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PiSLTRc: Position-informed Sign Language
Transformer with Content-aware Convolution

Pan Xie, Mengyi Zhao, Xiaohui Hu

Abstract—Since the superiority of Transformer in learning
long-term dependency, the sign language Transformer model
achieves remarkable progress in Sign Language Recognition
(SLR) and Translation (SLT). However, there are several issues
with the Transformer that prevent it from better sign language
understanding. The first issue is that the self-attention mechanism
learns sign video representation in a frame-wise manner, neglect-
ing the temporal semantic structure of sign gestures. Secondly,
the attention mechanism with absolute position encoding is
direction and distance unaware, thus limiting its ability. To
address these issues, we propose a new model architecture,
namely PiSLTRc, with two distinctive characteristics: (i) content-
aware and position-aware convolution layers. Specifically, we
explicitly select relevant features using a novel content-aware
neighborhood gathering method. Then we aggregate these fea-
tures with position-informed temporal convolution layers, thus
generating robust neighborhood-enhanced sign representation.
(ii) injecting the relative position information to the attention
mechanism in the encoder, decoder, and even encoder-decoder
cross attention. Compared with the vanilla Transformer model,
our model performs consistently better on three large-scale
sign language benchmarks: PHOENIX-2014, PHOENIX-2014-T
and CSL. Furthermore, extensive experiments demonstrate that
the proposed method achieves state-of-the-art performance on
translation quality with +1.6 BLEU improvements.

Index Terms—sign language recognition, sign language trans-
lation, content-aware neighborhood gathering, position-informed
convolution, relative position encoding.

I. INTRODUCTION

S IGN language (SL) is a native language of people with
disabled hearing. As a visual language, it consists of vari-

ous hand gestures, movements, facial expressions, transitions,
etc. Sign Language Recognition (SLR) and Translation (SLT)
aim at converting the video-based sign languages into sign
gloss sequences and spoken language sentences, respectively.
Most previous works in this field focus on continuous SLR
with the gloss supervision [1–13], few attempts have been
made for SLT [14–17]. The main difference is that gloss labels
are in the same order with sign gestures, and thus the gloss
annotations significantly ease the syntactic alignment under
the SLR methods. However, the word ordering rules in natural
language are distinct from their counterparts in video-based
sign languages [18]. Moreover, sign videos are composed
of continuous sign gestures represented by sub-video clips
without explicit boundaries. Therefore, directly learning the

Pan Xie and Mengyi Zhao are with the School of Automation Science and
Electrical Engineering, Beihang University, Beijing 100191, China (e-mail:
panxie@gmail.com, mengyizhao@buaa.edu.cn).

Xiaohui Hu is with the Science and Technology on Integrated Information
System Laboratory, Institute of Software, Chinese Academy of Sciences,
Beijing 100191, China (e-mail: hxh@iscas.ac.cn)

mapping between frame-wise signs and natural language words
is challenging.

To achieve better translation performance, a promising
research line is to perform joint sign language recognition and
translation model, which recognizing glosses and translating
natural language sentences simultaneously [14, 15]. By doing
so, learning with the glosses supervision can better understand
sign videos and bring significant benefits to sign language
translation. Along this line, Camgzet et al. [15] proposes a
joint model, Sign Language Transformer (SLTR), which is
based on vanilla Transformer [19]. They learn recognition and
translation simultaneously and achieve state-of-the-art results
due to the Transformer’s advantage in sequence modeling
tasks. However, there are still some inherent flaws that limit
the capabilities of the Transformer model when solving the
SLR and SLT tasks:

(a) The self-attention mechanism aggregates temporal sign
visual features in a frame-wise manner. This mechanism
neglects the temporal structure of sign gestures repre-
sented by sub-videos, leading to substantial ambiguity in
recognition and translation.

(b) The attention mechanism is permutation-insensitive. Thus
position encoding is essential to inject position information
for sequence learning, e.g., sign video learning and
sentence learning. However, the absolute position encoding
used in vanilla Sign Language Transformer (SLTR) [15]
is demonstrated distance and direction unaware [20, 21],
thus limit its ability for better performance.

To remedy this first shortcoming (a), an intuitive idea
is to gather neighboring temporal features to enhance the
frame-wise sign representation. However, it is difficult to
determine the boundaries of a sign gesture and select the
surrounding neighbors precisely. In this paper, we propose
a Content-aware and Position-aware Temporal Convolution
(CPTcn) to learn robust sign representations. We first propose
a content-aware neighborhood gathering method to adaptively
select the surrounding neighbors. Specifically, we leverage the
local consistency of sign gestures. That is to say, adjacent
frames that belong to a sign gesture share similar semantics.
Accordingly, we dynamically select neighboring features based
on the similarities. Then we aggregate the selected features with
temporal convolution layers. However, temporal convolution
with a limited receptive field is insufficient to capture the
position information of the features in the selected region [22].
To alleviate the drawback, we inject position awareness into
convolution layers with Relative Position Encoding (RPE). By
aggregating with neighboring similar features, our CPTcn mod-
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ule obtains discriminative sign representations, thus improving
the recognition and translation results.

To solve the second issue (b), we inject relative position
information into the learning of sign videos and target sentences.
Furthermore, we consider the relative position between sign
frames and target words. To the best of our knowledge, we are
the first trying to model the position relationship between source
sequence and target sequence in sequence-to-sequence archi-
tectures. There are several existing methods to endow the self-
attention mechanism with relative position information [20, 23–
26]. In this paper, we adopt the Disentangled Relative Position
Encoding (DRPE) [24] in our video-based sign language
learning, target sentence learning, and their mapping learning.
Note that, different from RPE mentioned above, DRPE contains
the correlations between relative position and sign features,
which is proven effective to bring improvements [24, 27].
With the distance and direction awareness learning from
DRPE, our improved Transformer model learns better feature
representations, thus gaining significant improvements.

