectors [7]–[9], [11], [13] are
learned in a fully supervised fashion, which requires large-
scale labeled data with many high-quality object bounding box
annotations or even segmentation masks. Gathering bounding
box annotations or segmentation masks for every object
instance is time consuming and expensive, especially when
the training dataset contains a huge number of images or even
videos, as it requires intensive efforts of experienced human
annotators or experts (e.g., medical image annotation) [1],
[14]–[18]. Furthermore, manual bounding box/segmentation
mask labeling may introduce a certain amount of subjective
bias. In addition, the generalizability of fully supervised
detectors is limited. Moreover, there are massive amounts of
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unlabeled images that are acknowledged as valuable, and the
key is how to make good use of them [19]–[24].

The time-consuming and expensive annotation of accurate
bounding boxes of object instances is sidestepped in weakly
supervised object detection (WSOD), which only utilizes
image-level annotations that show the presence of instances
of an object category [25]–[29]. WSOD methods may achieve
relatively good performance if provided with a large number of
image-level annotations; however, the performance is hardly
competitive compared to their fully supervised counterparts.
Considering a generic situation in object detection, we have
a limited number of labeled images [14], [15], but a huge
number of unlabeled images (e.g., the massive amounts of
unlabeled images available from the Internet). Semi-supervised
learning (SSL), which falls between supervised and unsuper-
vised learning, has shown promising results to reduce the gap
between supervised and unsupervised learning. SSL has been
extensively studied in image classification problems [30]–[32]
and other multimedia applications [33], [34], but has received
significantly less attention in object detection. In this work, our
main focus is SSL for object detection, i.e., semi-supervised
object detection (SSOD).

Classical deep learning-based SSL methods use the max-
imum predictions for unlabeled images as pseudo-labels to
improve the classification performance of neural networks
[35]. The recently developed knowledge distillation (KD) [36],
[37] aims at training a lightweight student model regularized
by a cumbersome teacher model, and is originally used for
deep model compression but later widely applied to analyze
multimedia content [38], [39] and to solve SSL problems.
Quite a few KD-based SSL methods have been proposed [19],
[40], and the key to these methods is to construct a well-
performing teacher to obtain stable and reliable predictions
when trained with unlabeled images. The teacher predictions
for unlabeled images can be used as targets (well-posed logits
or soft labels) to regularize the training of the student in
order to obtain similar predictions on these unlabeled images,
thereby yielding a well-trained student that has a performance
close to that of the teacher. This can be implemented by using
the consistency loss to set a consistency regularization between
the teacher and student predictions, which routinely takes the
form of mean squared error (MSE) loss.

So far, however, only a few works have applied similar ideas
in a challenging task like SSOD [23], [41], [42]. The main
challenges are as follows. (1) The teacher model in these KD-
based methods often serves a dual role as a teacher and a
student. In image classification, it is sufficient to solely handle
a unique prediction per image; but for object detection, which
is a more complicated task since we must simultaneously
classify and localize an object, such a teacher model may
produce predictions that are very close to those of the student,
which sets an upper bound for the student’s performance. (2)
The predictions in object detection are rather dense during
training because an object can present at every location in
an image, and an image may contain multiple objects. Given
unlabeled images, an SSOD model uses the teacher predictions
as targets to regularize the training of the student. A direct
adoption of the widely used consistency loss from SSL is

hampered in SSOD because the large quantity of consistent
predictions between the teacher and student may suppress
the inconsistent predictions that actually contain information
useful for training the student. A recent model, the CSD model
[23], tackles this problem with a background elimination
(BE) method, which simply thresholds out almost all possible
backgrounds. However, there are several limitations of the
CSD model. Given unlabeled images, (1) the teacher and
student are identical, which may limit the performance of the
student; and (2) the BE method removes too much background,
which may lead to a performance drop in SSOD because useful
knowledge encoded in difficult objects may be neglected.

In the present work, we aim at a simple but generic
solution to alleviate the above issues and improve SSOD. To
this end, we propose the Temporal Self-Ensembling Teacher
model, coined TSET. We present the framework of our model
in Fig.1. The TSET model is devised on top of the KD
framework, which consists of a teacher and a student model.
Both the teacher and student are initiated from a pretrained
detection network in a fully supervised manner. During semi-
supervised training, the teacher obtains the predictions for both
the category and location of all possible objects presented in
the unlabeled images. The student also obtains its detections
for these unlabeled images. The KD framework aims to mini-
mize the dissimilarity between teacher and student predictions
by using consistency loss. During testing, the trained student
model is deployed for object detection in new images.

Based on the above framework, our TSET model targets
two main goals.

(1) Our first goal is to enhance the performance of the
teacher model on object detection in unlabeled images. To
this end, we devise a temporally updated teacher model that
is asynchronous from the training of students.

Specifically, instead of using a constant teacher as proposed
in the original KD-based methods [21], [36], our TSET model
devises a teacher that ensembles its temporal predictions
from consecutive training epochs for the unlabeled images
under stochastic perturbations (random transformations like
horizontal flip). This type of data augmentation and temporal
predictions ensembling strategy has been used to effectively
improve the prediction accuracy in SSL problem [40]. More-
over, our teacher model ensembles its temporal model weights
with the student model weights, which allows the teacher to
gradually learn from the student. This is implemented by using
an exponential moving average scheme (EMA) [19], [24]. In
this way, the evolution of the teacher model is decoupled from
the training of the student, which prevents the teacher from
obtaining similar predictions as the student.

These self-ensembling strategies together increase data and
model diversity, thus yielding stable and reliable teacher
predictions for unlabeled images, which can then be used as
better targets to train the student. The proposed TSET model
substantially distils knowledge of multiple image geometric
transformations from a well-trained teacher to the student. In
other words, the student is guided to imitate the behavior of the
teacher by its predictions on unlabeled images implemented
in the form of a consistency loss, thus leading the student’s
performance approaching that of the teacher.
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(2) Our second goal is to solve the data imbalance problem
by preserving sufficient difficult objects. The BE method used
in the CSD model [23] simply eliminates most low-confidence
predictions on unlabeled images. These predictions may in-
clude some difficult but informative object examples, which
prevents the encoded knowledge to be distilled to the student.
To solve this problem, we employ a customized detection
loss, i.e., the focal loss [8] to formulate the consistency loss
between teacher and student predictions; this preserves useful
information from unlabeled images as much as possible.