We call our approach PiSLTRc for ”Position-informed Sign
Language TRansformer with content-aware convolution”. The
overview of our model can be seen in Figure 1. The main
technical contributions of our work are summarized as follows:

1) We propose a content-aware and position-aware CPTcn
module to learn neighborhood-enhanced sign features.
Specifically, We first introduce a novel neighborhood
gathering method based on the semantic similarities. Then
we aggregate the selected features with position-informed
temporal convolution layers.

2) We endow the Transformer model with relative position
information. Compared with absolute position encoding,
relative position encoding performs better for sign video
and natural sentence learning. Furthermore, we are the
first to consider the relative position relationship between
sign frames and target words.

3) Equipped with the proposed two techniques, our model
achieves state-of-the-art performance in translation ac-
curacy on the largest public dataset RWTH-PHOENIX-
Weather 2014T. Also, we obtain significant improvements
in recognition accuracy compared with other RGB-based
models on both PHOENIX-2014 and PHOENIX-2014-T
dataset.

The remainder of this paper is organized as follows. Sec-
tion II reviews related works in sign language and position en-
coding. Section III introduces the architecture of our proposed
PiSLTRc model. Section IV provides implementation details
on our model, presents a quantitative analysis that provides
some intuition as to why our proposed techniques work, and
finally presents the experimental results compared with several
baseline models.

II. RELATED WORK

A. Sign Language Recognition

Most previous sign language works focus on continuous sign
language recognition (cSLR), which is a weakly supervised
sequence labeling problem [2]. cSLR aims at transcribing video-
based sign language into gloss sequence. With the released of
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Fig. 1. The overview of our sign language Transformer model equipped
with Content-aware and Position-aware Temporal Convolution (CPTcn)
and Disentangled Relative Position Encoding (DRPE).

larger-scale cSLR datasets [28], numerous researches burst out
implementing sign language recognition tasks in an end-to-end
manner [1–13]. The gloss annotations are in same order with
sign language, this monotonic relationship significantly ease
the syntactic alignment with the cSLR methods. However, the
relationship between gloss sequences and the spoken natural
language is non-monotonic. Thus it is infeasible to realize SLT
with cSLR methods. Fortunately, the knowledge learned by
cSLR can be transferred to SLT models and facilitate their
performance.

B. Sign Language Translation

Sign language Translation (SLT) is much more challenging
because the alignment learning of frame-wise sign gestures
and natural language words is difficult. Camgz et al. [14]
first introduce an end-to-end SLT model that uses Convolution
Neural Networks (CNNs) backbone to capture spatial feature
and utilizes attention-based encoder-decoder model [29] to learn
the mapping of sign videos and natural language sentences.
Based on this work, Camgz et al. [15] replace the sequence-to-
sequence structure with Transformer architecture [19] which
is the state-to-the-art model in Neural Machine Translation
(NMT) area. Furthermore, they jointly learn the sign language
recognition and translation with a shared Transformer encoder
and demonstrate that joint training provides significant benefits.
Our work is built upon their joint sign language Transformer
model, where we improve the Transformer with our proposed
CPTcn module and endow the Transformer model with relative
position information.

C. Position Encoding in Convolution

Temporal convolution neural network is a common method
to model sequential information [30–33]. Convolution layer is
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Fig. 2. Vanilla self-attention and self-attention equipped with Content-aware and Position-aware Temporal Convolution (CPTcn). Where neighborhood gathering
denotes selecting adjacent relevant features in a contiguous local region, TCNs denote stacked temporal convolution layers.

demonstrated implicitly to learn absolute position information
from the commonly used padding operation [22]. However, it
is insufficient to learn powerful representations that encode
sequential information, especially with the limited receptive
field. Explicitly encoding absolute position information is
shown effective to learn image features [22]. Upon their
hypothesis, we apply relative position encoding (RPE) to the
temporal convolution layers, aiming to model the positional
correlations between the current feature and its surrounding
neighbors.

D. Position Encoding in Self-attention

Transformer entirely relies on the attention mechanism,
which does not explicitly model the position information.
To remedy the drawback, the sinusoidal absolute position
encoding [19] and learnable absolute position encoding [34]
are proposed to endow their model with position information.
Afterward, relative position encoding is proposed to model
long sequence [27] and provides the model with relation
awareness [20, 21]. In our work, we reuse the disentangled
position encoding [24] to exploit the distance and direction
awareness with relative position encoding. Moreover, we also
explore the position relationship between sign video and target
sentence. Note that, different from RPE in convolution, DRPE
in attention mechanism considers the relationship between
content and position feature, which is demonstrated effective
in previous works [24, 27]. Our experiments indicated that the
relative position information is vital for sequence-to-sequence
mapping learning.

III. METHOD

A. Preliminaries and Model Overview

Figure 1 illustrates the overall architecture of our proposed
model, which jointly learns to recognize and translate sign

videos into gloss annotations and spoken language sentences. In
the following subsections, we will first revisit the sign language
Transformer structure and then give detailed descriptions
about our proposed two methods: content-aware and position-
aware temporal convolution (CPTcn), and self-attention with
disentangled relative position encoding (DRPE).

B. Joint Sign Language Transformer Structure
Given a series of video frames, the vanilla sign language

Transformer (SLTR) model firstly adopts a CNN backbone to
extract frame-wise spatial features and uses a word embedding
to transfer one-hot natural language words into dense vectors.
Then a Transformer-based encoder-decoder model is utilized to
learn SLR and SLT simultaneously. For SLR, the encoder out-
put learned temporal sign features. A Connectionist Temporal
Classification (CTC) [35] loss is applied to learn the mapping
of gloss annotations and sign features. For SLT, the decoder
output decomposes sequence level conditional probabilities in
an autoregressive manner and then calculates the cross-entropy
loss for each word. Meanwhile, the learning of SLR and SLT
share the Transformer encoder.

Vanilla Transformer is a sequence-to-sequence structure,
which consists of several Transformer blocks. Each block
contains a multi-head self-attention and a fully feed-forward
network. Given a feature sequence F ∈ RM×d with M frames,
taking single-head attention as an example, the standard self-
attention can be formulated as:

Q = FWq,K = FWk, V = FWv,

S = QKT ,

Attn(Q,K, V ) = softmax(
S√
d

)V,

aij =
exp(sij/

√
d)∑

j′ exp(sij′/
√
d)

(1)
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Fig. 3. Our proposed content-aware neighborhood gathering method, compared with the centered neighborhood gathering method.

where Wq,Wk,Wv ∈ Rd×d represents projection matrices.
S ∈ RM×M represents the similarity computed by query Q ∈
RM×d and key K ∈ RM×d. aij represent the normalized
attention weights respectively.

Our work concentrates on improving the self-attention
mechanism to understand sign video and target sentences better.
To focus on our main contributions, we omit the detailed
architecture and refer readers to [19] for reference.

C. Content-aware and Position-aware Temporal Convolution
As shown in Figure 2, we propose content-aware and

position-aware temporal convolution (CPTcn) to learn local
temporal semantics, aiming at obtaining more discriminative
sign representations. In this section, we first introduce a content-
aware neighborhood gathering method, which adaptively selects
surrounding neighbors. Secondly, we elaborate on the detail of
endowing the temporal convolution with relative position in-
formation, which models the relationship between surrounding
features and the current feature. Finally, we incorporate the
proposed CPTcn module with the self-attention mechanism.

1) Content-aware neighborhood gathering Method: In sign
videos, we observe that each sign gesture usually lasts about
0.5∼0.6 seconds (∼16 frames). However, the vanilla Sign
Language Transformer (SLTR) model aggregates sign features
in a frame-wise manner, thus neglecting the local temporal
structure of sign gestures. Unlike their work, we develop a
content-aware neighborhood gathering method to adaptively
select the relevant surrounding features, which are around a
specific feature and in a contiguous region. Shown as Figure 3,
we obtain the clip-level feature with neighboring features via
three steps:
1). Given the sequential representations F = {f1, f2, ..., fM}
from the CNN backbone model, we apply outer tensor product
to get a similarity matrix s ∈ RM×M :

s =
FFT

√
d

(2)

where the diagonal elements in s represent similarities towards
the features themselves.

2). To ensure neighbors are going to be selected instead of
the far-away ones, we only consider a range [t− l, t+ l] for
a specific feature ft ∈ Rd to keep local semantic consistency.
Then we replace the similarity scores with -inf outside this
range and at the current feature. Mathematically, the selecting
criterion for ft becomes as:

st,j =

{
st,j , j ∈ [max(0, t− l), t) & (t,min(t+ l,M)]

−inf, others
(3)

where l represents the maximum distance among the consid-
ering features from the current feature. Then we apply the
softmax function to obtain the masked distribution dt ∈ RM

in the local region around the current feature ft:

dt = softmax(st) (4)

Note that the weight at the current feature is zero, thus the
summation of the weights before and after the current feature
is 1.
3). It is hard to determine the size and boundaries of the local
region. Fortunately, the normalized distribution of similarities
obtained in Equation 4 indicates the location of similar
neighbors. Therefore, we use the weights of the normalized
distribution before and after the current feature to adaptively
determine the size of the selected region. Respectively, we
define the size before and after the current feature with l− and
l+:

l− = γ
∑

dt,j · l, max(0, t− l) ≤ j < t

l+ = γ
∑

dt,j · l, t < j ≤ min(t+ l,M)

lr = l− + l+ = γ · l

(5)

where γ is a hyperparameter to control the size of selected
region, and the size of the region is lr. We define the final
selected contiguous region as LSRt (Locally Similar Region)
for a specific feature ft:



5

LSRt = {ft−l− , .., ft, ..., ft+l+} (6)

Finally, we adaptively obtain the clip-level features which are
in a contiguous local region:

frt = FCNG(ft, LSRt) (7)

where FCNG denotes the content-aware neighborhood gath-
ering method, and frt ∈ Rlr×d denotes the current feature
ft with its lr surrounding neighbors. The clip-level features
with temporal surrounding neighbors can be computed using
Algorithm 1.

Algorithm 1 Content-aware neighborhood gathering Method.
Input: Frame-wise spatial feature F ∈ RM×d from CNN

backbone;
Output: Clip-level features F r ∈ RM×lr×d;

1: s = 1√
d
ffT ;

2: s = local mask(s, l − 1,−inf);
3: s = diagonal mask(s,−inf);
4: a = softmax(s, dim = −1);
5: F r = []
6: for t = 0, ...,M − 1 do
7: l− = sum(a[max(0, t− l) : t]) ∗ l ∗ γ
8: l+ = sum(a[t, t+ 1 : min(t+ l,M)]) ∗ l ∗ γ
9: inds = [t− l−, .., t, .., t+ l+]

10: neighbors = index select(ft, inds)
11: F r append neighbors
12: end for
13: concatenate(F r, dim = 0)
14: return F r;

2) Position-aware Temporal Convolution: Temporal convo-
lution is a common method to aggregate sequential features.
However, convolution layers with a limited receptive field are
insufficient to capture the position information [22], which is
important for sign gesture understanding. More specifically,
the recognition of sign language is sensitive to the frame order.
Absolute position encoding used in previous methods [15, 16]
is a promising approach to encode position information. How-
ever, it is demonstrated direction- and distance-unaware [21].
Inspired by recent work on language modelling [25], we infuse
relative position information to the clip-level feature. We first
compute the relative position matrix R ∈ RM×lr between the
frame-wise feature and the current feature:

Rt,p = p− t, t ∈ [0,M − 1], p ∈ (t− l−, t+ l+]. (8)

Then we represent the relative position indices in learnable
embedding space, and obtain the position embeddings Φrpe ∈
RM×lr×d. Adding Φrpe to clip-level features F r, resulting in
position-informed clip-level representation:

F̂ r = F r + Φrpe. (9)

Lastly, we aggregate the clip-level features with position
information to compressed features Fag ∈ RM×d, and apply a
residual function:

Fag = MaxPool(Relu(LN(Conv1d(F̂ r)))) + F (10)

where LN represents the Layer Normalization [36]. Conv1d(·)
performs a 1-D convolution filter on time dimension with
Relu(·) activation function. As shown in Figure 2, we use two
layers of such a network, which is omitted here for readability.