Specifically, the data imbalance problem in SSOD is caused
by the large number of well-matching object detections be-
tween the teacher and student. Such detections include con-
sistent foreground predictions and consistent background pre-
dictions. The accumulation of a large quantity of consistent
predictions is more prevalent in the training loss, which
suppresses the contribution of informative training examples,
i.e., the inconsistent predictions. For example, in an unlabeled
image, the teacher predicts an object with a confidence score
of 0.6, and the student gives a prediction score of 0.3 or
predicts it as background. This informative training example
will be either ignored by the BE method [23] or suppressed
because it is a minority in training examples. To solve this
data imbalance problem, we first eliminate the confident
background predictions according to a large threshold. This
helps to remove many consistent background predictions and
preserve sufficient objects that are difficult to detect. We
then adapt the focal loss to formulate the consistency loss
in our SSOD setup, which automatically consolidates the
contribution of the inconsistent predictions, i.e., the poor-
matching predictions between the teacher and student.

We evaluate the performance of our TSET model on two
standard large-scale benchmarks: PASCAL VOC [14] and
MSCOCO [15]. Both evaluation results show that the TSET
model can obtain remarkable improvements compared to the
baseline model, i.e., the fully supervised detection model only
using labeled images. Specifically, the mAP of our model is
80.73% and 40.52% on the VOC2007 test set and COCO2014
minival5k set, respectively, thus outperforming the baseline by
2.37% and 1.49%. It should be noted that our model sets a
new state-of-the-art performance in SSOD on the VOC2007
benchmark. We summarize our contributions as below.

(1) We formally employ the KD framework in the SSOD
task and construct a well-trained teacher to regularize the
training of a student using unlabeled images.

(2) We propose the TSET model, which ensembles temporal
predictions of teacher model and updates the teacher model by
ensembling the student model weights. This model produces
better targets to train the student, but does not significantly
increase computational complexity.

(3) We adapt focal loss to solve the data imbalance problem,
which results in an efficient and effective usage of unlabeled
images in SSOD.

The rest of the paper is organized as follows. We review
related works in Section II. We elaborate on the proposed
model in Section III. We present our experimental results in
Section IV. Finally, in Section V we conclude our work and
present several potential directions for future work.

II. RELATED WORKS

In this section, we review the topics related to our work,
including object detection (Section II-A), semi-supervised
learning (Section II-B), semi-supervised object detection (Sec-
tion II-C) and mutual learning (Section II-D).

A. Object Detection

Object detection is one of the most active research topics
in the computer vision community [43]. Hundreds of well-
performing detectors have been developed. In this work, we
focus on the generic object detection models using deep learn-
ing [1]. The pioneering R-CNN uses deep learning methods to
extract features in the conventional object detection pipeline
[44]. The Fast-RCNN [45] and Faster-RCNN [7] initiate
the study on typical two-stage detectors, and successfully
complete object detection with an end-to-end deep learning
architecture. The FPN [46] and RetinaNet [8] improve the
feature representation for object detection by using a decoder-
like feature pyramid. Moreover, one-stage detectors like SSD
[11] have been developed, which generate dense predictions
using fully convolutional neural networks. This type of method
is much faster than two-stage detectors, and one extraordinary
example is YOLO and its advanced versions [10], [47],
[48]. In Mask-RCNN [9] a multi-task network is proposed
to integrate the object detection and semantic segmentation,
which reshapes the instance segmentation with an end-to-end
manner. All the methods above use popular anchor boxes to
encode the object bounding box, which leads to a translation-
invariant detection, and makes regression easier. Recently
developed anchor-free detectors [12], [49]–[51] reformulate
the object detection task as a key point detection and grouping
task. This line of detectors reduces the quantity of output but
still results in comparable performance.

B. Semi-Supervised Learning

SSL is one important category of machine learning tech-
niques [30]–[32], and trains a machine learning model by
using both labeled and unlabeled data. The key to SSL
methods is to generate a training target for the unlabeled
data. The Γ model [52] adapts the autoencoder network [53]
to solve the SSL problem. This model passes an unlabeled
image and its noisy version through the encoder. The training
target is set as the clean image and its latent features. For the
noisy image, the decoder reconstructs its clean version and
the clean latent features. Instead, the Π model [54] minimizes
the prediction difference of the same unlabeled data with
various stochastic transformations through perturbed networks.
Sufficient randomizations like dropout and randomized data
augmentation are used during training with unlabeled data,
which results in better generalization for testing. Since the
emergence of the knowledge distillation network [36], SSL
has been reshaped by the teacher–student model architecture.
A well-posed prediction for the unlabeled data can be obtained
by a strong pretrained teacher model, and this prediction
is used as a target to guide the training of the student
model [40]. The strategy of ensembling multiple networks
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Fig. 2. A Detailed Graphical Illustration for the Proposed TSET Model. Our method is made on top of the KD framework which consists of a teacher
and a student model. Our TSET model is devised to ensemble the temporal teacher predictions and ensemble the teacher model weights with the student
model weights. These self-ensembling methods yield better targets for unlabeled images which can better retrain the student to improve its performance. We
use orange bounding boxes to indicate our main contributions.

is an effective strategy to produce more accurate predictions
[16]. In SSL, the temporal ensembling model [40] improves
teacher predictions for the unlabeled data by accumulating
the historical predictions during training, which combines the
model diversity for better generalization of unlabeled data.
Instead of ensembling the predictions, the mean teacher model
[19] ensembles the teacher and the student model weights
to yield a dynamic teacher, which results in a temporally
updated teacher model. These ensembling strategies aggregate
sequential predictions from the latest training epochs or model
weights, which solely involves a teacher and a student during
training, rather than ensembling multiple networks; naturally,
this reduces the computation complexity. In comparison, our
TSET model generalizes the self-ensembling strategy: it first
ensembles a sequence of historical predictions of the teacher,
and then ensembles the teacher model weights with the student
(similar to the mean teacher model [19]).