3) Self-attention with CPTcn: Similar to the vanilla Trans-
former model, we feed the aggregated feature Fag to the self-
attention mechanism. Note that, as shown in Figure 2, we
only set K = V = Fag, and keep Q as original frame-wise
representation F . The reason for this design is to maintain the
difference within adjacent features in Q. Experimental result
demonstrates that this network design performs better than
Q = K = V = Fag .

D. Self-Attention with DRPE

As shown in Figure 1, we further inject relative position
information into the attention mechanism for sign video learn-
ing, target sentence learning, and mapping learning between
them. Most existing approaches for endowing the attention
mechanism relative position information are based on pairwise
distance [20]. They have been explored in machine translation
[20], music generation [37] and language modelling [23, 24].
Here, we propose a disentangled relative position encoding
(DRPE) [24].

Different from RPE used in Section III-C2, DRPE considers
the correlations between relative positions and content features,
which are proven that improving the performance [24, 27].
Specifically, we separate the content features and relative
position encoding to compute attention weights. The first line
of projection in Equation 1 is reparameterized as:

Qf = FWq,c,Kf = FWk,c, Vf = FWv,c

Qp = PWq,p,Kp = PWk,p

(11)

where F ∈ RM×d represent the content feature. Qf ,Kf , Vf ∈
RM×d represent query, key and value content vectors which are
obtained with projection matrices Wq,c,Wk,c,Wv,c ∈ Rd×d.
P ∈ R2L×d represents created learned relative position embed-
ding, where L is the max relative distance. Qp,Kp ∈ R2L×d

represent the projected position embedding with projection
matrices Wq,p,Wk,p ∈ Rd×d, respectively.

Following this, we generate the attention weights with the
relative position bias. The calculation of pairwise content-
content is in the same way as standard self-attention, thereby
generating the content-based content vector. While the calcu-
lation of pairwise content-position is different from standard
self-attention. We first create a relative position distance matrix
Rrel ∈ RM×M , and then generate the position-based content
vectors. The 2 ∼ 4 lines of computing attention weights in
Equation 1 are reparameterized as:
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sreli,j ={Qf,i, QpR
rel
i−j} × {Kf,j ,KpR

rel
j−i}T

=
Qf,iK

T
f,j︸ ︷︷ ︸

c2c
+
Qf,iKp

TRrel
j−i

T︸ ︷︷ ︸
c2p

+
QpR

rel
i−jK

T
f,j︸ ︷︷ ︸

p2c
+

QpR
rel
i−jKp

TRrel
j−i

T︸ ︷︷ ︸
p2p

Attn(Qf ,Kf , Vf , QpR
rel
q−k,KpR

rel
k−q) = softmax(

Srel

√
4d

)Vf ,

aij =
exp(srelij /

√
4d)∑

j′ exp(s
rel
ij′ /
√

4d)
(12)

where Srel ∈ RM×M represents the unnormalized attention
score matrix and srelij represents the score computed by query at
position i and key at the position j. Rrel

q−k ∈ RM×M represents
the relative distance matrix computed by the positions of query
and key. Rrel

i−j lies in the (i, j)-th of Rrel
q−k, and represents

the relative distance between i-th query and j-th key. Rrel
k−q ∈

RM×M and Rrel
j−i are computed in similar ways. Note that

Rrel
i−j and Rrel

j−i are opposite numbers thus providing our model
with directional information.

Moreover, in the first line of the above equation, the first
item c2c represents content-to-content which is the content-
based content vectors. The second and third item c2p and
p2c represent content-to-position and position-to-content re-
spectively, which are relative position based content vectors.
p2p represents position-to-position which is omitted in vanilla
DRPE [24]. However, in our experiments, we find that p2p
bring improvements to our performance in both recognition and
translation. Therefore, we keep this item of position-to-position.
In Section IV-C3, we analyze the impact of different item in
the first line of Equation 12.

Preceding this, in the last two lines, we apply softmax
function and scaling factor 1√

4d
to get normalized scaled

attention weights.

Totally, there are two differences between the DRPE method
applied in our architecture and DeBERTa [24]. The first is
that we consider the position-to-position information, which is
omitted in DeBERTa. Experimental results in Table V show the
effectiveness of this item. The second difference is that DRPE is
used in text-only in DeBERTa for language modeling. However,
in our proposed model, as seen in Figure 1, we apply the
relative position method in text-only target sentence learning,
image-only sign video learning, and even the cross-modal video
sequence and target sentence interaction. Experimental results
in Table IV show the effectiveness of our improvements. Note
that we are the first to consider the relative position relationship
between sign frames and target words.

In summary, equipping with the CPTcn module and DRPE
in self-attention layers, the heart module in the Transformer
model, we finally arrive at our proposed PiSLTRc model.

IV. EXPERIMENTS

A. Dataset and Metrics

We evaluate our method on three datasets, including
PHOENIX-2014 [28], PHOENIX-2014-T [14] and Chinese
Sign Language (CSL)[38].