C. Semi-Supervised Object Detection

The main obstacle of SSOD is to produce well-posed
training targets, i.e., the dense bounding-boxes associated
with categories. A successful application of deep learning
techniques on SSOD is seen with the CSD model [23],
which adapts the Π model [54] to construct the consistency
regularization for detecting the unlabeled image and its aug-
mentation. To solve the problem that loss may be easily
dominated by backgrounds, the BE method is proposed to

remove all possible background predictions. The STAC model
[42] proposes a simple but effective strategy which uses strong
image augmentations to enforce consistency of the teacher
and student. A very recent semi-supervised method employs a
proposal-based learning scheme for two-stage object detectors
[41]. For the original data and its noisy counterpart, the
method uses a self-supervised proposal learning module to
learn consistent perceptual semantics in feature space, and
to learn consistent predictions. Meanwhile, omni-supervised
object detection uses two-stage detectors, and a bounding box
voting strategy generates a hard-label teacher prediction [21].
Compared to these works, our model has advantages in the
following respects. (1) We propose a generalized ensembling
strategy, thus improving the teacher predictions on unlabeled
images. (2) Instead of using a pseudo-label as a target to train
the student, we use a soft-label, which is proven to be a more
informative and efficient training strategy [37]. (3) We use
focal loss to solve the data imbalance problem caused by dense
predictions in SSOD.

D. Mutual Learning

Joint training of the teacher and student allows for a
better generalization of both the teacher and student. Rather
than using a one-way knowledge distillation from a strong
pretrained teacher to a weak student, the DML [55] jointly
trains several students that are later ensembled to become the
teacher model. However, the efficiency of DML may decrease
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when multiple students are deployed. To solve this problem,
the ONE learning strategy devises a multi-branch network
that shares the low-level layers [56]. The ensemble of the
multiple branches act as the teacher, and a single network is
deployed. The mutual learning method is also used in training
the low-bitwidth model [57]. This method proposes a new
training strategy that jointly learns a full-precision model and
a low-precision model. Additional guidance losses are added
at intermediate feature layers, which forces the two models
to generate similar feature maps. Our TSET model adapts
a different mutual learning strategy, the EMA, to update the
teacher model. We choose this strategy because we expect a
mild transition from supervised to unsupervised training, and
we expect stable teacher predictions for unlabeled images as
robust targets to train the student model.

III. METHODOLOGY

In this section, we first present our SSOD setup in Section
III-A, then elaborate the reasons for the selection of the
baseline detector in Section III-B, and finally present our
proposed TSET model in Section III-C.

A. SSOD Problem Setup

The overall framework of our proposed SSOD model is
illustrated in Fig. 1. The objective of our proposed SSOD
model is to distil knowledge from geometrically transformed
unlabeled images without training a large set of models. Our
pipeline (Fig. 1) involves the following steps:

(1) pretrain a fully supervised object detector on a labeled
dataset, and use it to initialize the teacher and the student;

(2) apply the teacher model to a number of geometric
transformations of unlabeled samples to generate detections
for the unlabeled samples;

(3) ensemble multiple teacher predictions on the unlabeled
data to automatically generate training targets for student;

(4) retrain the student on the union of the manually labeled
data, and automatically labeled data;

(5) update the teacher by ensembling its temporal model
weights and current student model weights.

Our model is based on the KD framework, which consists of
a teacher and a student model. Both models are initiated from
a typical one-stage detector such as the RetinaNet [8], and
are pretrained using a certain number of labeled images in a
fully supervised manner. During semi-supervised training, the
teacher predictions on unlabeled data are used as annotations
to retrain the student in an unsupervised manner. The labeled
data is also used to train the student in a supervised manner
to leverage the unsupervised training.

The unsupervised retraining of the student model using
unlabeled data is achieved by a consistency loss, which
routinely takes the form of minimizing the MSE between
the teacher and student predictions. In this way, the teacher
model distils useful knowledge, i.e., the object category and
localization in unlabeled images, to retrain the student model.
In other words, the knowledge encoded by the teacher is
decoded in such a way that the student back-propagates
the gradients to optimize its parameters; this enables better

generalization for unlabeled images. After training, the student
model should achieve comparable performance to that of the
teacher, and is deployed to detect objects in unseen images
during inference time.

To obtain better teacher predictions on unlabeled data,
we propose the TSET model, which is detailed in Fig. 2.
TSET includes two types of self-ensembling strategies. (1)
We run a temporal series of the teacher model on different
geometric transformations (e.g., horizontal flipping) of an
unlabeled image, and then ensemble the predictions as the final
training targets for the student. Such multiple temporal models
ensembling takes advantage of the different generalizability of
the models on different data transformations, which improve
the teacher predictions on unlabeled data by a large margin
from the student predictions. (2) We ensemble the temporal
model weights of the teacher with the student model weights
using the EMA so that the teacher can gradually learn from the
student to not only enhance its performance but also increase
its temporal diversity.

Now we formally define the SSOD problem setup. Suppose
we are given a dataset of M images D = {Ii}Mi=1. For
a labeled image Ili ∈ D, yi = [Pi,x, Pi,y, Pi,w, Pi,h, ci]

T

is the ground truth label vector that defines the category
ci ∈ [1, ..., C] of an object and specifies the pixel coordinates
(Pi,x, Pi,y) of the center of object bounding box together with
its width and height (Pi,w, Pi,h) in pixels. For an unlabeled
image Iui ∈ D, we use the teacher prediction as the target. For
instance, a detected object bounding box O from an unlabeled
image is represented as zti = [Oi,x, Oi,y, Oi,w, Oi,h, pi]

T ,
where pi is the class probability. Below, we drop the super-
script i unless it is needed.

In SSOD, we aim to promote the performance of the student
model regularized by the teacher model using the unlabeled
images. This is achieved in an unsupervised manner, and
defined as consistency loss between the teacher and student
predictions Lcon(zs, zt), where zs is the student prediction,
which is formulated in the same way as the teacher prediction.
If only the unlabeled images are used to retrain the student
model, there may be an ill-posed convergence behavior of
the student. For a balanced semi-supervised training, we also
employ the labeled images in the form of a supervised loss
Lsup(zs, y). We will define Lcon and Lsup in the following
sections. The objective is to optimize the student model to
minimize both the consistency loss and supervised loss.

L = Lsup(zs, y) + µ1Lcon(zs, zt) (1)

We use the hyper-parameter µ1 to leverage the contribution
of the supervised loss Lsup and consistency loss Lcon. The
selection of µ1 will be discussed later in Section IV.

B. Baseline Detector

Object detectors can be classified into two categories: one-
stage [8], [10], [11] and two-stage [7], [9], [58]. The main
distinction is that the two-stage detectors employ a region
proposal network (RPN) to explicitly generate object can-
didates. The non-maximum suppression (NMS) then merges
the spatially duplicated prediction candidates with a certain
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amount of overlap. In this work, we choose to use a one-stage
detector, like RetinaNet [8], for the following reasons.

First, the objective of our TSET model is to synchronize
the predictions of the student with those of the teacher so
that the student can approach the performance of a well-
trained teacher. Therefore, we do not employ NMS before the
fine-grained object detection both in the teacher and student
because many confident predictions may be suppressed and
the knowledge distillation from the teacher may deteriorate
the generalizability of the student model for those predictions.

Second, in two-stage detectors, it is relatively difficult to
solve the matching problem in RPN between an image and its
transformations. This is because the employment of NMS in
RPN results in the misalignment of the region proposals for
different input images. A simple solution is to only feed the
original image into RPN, and use the location of the obtained
region proposals to estimate the location of region proposals
from the transformed image [23]. It has been empirically found
that the adaptation of two-stage detectors results in worse
SSOD performance than the use of one-stage detectors due
to the lack of consistency regularization in RPN training [23].

C. TSET Model

1) Ensemble temporal predictions

A well-performing teacher model for SSOD should provide
better predictions of objects presented in unlabeled images.
These predictions should contain sufficient dissimilarities from
the student predictions, such that the knowledge encoded
in these objects can be fully captured and then distilled to
the student. By pushing the student to obtain predictions
as accurately as the teacher, the student can improve their
performance on detecting all possible objects in unlabeled
images. In our proposed TSET, we achieve this by ensembling
the temporal teacher predictions from the latest training
epochs. Because we add random perturbations for each image
in each epoch, this self-ensembling process produces a large
number of data combinations for teacher models at different
checkpoints, and this data and temporal model diversity
ensures better teacher predictions on unlabeled images.

Specifically, at training time, given an unlabeled image Iu ∈
D, we retrieve its previous teacher predictions from the last
N epochs zt1, · · · , ztN . The TSET model obtains the current
teacher prediction by averaging these predictions:

zt =
1

N

N∑
j=1

ztj , (2)

which can be separately denoted as ensembling the local-
ization and classification.

Ot =
1

N

N∑
j=1

Otj ,

pt =
1

N

N∑
j=1

ptj .

(3)

Since we augment the data, we need to align the predictions
before ensembling. We implement this by tracing the image

orientation during augmentation, and flip the predictions back
to the original reference image. We assume that ensembling
more teacher predictions from different training epochs may
generate better training targets for the student. We will validate
this assumption and show the effect of varying values of N
on SSOD in Section IV.

2) Ensemble model weights

In the original temporal ensembling model [20], the teacher
model serves as the student model as well. When given
an unlabeled image and its transformations, the teacher and
student predictions may be very close; for example, if the
objects in the image are easy to recognize. These similar
predictions contribute little to the consistency loss, which
constrains the upper bound of the student model. Therefore,
we expect to decouple the teacher model from the student
during semi-supervised training, and keep the teacher model
evolved instead of fixed (as proposed in the original KD
framework). To this end, our TSET model uses a temporally
updated teacher model devised to ensemble the historical
teacher model weights with the current student model weights
using a momentum term, which is formulated as follows:

wtt = αwtt−1 + (1− α)wst , (4)

where wtt and wtt−1 denote teacher model weights at
current and previous training step respectively; wst denotes
the student model weights updated at current training step. We
use subscript t to index the training step. α is a momentum
parameter to leverage the contribution of previous teacher
model weights and current student model weights when
updating the current teacher model. Such a model weights
ensembling method is also referred to as the EMA. This self-
ensembling can be seen as an imitation of a real circumstance:
a teacher may be biased in their existing knowledge or have
a gap in their knowledge, but their student may help by
conveying this missing knowledge to the teacher. We expect a
robust additive knowledge transfer from the student, which can
result in a fast and stable convergence of the teacher. This can
be manipulated by setting a relatively large value of parameter
α, for example, α = 0.99 [24].

3) Loss functions

The training objective for object detection is to minimize
the prediction errors for both classification and localization.
Accordingly, we specify each term in Eq. 1 using Eq. 5

Lsup (zs, y) =
1

M1

∑
(Lsupcls + µ2Lsuploc ) ,

Lcon
(
zs, zt

)
=

1

M2

∑
(Lconcls + µ2Lconloc ) ,

(5)

where Lsup and Lcon denote the supervised loss for the
labeled images and the consistency loss for the unlabeled
images respectively. M1 and M2, are, respectively, the total
predictions of labeled and unlabeled images. The hyper-
parameter µ2 balances the classification and localization loss,
which will be discussed in Section IV.
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In our model, we use focal loss to address the data
imbalance problem during training, both in supervised and
consistency loss, separately formulated as:{

Lsupcls = −(1− ps)γ log(ps),

Lconcls = −(|pt − ps|)γpt log(ps).
(6)

The loss functions retain the form of standard cross entropy
loss, where pt and ps are the teacher and student prediction
probabilities, respectively, for the object class.

As for the localization, we introduce the Smooth L1 loss
both for the supervised and consistency localization loss:{

Lsuploc = smoothL1(Õs − P̃ ),

Lconloc = smoothL1(Õs − Õt),
(7)

where P̃ , Õs and Õt are the offsets from the ground truth,
student prediction, and teacher prediction to the anchor boxes,
respectively. We provide an example for the computation of the
offsets using the teacher prediction Ot = [Ox, Oy, Ow, Oh].

Õx = (Ox − dx) /dw,

Õy = (Oy − dy) /dh,

Õw = log (Ow/dw) ,

Õh = log (Oh/dh) ,

(8)

where d = [dx, dy, dw, dh] is the localization of one anchor
box, and Õt = [Õx, Õy, Õw, Õh] is the normalized teacher
prediction of one object’s localization.