PHOENIX-2014 is a publicly available German Sign Lan-
guage dataset, which is the most popular benchmark for
continuous SLR. The corpus was recorded from broadcast
news about weather. It contains videos of 9 different signers
with a vocabulary size of 1295. The split of videos for Train,
Dev, and Test is 5672, 540, and 629, respectively.

PHOENIX-2014-T is the benchmark dataset of sign lan-
guage recognition and translation. It is an extension of the
PHOENIX14 dataset [28]. Parallel sign language videos, gloss
annotations, and spoken language translations are available in
PHOENIX14T, which makes it feasible to learn SLR and SLT
tasks jointly. The corpus is curated from a public television
broadcast in Germany, where all signers wear dark clothes
and perform sign language in front of a clean background.
Specifically, the corpus contains 7096 training samples (with
1066 different sign glosses in gloss annotations and 2887
words in German spoken language translations), 519 validation
samples, and 642 test samples.

CSL is a Chinese Sign Language dataset, which is also
a widely used benchmark for continuous SLR. These videos
were recorded in a laboratory environment, using a Microsoft
Kinect camera with a resolution of 1280 × 720 and a frame
rate of 30 FPS. In this corpus, there are 100 sentences, and
each sentence is signed five times by 50 signers (in total 2,500
videos). As no official split is provided, we split the dataset by
ourselves. We give 20,000 and 5,000 samples to the training
set and testing set, respectively. When splitting the dataset, we
ensure that the sentences in the training and testing sets are
the same, but the signers are different.

We evaluate our model on the performance of SLR and SLT
as following [14]:

Sign2gloss aims to transcribe sign language videos to sign
glosses. It is evaluated using word error rate (WER), which is
a widely used metric for cSLR:

WER =
#substitution + #deletion + #insertion

#words in reference
(13)

Sign2text aims to directly translate sign language videos to
spoken language translation without intermediary representa-
tion. It is evaluated using BLEU [39] which is widely used
for machine translation.

Sign2(gloss+text) aims to jointly learn continuous SLR and
SLT simultaneously. This approach is currently state-of-the-
art in the performance of SLT since the training of cSLR
brings benefits for sign video understanding, thus improving
the performance of translation.

B. Implementation and Evaluation Details

1) Network Details: Like Camgz et al. [15], we extract
frame-wise spatial sign features with CNN backbone from
CNN-LSTM-HMM [2]. Then we apply the improved Trans-
former network to learn SLR and SLT simultaneously. Its
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TABLE I
EVALUATION OF DIFFERENT NEIGHBORHOOD GATHERING METHOD ON
PHOENIX-2014-T. ”NG” IS THE ABBREVIATION OF NEIGHBORHOOD

GATHERING.

NG method
SLR(WER) SLT(BLEU-4)

DEV TEST DEV TEST
w/o NG 24.23 24.92 20.54 20.80

Centered NG (lr = 16) 23.64 24.17 20.73 21.23
Sparse NG (lr = 16) 23.06 23.52 21.83 22.08

Content-aware NG (lr = 16) 22.23 23.01 23.17 23.40

TABLE II
EVALUATION OF THE SIZE OF THE SELECTED LOCAL SIMILAR REGION ON

PHOENIX-2014-T.

Size of LSR
SLR(WER) SLT(BLEU-4)

DEV TEST DEV TEST
lr = 8 22.85 23.85 22.30 22.99
lr = 12 22.52 23.62 22.31 23.51
lr = 16 22.23 23.01 23.17 23.40
lr = 20 23.02 23.74 22.85 22.86

setting used in our experiments is based on Camgz et al. [15].
Specifically, we use 512 hidden units, 8 heads, 6 layers, and
0.1 dropout rate.

In our proposed CPTcn model, the size of the select
contiguous local similar region lr is set to be 16 (about 0.5-0.6
seconds), which is the average time needed for completing a
gloss. We analyze the impact of the size in Section IV-C1.

The setting of two temporal convolution layers is F3-S1-
P0-F3-S1-P0, where F, S, P denote the kernel filter size,
stride, and padding size, respectively. The analysis of different
modules of the position-informed convolution is concluded in
Section IV-C2.

In the self-attention and cross-attention mechanism, we apply
DRPE to inject relative position information. We set the max
relative distance L to be 32 in our experiments. The analysis
of the DRPE is conduct in Section IV-C3.

Besides, we train the SLR and SLT simultaneously. Thus we
set λR and λT as the weight of recognition loss and translation
loss.

2) Training: We use the Adam optimizer [40] to optimize
our model. We adopt the warmup schedule for learning rate
that increases the learning rate from 0 to 6.8e-4 within the first
4000 warmup steps and gradually decay it with respect to the
inverse square root of training steps. We train the model on 1
NVIDIA TITAN RTX GPU, and use 5 checkpoints averaging
for the final results.

3) Decoding: During inference, we adopt CTC beam search
decoder with a beam size of 5 for SLR decoding. Meanwhile,
we also utilize the beam search with the width of 5 for SLT
decoding, and we apply a length penalty [41] with α values
ranging from 0 to 2.

C. Ablation Study

1) Analysis of content-aware neighborhood gathering
method: In our proposed CPTcn module, we introduce a

TABLE III
EVALUATION OF DIFFERENT MODEL IN CPTCN MODULE ON

PHOENIX-2014-T. ”PE” DENOTES POSITION ENCODING. ”APE”
DENOTES ABSOLUTE POSITION ENCODING.

module in CPTcn
SLR (WER) SLT (BLEU-4)

DEV TEST DEV TEST
w/o PE 23.44 24.03 21.15 21.47
w/ APE 22.89 23.47 21.89 22.18
w/ RPE 22.23 23.01 23.17 23.40

w/o Redisual 24.19 25.31 20.78 20.36
w/o LN 23.01 23.72 21.99 21.57
CPTcn 22.23 23.01 23.17 23.40

content-aware neighborhood gathering method to select the
relevant surrounding neighbors dynamically. Three potential
concerns with using this method are: 1) How many improve-
ments does the content-aware method bring? 2) Must be
the selected features contiguous in position? 3) What is the
appropriate size of the selected region?