In our settings, we use the one-stage detection network
and avoid employing the NMS before model ensembling. For
the unlabeled images, this encourages the emergence of a
large number of pairwise teacher–student predictions that are
well-matched. It should be noted that the accumulation of
well-matched predictions is likely to suppress the inconsistent
prediction pairs that are the minority of training examples
but should be main contributors in the loss. Thus, we revise
the Smooth L1 function to alleviate this effect. The updated
function is formulated as follows:

smoothL1(x) =


|x|3

3
, |x| < β

|x| − β +
β3

3
. |x| ≥ β

(9)

In Algorithm 1, we summarize the whole training procedure
of our model in the form of pseudo-code. Here we omit the
fully supervised pretraining step using labeled images, and
thus we directly start from a convergent detection model and
train the student model using the proposed TSET model.

IV. EXPREIMENTS

In this section, we conduct experiments to evaluate our
proposed TSET model. We use two standard benchmarks for
object bounding box localization, the PASCAL VOC [14] and
MSCOCO [15]. For comparison with existing models, we use
the fully supervised RetinaNet as a strong baseline. RetinaNet
has a feature pyramid network (FPN) as its backbone network,
and uses the focal loss for supervised training. We also make
comparisons to two state-of-the-art models, CSD [23] and
STAC [42], to highlight the merits of our model under the

Algorithm 1: Pseudocode of TSET model

fs∗ = TSET(fs, f t, ws, wt)1

Input: Training dataset D
Pre-trained student model fs

Pre-trained teacher model f t

Student model weights ws

Teacher model weights wt

Output: Optimized student model fs∗

Initialization: Epochs=K, Step: t = 0

for k ← 0 to K − 1 do2

foreach Mini-batch Db do3

D̃b = stochastic− transformation(Db)4

# We omit the subscript b for clarity.5
zs = fs(D̃b)6
if D̃b is unlabeled then7

# Align teacher predictions in previous N epochs8
[zt1, · · · , ztN ] = fA([zt1, · · · , ztN ])9
# Ensemble temporal teacher predictions by Eq. 210
zt = 1

N

∑N
j=1 ztj11

end12
# Compute total loss by Eq. 113
L = Lsup (zs, z) + µ1Lcon

(
zs, zt

)
14

# Update student model by standard SGD15
ws

t = ws
t−1 − λ∂L/∂ws16

# Update teacher model by Eq. 417
wt

t = αwt
t−1 + (1− α)ws

t18
# For teacher prediction in next epoch19
ztN+1 = f t

w=wt
t
(D̃b)20

t = t+ 121

end22

# Update teacher predictions for next epoch23
[zt1, · · · , ztN ]← [zt2, · · · , ztN+1]24

end25

semi-supervised setup. We implement our model based on the
Mask-RCNN benchmark [59].

A. Configurations

For the PASCAL VOC benchmark, we use the VOC2007
and VOC2012 datasets, both of which consist of 20 annotated
semantic object classes. Following the configuration in [23],
we fix the VOC2007 test set to evaluate different models.
For the MSCOCO benchmark, we choose COCO2014, which
includes 80 semantic classes; and we follow the standard ex-
perimental protocol [8], [46], [60] which uses the trainval35k
split for training, and the minival5k split for testing. PASCAL
VOC and MSCOCO benchmarks separately contains a subset
without ground truth annotations, i.e., the VOC2012 test set,
and the COCO unlabeled set. We use these two subsets as
extra unlabeled images. In Table I, we summarize the details
of the employed datasets.

We conduct all of the experiments using four NVIDIA 1080
Ti GPU cards. We use the SGD optimizer and set the batch size
as 8. For the backbone network of RetinaNet, we choose to use
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TABLE I
DATASETS STATISTICS

Dataset
Fold

Train Val Train/Val Test Unlabeled

VOC2007 2,501 2,510 5011 4,952* –
VOC2012 5,717 5,823 10,540 10,991** –

COCO 80,000 35,000 115,000 5,000* 123,403**

* Test set in our experiments
** Extra unlabeled images in our experiments

Fig. 3. Validation of N in TSET. X-axis indicates an N ranging from 1 to
5. Y-axis indicates the mAP of detection results. We use red plotting to show
the performance tendency according to N . The horizontal dash line denotes
the baseline performance of the fully-supervised detector.

ResNet-50 [61] for the experiments on the VOC dataset, and
validate the performance of ResNet-50 and ResNet-101 on the
COCO dataset. For all of the experiments, we use the standard
metric of mean average precision (mAP) for evaluation.

When pretraining the detection model using labeled images,
we use 15 epochs, and initialize the learning rate as 0.005,
which is divided by 10 at both epoch 5 and epoch 8. When
training the student model using unlabeled images, we use
13 epochs, and initialize the learning rate as 0.0005, which is
divided by 10 at epoch 10. It has been found that for an SSOD
system, once the model converges to a local minimum, it will
be difficult to reach a global solution in the following training
steps. Therefore, we carefully design the update strategy for
µ1. In this work, we aim for a stable transition from fully
supervised training to semi-supervised training by slowly
increasing the weights of the unlabeled data. We thus gradually
increase µ1 from 0.02 to 1.6 and from 0.01 to 0.08 for ResNet-
50 and ResNet-101 backbone networks, respectively. As for
µ2, we choose the values of 0.07 and 0.1 for ResNet-50 and
ResNet-101 backbone networks, respectively; this selection
modulates the classification and localization loss at a similar
scale. Finally, we set β = 0.4 as per Eq. 9.

B. Experiments on PASCAL VOC

Validation of N. In this experiment, we validate the effects
of N in our proposed TSET on SSOD. N determines the
number of historical teacher predictions used to ensemble the
current teacher predictions on unlabeled images. Here, we use
2007train/val as labeled data and 2012train as unlabeled data.
We leave out the 2012val to evaluate the performance of our

model. We design this setup for a balance between labeled and
unlabeled images. Constrained to the computation capacity
of our firmware, we set N to range from 1 to 5. For the
baseline model, we use the RetinaNet trained using the same
labeled data, i.e., 2007train/val. In our model, we keep all the
configurations stable (e.g., the learning rate and number of
training epochs) while assigning different values to N .

From the validation results shown in Fig. 3, we can see that
our model outperforms the baseline model by a large margin.
An increasing N corresponds to a continuous performance
improvement, which means that ensembling more historical
teacher predictions benefits the retraining of the student model.
We notice that a large value of N , for example, N = 5,
may not significantly increase the mAP; however, we still
choose to use N = 5 for the remaining experiments because
it guarantees the best validation performance of our model.

Choice of background elimination threshold. In semi-
supervised training, ignoring too much background may de-
teriorate performance. We thus design a threshold method to
solve this problem. Specifically, we remove the background
predictions if the estimated background probability is larger
than a sufficiently large threshold. To show its efficacy in
our TSET model, we compare its performance with the BE
method [23]. Specifically, we compare the threshold+focal
loss with the BE+focal loss in our TSET model, trained
using 2007train/val as labeled images and 2012train/val as
unlabeled images. Evaluated on 2007test, the mAPs of our
threshold method and the BE method are 76.68% and 76.40%,
respectively; thus, a validated threshold (0.9) leads to a
better background elimination. As a result, for the remaining
experiments, we use the threshold method in our TSET model.

Ablation study. In this experiment, we validate the effec-
tiveness of the basic modules in our TSET model: (a) the mod-
ule for self-ensembling temporal teacher predictions, which we
denote as “Ensemble”, (b) the module for ensembling temporal
teacher model weights, which we denote as “EMA”, and (c)
the customized detection loss-based consistency regularization,
which we denote as “Detection loss”. When omitting the
“EMA”, we freeze the teacher model during semi-supervised
training and ensemble its predictions on unlabeled images
from N latest training epochs as targets to train the student.
When omitting the “Ensemble” , we only use the teacher
predictions on unlabeled images from the latest training epoch
as targets to train the student. Meanwhile, when omitting the
“Detection loss”, we use the standard Euclidean distance to
formulate consistency loss. We use “simple semi-supervised
method” (S-SEMI) to refer to the semi-supervised method
that does not use any of the proposed modules. In S-SEMI,
we freeze the teacher model, use its predictions on unlabeled
images from the latest training epoch as targets, and use MSE
loss to train the student.

We design the following different configurations of the
dataset for semi-supervised training: (a) 2007train/val as la-
beled images and 2012train/val as unlabeled images; (b)
2007tain/val as labeled images and 2012train/val/test as un-
labeled images; and (c) 2007train/val+2012train/val as labeled
images and 2012test as unlabeled images. Compared to setup
(a), setup (b) includes more unlabeled images, and setup (c)
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TABLE II
ABLATIVE EXPERIMENTS FOR TSET ON THE VOC2007 TEST SET

Model 07train/val 12train/val 12test Ensemble EMA Detection Loss mAP
RetinaNet X – – – – –* 71.56
S-SEMI X SS – – – – 71.98↑0.42
TSET X SS – – X – 72.45↑0.89
TSET X SS – – X X 74.58↑3.02
TSET X SS – X – – 75.11↑3.55
TSET X SS – X – X 75.46↑3.90
TSET X SS – X X – 76.24↑4.68
TSET X SS – X X X 76.68↑5.12
S-SEMI X SS SS – – – 72.51↑0.95
TSET X SS SS – X – 73.14↑1.85
TSET X SS SS – X X 75.35↑3.77
TSET X SS SS X – – 76.05↑4.49
TSET X SS SS X – X 76.35↑4.77
TSET X SS SS X X – 76.98↑5.42
TSET X SS SS X X X 77.24↑5.68
RetinaNet X X – – – –* 78.36
S-SEMI X X SS – – – 78.52↑0.16
TSET X X SS – X – 78.87↑0.51
TSET X X SS – X X 78.86↑0.50
TSET X X SS X – – 79.37↑1.01
TSET X X SS X – X 79.76↑1.40
TSET X X SS X X – 80.35↑1.99
TSET X X SS X X X 80.73↑2.37
* RetinaNet is trained with focal loss in supervised manner. “Detection loss” here is an adapted version of focal loss for

unsupervised training.

includes more labeled images.
We show the results on the VOC2007 test set in Table

II. We use the abbreviation “SS” to show that the data are
used as unlabeled images in semi-supervised training. For
each training setup, we show the baseline performance of the
supervised object detector, i.e., RetinaNet, in the first row.
From the results, we obtain the following observations.

(1) We first find that the performance of the S-SEMI is
rather limited compared to the baseline model (RetinaNet).
This indicates that a better teacher model is necessary to make
full use of the unlabeled data in semi-supervised training.

(2) Compared to the RetinaNet, our TSET model obtains
a large-margin performance improvement across all semi-
supervised training setups. Particularly, our model shows its
advantage when a limited quantity of labeled data is available.
For example, when only using 2007train/val as labeled data
and using 2012train/val as unlabeled data in setup (a), the
mAP of our model is 76.68%, which is 5.12% better than the
baseline performance .

(3) We can see that each of the basic modules in our TSET
independently improves the SSOD. Furthermore, the concur-
rency of these basic modules results in the best performance.
This means that the performance of our TSET model is not
limited by the upper bound performance of each basic module;
instead, the intrinsic integration of the proposed strategies
leads to the dramatic improvement of our model.

(4) As for the self-ensembling strategies, the temporal
teacher predictions ensembling seems to improve performance

more than the temporal teacher model weights ensembling.
For example, in setup (a), the mAP of solely employing the
former self-ensembling strategy is 75.11% which exceeds that
of solely employing the latter self-ensembling strategy by
3.01%. This result shows that ensembling the temporal teacher
predictions significantly improves the teacher predictions on
unlabeled images, which benefits the training for the student.
The observation that solely employing the temporal teacher
model weights ensembling results in a limited performance
improvement implies that the teacher may learn limited knowl-
edge from the student.