In Table I, we compared three methods to verify the first
two questions: the essential of whether the selected region is
content-aware and contiguous. For notation, w/o NG means
no neighborhood gathering method. Centered NG means
directly to select k features centered around the current feature.
Sparse NG means dynamically selecting k features with the
highest similarity, which may be discontinuous in position.
Content-aware NG means to select k contiguous features
adaptively based on similarity using our proposed content-
aware segmentation method. We can see those neighborhood
gathering methods effectively improve the performance. Sparse
NG substantially outperforms Centered NG. This gap suggests
that the content-aware method is critical for feature selecting.
Moreover, Content-aware NG performs better than other
methods. This indicates that our content-aware contiguous
feature aggregation is more suitable for capturing sign gesture
representation.

In Table II, we explore the appropriate size of the select
local similar region (LSR). The performance of our model
performs best when the size of LSR is 16. This is consistent
with the finding that the 16-frame (about 0.5-0.6 seconds) is
the average time needed for completing a gloss. Besides, by
gathering the larger width regions (for example, 20 frames),
we observed slight performance degradation. This is because
20 frames (about 1 second) usually contain more than one
gesture and thus lower the performance.

2) Analysis of position-aware Temporal Convolution:
In the first two lines in Table III, we study the relative
position encoding in the CPTcn module. Experimental results
show that position information is crucial for aggregating
the sequential features. Furthermore, compared with absolute
position encoding (APE), relative position encoding (RPE)
bring improvements with +1.22 BLEU scores and −0.46%
WER score on the test dataset. The result supports the
conjecture of Yan et. al. [21] that RPE provides direction
and distance awareness for sequence modeling compared with
APE method.

Moreover, we explore the network design of the temporal
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Fig. 4. Qualitative recognition results of our proposed modules from Dev set (D: delete, I: insert, S: substitute).

feature aggregator method in the 3 ∼ 4 lines in Table III.
Experiments show that residual connection is essential. And
Layer normalization is effective for sequential feature modeling.

3) Analysis of DRPE in self-attention: We further conduct
comparative experiments to analyze the effectiveness of dis-
entangle relative position encoding (DRPE) in the attention
mechanism. As shown in Figure 1, we replace absolute position
encoding (APE) with DRPE in three places: encoder self-
attention, decoder self-attention, and encoder-decoder cross
attention. For notation, in Table IV, ”Enc-SA” means self-
attention in the encoder module. ”Dec-SA” means self-attention
in the decoder module. ”Enc-Dec-CA” means cross attention
between encoder and decoder. In the 1 ∼ 4 lines of Table IV, we
can see that the DRPE method used in the encoder and decoder
all brings significant improvements. This further demonstrates
that relative position encoding provides the direction and
distance awareness for sequence representation learning. In
addition, we find that the performance of DRPE used only
in the encoder is better than that of DRPE used only in the
decoder. This phenomenon suggests that direction and distance
information are more critical for sign video learning than
sentence representation learning.

As we move to the fourth line in Table IV, the results show
that DRPE in encoder-decoder attention also increases the
performance. This phenomenon shows that even if the order of
the word in the natural language is inconsistent with the sign
language gloss, the relative position information still benefits
their mapping learning.

Different from DRPE used in DeBERTa [24], we further
explore the effectiveness of different items mentioned in
Equation 12 in our task. Experimental results are shown

TABLE IV
ANALYSIS OF DRPE IN ENCODER SELF-ATTENTION AND DECODER

SELF-ATTENTION.”SA” IS THE ABBREVIATION OF SELF-ATTENTION. ”CA”
MEANS THE CROSS-ATTENTION OF ENCODER-DECODER.

Method
SLR (WER) SLT (BLEU-4)

DEV TEST DEV TEST
w/ APE 25.36 25.27 20.12 20.39

Enc-SA w/ DRPE 22.89 23.76 22.35 22.47
Dec-SA w/ DRPE 23.29 23.84 21.89 21.27

Enc-SA & Dec-SA w/ DRPE 22.54 22.89 22.78 22.90
Enc-Dec-CA w/ DRPE 23.74 23.93 21.59 21.41

All w/ DRPE 22.23 23.01 23.17 23.40

TABLE V
ANALYSIS OF DIFFERENT ITEM IN DRPE. ”C2C” DENOTES

content-to-content, ”C2P” DENOTES content-to-position, ”P2C” DENOTES
position-to-content, AND ”P2P” DENOTES position-to-position.

Item in DRPE
SLR (WER) SLT (BLEU-4)

DEV TEST DEV TEST
c2c only 25.79 25.85 20.03 20.18

+ c2p & p2c 22.57 23.26 22.84 22.79
+ p2p 22.23 23.01 23.17 23.40

in Table V, the correlations between content and position
feature bring significant improvement. Moreover, the position-
to-position item also benefits our model. This result is consistent
with the conclusion in Ke et al. [26]. Accordingly, we adopt
these four items in our disentangled relative position encoding.
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TABLE VI
QUALITATIVE RESULTS WITH DIFFERENT METHODS ON SLT TASK.

GT: in der nacht sinken die temperaturen auf vierzehn bis sieben grad .
(at night the temperatures drop to fourteen to seven degrees .)

SLTR: heute nacht werte zwischen sieben und sieben grad .
(tonight values between seven and seven degrees .)

PiSLTRc: heute nacht kühlt es ab auf vierzehn bis sieben grad .
(tonight it’s cooling down to fourteen to seven degrees .)

GT: an der saar heute nacht milde sechzehn an der elbe teilweise nur acht grad .
(on the saar tonight a mild sixteen on the elbe sometimes only eight degrees .)