(5) Comparing the results obtained with setups (a) and (b),
our model is improved when using more unlabeled images,
with the mAP increasing from 76.68% to 77.24%. Comparing
the results in setup (b) and (c), our model gains a large-margin
improvement from 77.24% to 80.73% when using more
labeled images. These results suggest that solely increasing the
quantity of unlabeled images for an SSOD system may lead
to the performance improvement reaching a local maximum.
The employment of a certain number of labeled images may
guide the detector to escape from this dilemma. The key
factor is that the supervised training using the extra labeled
images lifts the lower bound in our TSET model. One may
notice a limitation of our model: when an object detector
is better optimized using more labeled data, its performance
improvement using our semi-supervised model may reach an
upper bound. However, our proposed TSET model still holds
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TABLE III
STATE-OF-THE-ART COMPARISON ON THE VOC2007 TEST SET

Model Backbone Network mAP
CSD-RFCN ResNet-101-RFCN 74.70
STAC* ResNet-50-FPN 77.45↑2.45
TSET ResNet-50-RetinaNet 76.68↑1.98
TSET ResNet-101-RetinaNet 78.18↑3.48
* The model is trained with strong data augmentation.

TABLE IV
PERFORMANCE COMPARISON ON THE VOC2007 TEST SET

Model 07train/val 12train/val 12test mAP
SSD-300 X – – 70.20
CSD-SSD-300 X SS – 72.30↑2.10
RFCN X – – 73.90
CSD-RFCN X SS – 74.70↑0.80
SSD-512 X – – 73.30
CSD-SSD-512 X SS – 75.80↑2.50
Faster-RCNN* X – – 78.21
STAC* X SS – 77.45↓0.76(1.65)

RetinaNet X – – 71.56
TSET X SS – 76.68↑5.12(0.88)

RetinaNet† X – – 73.51
TSET† X SS – 78.18↑4.67(2.38)

RetinaNet X X – 78.36
TSET X X SS 80.73↑2.37(4.93)
* The model is trained with strong data augmentation. The AP of Faster-

RCNN and STAC is 43.40 and 44.64↑1.24 evaluated by standard COCO
metric (averaged average precision over varying thresholds of IoU).
† The model is trained using ResNet-101 as backbone network.

its potential to dramatically improve object detection when
there is only a very limited number of labeled images.

Comparison on the VOC2007 test set. In Table III,
we compare the performance of our TSET model with the
competing SSOD models on the VOC2007 test set. All models
are trained under the same setup, i.e., using 2007train/val as
labeled images and 2012train/val as unlabeled images. We list
the backbone network that is used in the detector for a clear
comparison. From the results, we see that the mAP of our
model with a relatively shallow backbone network (ResNet-50)
outperforms the CSD model by 1.98%. When using the same
backbone network (ResNet-50), the mAP of our model drops
slightly by 0.77% compared to STAC. We note that STAC
uses very strong data augmentation to enhance the training
in both supervised and unsupervised stages. Instead, we only
use random horizontal flip as augmentation. When using a
deeper backbone network (ResNet-101), our model shows the
best performance among all methods. This illustrates that our
model retains its potential to further improve performance
when introducing proper training strategies. We think that the
same augmentation as used in STAC may further improve the
performance of our model.

Considering that the initialization state of the detection
network may affect the performance of an SSOD model, in
this experiment, we compare different SSOD models with
their baseline detectors. For the detection networks, our TSET

model uses RetinaNet [8]; The CSD model uses three different
types of detectors, SSD-300, SSD-512 [11] and RFCN [58],
and STAC uses Faster-RCNN [7]. In Table IV, we show the
performance of these detectors trained in a supervised manner,
as well as the performance of the SSOD models trained on top
of these detectors. We observe the following key findings.

(1) The employment of unlabeled images for the SSOD
models indeed improves the performance of the object detec-
tor. In Table IV, we use vertical arrows to indicate the absolute
performance increase of the SSOD model from its detection
network trained using a fully supervised manner. When trained
using 2012train/val as unlabeled data, the mAP of our TSET
model is 76.68%; this is 0.88% better than the best CSD
model, CSD-SSD-512. We report these comparisons in italics
within parentheses in Table IV.

(2) It is clear that the baseline detectors have different per-
formances. Specifically, when trained using the same labeled
images, the SSD-512, Faster-RCNN, and RetinaNet obtain an
mAP of 73.30%, 76.30% and 71.56% respectively. Compared
to the CSD and STAC models, our TSET model improves
much more from its baseline detector. For example, under the
same training setup of using the 2012train/val as unlabeled
images, our TSET model outperforms it baseline by 5.12%;
the CSD-SSD512 model outperforms its baseline by 2.50%;
and the STAC model outperforms its baseline by 1.24%. This
shows that our model boosts the performance of an object
detector with an ill-posed initialization.

(3) By using a deeper backbone network (ResNet-101)
to obtain a well-initialized detector, the mAP of our TSET
reaches 78.18%. By using more labeled images to obtain
a well-initialized detector, the mAP of our TSET reaches
80.73%. This is a remarkable performance improvement, and
is a new state-of-the-art performance on the VOC2007 test set
under the semi-supervised setup. In this experiment, we note
that the performance of RetinaNet in our model is very similar
to that of the SSD-512 (73.51% vs. 73.30%) and Faster-RCNN
(78.36% vs. 78.21%). This means that compared to other
SSOD models, our TSET model may perform better when
using the same detection network initialized with the same
initialization state.

C. Experiments on MSCOCO
Considering that the MSCOCO dataset is a more chal-

lenging benchmark, we conduct experiments to determine an
efficient backbone network for the detection model. Here, we
choose to use ResNet-50 and ResNet-101 for comparison. We
use the standard evaluation metrics for the COCO dataset
to illustrate the results: AP (averaged average precision over
varying thresholds of IoU), AP50 (AP of IoU=0.5), AP75 (AP
of IoU=0.75), APS (AP for “small size” objects), APM (AP
for “medium size” objects), and APL (AP for “large size”
objects). As for the training data, we configure two different
setups: (a) train set as labeled images and val set as unlabeled
images; and (b) train/val set as labeled images and the extra
unlabeled images as unlabeled data. In Table V, we show the
experimental results of the fully supervised object detector
and our TSET model under various training setups. From the
results, we can draw the following conclusions.
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TABLE V
PERFORMANCE EVALUATION FOR TSET WITH VARYING BACKBONE NETWORKS ON THE COCO minival5k SET