SLTR: südlich der donau morgen nur zwölf am oberrhein bis zu acht grad .
(south of the danube tomorrow only twelve on the upper rhine up to eight degrees .)

PiSLTRc: am oberrhein heute nacht bis zwölf am niederrhein nur kühle acht grad .
(on the upper rhine tonight until twelve on the lower rhine only a cool eight degrees .)

GT: am tag von schleswig holstein bis nach vorpommern und zunächst auch in brandenburg gebietsweise länger andauernder regen .
(In the south, denser clouds sometimes appear, otherwise it is partly clear or only slightly cloudy .)

SLTR: am mittwoch in schleswig holstein nicht viel regen .
(not much rain on wednesday in schleswig holstein .)

PiSLTRc: am donnerstag erreicht uns dann morgen den ganzen tag über brandenburg bis zum teil dauerregen .
(on thursday we will reach us tomorrow the whole day over brandenburg until partly constant rain.)

GT: im süden gibt es zu beginn der nacht noch wolken die hier und da auch noch ein paar tropfen fallen lassen sonst ist es meist klar oder nur locker bewölkt .
(In the south there are still clouds at the beginning of the night that drop a few drops here and there, otherwise it is mostly clear or only slightly cloudy .)

SLTR: im süden tauchen im süden teilweise dichtere wolken auf sonst ist es verbreitet klar .
(in the south there are sometimes denser clouds in the south otherwise it is widely clear .)

PiSLTRc: im süden tauchen auch mal dichtere wolken auf sonst ist es gebietsweise klar oder nur locker bewölkt .
(In the south, denser clouds sometimes appear, otherwise it is partly clear or only slightly cloudy .)

TABLE VII
THE EVALUATION RESULTS ON SIGN2GLOSS TASK ON PHOENIX-2014-T

DATASET.

sign2gloss DEV TEST

Model del/ins WER del/ins WER

DNF [6] 5.9/3.0 22.7 6.8/2.9 23.4
CNN+LSTM+HMM [2] - 24.5 - 26.5

SLTR-R [15] - 24.9 - 24.6
FCN [10] 6.5/3.2 22.9 5.8/4.7 23.7

STMC (RGB) [12] - 25.0 - -

PiSLTRc-R (ours) 4.9/4.2 21.8 5.1/4.4 22.9

4) Qualitative Analysis on SLR: In Figure 4, we show two
examples with different methods on the SLR task. Equipped
with proposed approaches, our PiSLTRc model learns accurate
sign gesture recognition and thus achieving significant improve-
ments. Furthermore, we find that the model trained based on
CTC loss function tends to predict ”peak” on the continuous
gestures. And our proposed CPTcn model is adequate to
alleviate this situation. As shown in Figure 4, the recognition
of adjacent frames in a contiguous region is more precise.

5) Qualitative Analysis on SLT: In Table VI, we show
several examples with different models on the SLT task.
Compared with the vanilla SLTR model [15], our proposed
PiSLTRc produces target sentences with higher quality and
accuracy.

Comparing the translation results of the first example as
illustrated in Table VI, we see that ”vierzehn (fourteen)” is
mistranslated as ”sieben (seven)” in SLRT model. However, it is
correctly translated in our PiSLTRc model. As we move to the

TABLE VIII
THE EVALUATION RESULTS ON SIGN2GLOSS TASK ON PHOENIX-2014

DATASET.

sign2gloss DEV TEST

Model del/ins WER del/ins WER

DeepHand [1] 16.3/4.6 47.1 15.2/4.6 45.1
DeepSign [42] 12.6/5.1 38.3 11.1/5.7 38.8
SubUNets [11] 14.6/4.0 40.8 14.3/4.0 40.7
Staged-Opt [3] 13.7/7.3 39.4 12.2/7.5 38.7
Re-Sign [43] - 27.1 - 26.8

DNF [6] 7.8/3.5 23.8 7.8/3.4 24.4
CNN-LSTM-HMM [2] - 26.0 - 26.0

FCN [10] - 23.7 - 23.9
STMC (RGB) [12] - 25.0 - -

SBD-RL [44] 9.9/5.6 28.6 8.9/5.1 28.6

SLTR-R(our implementation) 8.9/4.2 24.5 9.0/4.3 24.6

PiSLTRc-R (ours) 8.1/3.4 23.4 7.6/3.3 23.2

second example in this table, we see that ”heute nacht (tonight)”
is mistranslated as ”morgen (tomorrow)” in SLRT model, and
it is correctly in our PiSLTRc model. To sum up, specific
numbers and named entities are challenging since there is no
grammatical context to distinguish one from another. However,
in these two examples, we see that our model translates specific
numbers and named entities more precisely. This demonstrates
that our proposed model has a stronger ability to understand
sign videos.

When we move to the third and fourth example in the
Table VI, we see that our model generate complete sentence
with less under-translation. For example, in the third example,
”gebietsweise länger andauernder regen (rain lasting longer in
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TABLE IX
THE EVALUATION RESULTS ON SIGN2TEXT TASK ON ON PHOENIX2014T DATASET.

sign2text DEV TEST
Model ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

RNN-based[14] 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58
TSPnet [16] - - - - - 34.96 36.10 23.12 16.88 13.41
SLTR-T [15] - 45.54 32.60 25.30 20.69 - 45.34 32.31 24.83 20.17
Multi-channel [17] 44.59 - - - 19.51 43.57 - - - 18.51

PiSLTRc-T (ours) 47.89 46.51 33.78 26.78 21.48 48.13 46.22 33.56 26.04 21.29

TABLE X
THE EVALUATION RESULTS ON SIGN2(GLOSS+TEXT) TASK ON ON PHOENIX2014T DATASET.

sign2(gloss+text) DEV TEST
Model WER ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 WER ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