Model Backbone train val unlabeled AP AP50 AP75 APS APM APL

RetinaNet ResNet-50 X – – 34.51 53.26 36.54 17.96 37.29 46.56
TSET ResNet-50 X SS – 35.42↑0.91 53.88↑0.62 37.40↑0.86 18.87↑0.91 40.16↑2.87 48.70↑2.14
RetinaNet ResNet-50 X X – 36.34 55.22 38.90 19.66 39.94 48.95
TSET ResNet-50 X X SS 36.96↑0.62 55.70↑0.48 39.42↑0.52 19.59↓0.07 40.76↑0.82 50.12↑1.17
RetinaNet ResNet-101 X X – 39.03 58.31 41.66 22.01 42.83 51.87
TSET ResNet-101 X X SS 40.14↑1.11 59.58↑1.27 42.78↑1.12 23.93↑1.92 44.70↑1.92 50.99↓0.88
TSET* ResNet-101 X X SS 40.52↑1.49 59.93↑1.62 43.48↑1.82 24.13↑2.12 45.47↑2.64 52.97↑1.10
* Use extra training image augmentation, i.e., random image resizing.

(1) By comparing TSET with RetinaNet, we can see that
our TSET model outperforms its fully supervised counterpart
on the COCO dataset when using the same backbone network
in the detection model and using the same training data. For
example, when using ResNet-50 as the backbone network, the
AP of our TSET model is 35.42% and 36.96% under training
setups (a) and (b), respectively. These results are superior
to those obtained by the RetinaNet trained under the same
conditions, by 0.91% and 0.62%, respectively. When using
ResNet-101 as the backbone network, our model outperforms
the baseline method by 1.11%, which suggests that our TSET
model is generic enough to improve SSOD regardless of the
specific type of backbone network.

(2) When using more labeled images to train the RetinaNet
on the COCO dataset, RetinaNet’s performance is remarkably
improved, and its AP reaches 39.03%. This thus improves
the lower bound performance of our TSET model, whose AP
finally reaches 40.14%. To further improve the performance
of our model, we use random resizing to augment the training
images. These results are shown in the last row in Table V,
and are indicated by an asterisk. In this case, the AP of our
TSET model hits 40.52% , thus exceeding the fully supervised
baseline by 1.49%.

(3) We observe that our TSET model with a deeper back-
bone network like ResNet-101 trained using more labeled data
can obtain a greater performance improvement on detecting
small and medium size objects. Such behavior may imply
that the difficult examples of small and medium objects can
be properly decoded and distilled to the student under such
a training setup. We will further reason and generalize this
behavior on other training setups of the COCO dataset in
future work.

D. Qualitative Results

In Fig. 4 (A) and (B), we visualize the detection results from
the VOC2007 test set and the COCO2014 minival5k set. We
present the results from an image obtained by the RetinaNet
and our TSET model side by side for an easy comparison.
We show several different cases for a fair and comprehensive
comparison. Case I: our model can successfully detect the
small, difficult objects. Case II: our model can alleviate the
false positive detections that the RetinaNet misclassified. Case
III: some examples that our model fails to detect. We show
these different detection results in the top, middle, and bottom

rows of Fig. 4 (A) and (B), respectively. These visual effects
demonstrate the effectiveness of our TSET model to improve
object detection under the semi-supervised setting. The self-
ensembling strategies and employment of focal loss in our
model formulate a better teacher model that yields better
predictions on unlabeled images for difficult examples (such as
small objects with severe shape deformations, and the objects
with occlusions). Among these detection results, we find that
our model fails to separate skis from each other, and fails to
recognize some animals with severe occlusions, like the dog
and sheep. We assume this phenomenon is caused by the class
imbalance in the unlabeled images, which may be solved in
future work by taking the quantity of training examples from
each class into account.

V. CONCLUSIONS AND DISCUSSIONS

We propose the TSET model to tackle the challenge of
SSOD. We have two fundamental goals for TSET. First, based
on the KD framework, the student is regularized by the teacher
to better generalize the objects in unlabeled images. Second,
the student needs to intimate the whole behavioral patterns
of the teacher on predicting the unlabeled images rather than
only learning high-confidence predictions from the teacher. To
these ends, the proposed TSET model first ensembles temporal
teacher predictions and temporal teacher model weights, which
increases data and model diversity. This produces much better
teacher predictions than those of the student, and accordingly
increases the upper bound to optimize the student. Moreover,
TSET adapts the focal loss to formulate the consistency loss
between teacher and student predictions. Such a method retains
all useful information, such as the information encoded in
low-confidence hard examples from unlabeled images, which
aligns the behaviors of teacher and student and mitigates the
data imbalance issue in SSOD. Experimental results show
that our model sets a new state-of-the-art SSOD performance
on the VOC2007 test set (mAP of 80.73%), and obtains
a dramatic improvement on the COCO2014 minival5k set
(mAP increase of 40.52%). A possible direction to further
improve our work would balance between ensembling multiple
heterogeneous models and training efficiency. Second, we
could take the categorical balance in unlabeled images into
account and apply other strong augmentations to leverage the
detection of objects with large scales.
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(a) Detection results from VOC2007 test set

(b) Detection results from COCO2014 minival5k set

Fig. 4. Detection results comparison of TSET model and its fully supervised counterpart, the RetinaNet, on PASCAL VOC and MSCOCO datasets.
The green bounding boxes indicate the detections from the RetinaNet, and the blue bounding boxes denote the detections of our TSET model. We arrange
the detection results of the same image side by side for a convenient read. For each dataset, we show the examples from following cases: The TSET model
recalls difficult objects (Top row); The TSET model alleviates false positives (Middle row); The TSET may fail to detect the objects with severe occlusions
(Bottom row).



SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 13

ACKNOWLEDGMENTS

We thank Prof. Yu Liu from International School of In-
formation Science and Engineering, Dalian University of
Technology, and Dr. Wei Chen from Leiden Institute of
Advanced Computer Science, Leiden University for the in-
sightful suggestions and proof reading on this work. We thank
LetPub (www.letpub.com) for its linguistic assistance during
the preparation of this manuscript.

REFERENCES

[1] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
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