RNN-based[14] - 44.14 42.88 30.30 23.02 18.40 - 43.80 43.29 30.39 22.82 18.13
SLTR [15] 24.61 - 46.56 34.03 26.83 22.12 24.49 - 47.20 34.46 26.75 21.80
Multi-channel [17] - - - - - 22.38 - - - - - 21.32
STMC(RGB-based) [45] - 44.30 44.06 32.69 25.45 20.74 - 44.70 45.08 33.80 26.44 21.55

PiSLTRc (ours) 22.23 49.87 47.37 35.41 28.09 23.17 23.01 49.72 48.50 35.97 28.37 23.40

TABLE XI
THE EVALUATION RESULTS ON SIGN2GLOSS TASK ON CSL DATASET.

sign2gloss WER
S2VT [46] 25.0

LS-HAN [38] 17.3
HLSTM-attn [47] 10.2

CTF [48] 11.2
DenseTCN [49] 14.3

SF-Net [50] 3.8
FCN [10] 3.0

SLTR-R(our implementation) 3.7
PiSLTRc-R (ours) 2.8

some areas)” is under-translated in SLTR model, while it is
correctly translated as ”bis zum teil dauerregen (partly constant
rain)” in our PiSLTRc model.

In summary, our proposed model performs better than the
previous SLTR model when facing the specifical numbers and
name entities, which are challenging to translate since there
is no grammatical context to distinguish one from another.
Moreover, the sentences produced follow standard grammar.
Nevertheless, it may be improved on the translation quality of
the long sentences in the future.

6) Limitation: We leverage neighboring similar features to
enhance sign representation. The selected features are in a fixed-
size region. This is not consistent with the characteristics of sign
language. That is to say, the number of frames corresponding
to different sign gestures is dynamic.

D. Comparison Against Baselines

In this section, we compare several state-of-the-art models
to demonstrate the effectiveness of our work. Similar to Camgz
et al. [15], we elaborate the comparison between our proposed

model and baseline models in the three tasks: sign2gloss,
sign2text, and sign2(gloss+text).

1) sign2gloss: We evaluate this task in three datasets:
PHOENIX-2014-T, PHOENIX-2014 and CSL.

In Table VII, we compare our model with several meth-
ods for the sign2gloss task on PHOENIX-2014-T dataset.
DNF [6] adopt iterative optimization approaches to tackle
the weakly supervised problem. They first train an end-to-
end recognition model for alignment proposal, and then use
the alignment proposal to tune the feature extractor. CNN-
LSTM-HMM [2] embeds powerful CNN-LSTM models in
multi-stream HMMs and combines them with intermediate
synchronization constraints among multiple streams. Vanilla
SLTR-R [15] uses the backbone pretrained with CNN-LSTM-
HMM setup and then employes a two-layered transformer
encoder model. FCN [10] is built upon an end-to-end fully
convolutional neural network for cSLR. Furthermore, they
introduce a Gloss Feature Enhancement (GFE) to enhance the
frame-wise representation, where GFE is trained to provide a set
of alignment proposals for the frame feature extractor. STMC
(RGB) [12] proposes a spatial-temporal multi-cue network to
learn the video-based sequence. For a fair comparison, we only
selected the RGB-based model of STMC without leveraging the
additional information of hand, face, and body pose. PiSLTRc-
R is our model which is trained when the weight of translation
loss λT is set zero. Similar to vanilla SLTR-R, our work extracts
feature from the CNN-LSTM-HMM backbone. As shown in
this table, our proposed PiSLTRc-R surpasses the vanilla SLTR
model by 12% and 7% on Dev and Test datasets, respectively.
Furthermore, in the RGB-based models, we achieve state-of-
the-art performance on the sign2gloss task.

In Table VIII we also evaluate our PiSLTRc-R model on
the PHOENIX-2014 dataset. Compared with existed baseline
models, our proposed model achieves comparable results. Note
that the vanilla SLTR-R does not report the experimental results
on the PHOENIX-2014 dataset. We implement it by ourselves.
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Compared with SLTR-R, our PiSLTRc-R model gains 4% and
5% improvements on Dev and Test datasets, respectively.

In Table XI we conduct experiments on CSL dataset. We see
that our proposed PiSLTRc-R model achieves state-of-the-art
performance. Compared with the SLTR-R model, our PiSLTRc-
R model gains 24% improvements on the Test datasets (5,000
examples split by ourselves), respectively.

2) sign2text: In Table IX, we compare our approach with
several sign2text methods on PHOENIX-2014-T dataset. The
RNN-based model [14] adopt full frame features from Re-sign.
TSPnet [16] utilizes I3D [51] to extract the spatial features,
and further finetune I3D on two WSLR datasets [52, 53].
Multi-channel [17] allows both the inter and intra contextual
relationship between different asynchronous channels to be
modelled within the transformer network itself. PiSLTRc-T is
our model that training with the weight of recognition loss λR
being zero. Like in sign2gloss, SLTR-T and our PiSLTRc-T
model utilize the pretrained feature from CNN-LSTM-HMM.
Experimental results show that our proposed model achieves
state-of-the-art performance and surpasses the vanilla SLTR-T
model by 3.8% and 5.6% BLEU-4 scores.

3) sign2(gloss+text): In Table X, we compare our model
on sign2(gloss+text) task. In this task, we jointly learn sign
language recognition and translation simultaneously. Namely,
λR and λT are set as non-zero. Note that different settings
will obtain different results. Weighing up the performance
on recognition and translation in our experiments, we set
λR = λT = 1.0. Compared with vanilla SLTR, our model
gains significant improvements on both two tasks. Experiments
demonstrate that our proposed techniques bring significant
improvements for recognition and translation quality based on
the sign language Transformer model.

V. CONCLUSION

In this paper, we indicate two drawbacks of the sign language
Transformer (SLTR) model for sign language recognition
and translation. The first shortcoming is that self-attention
aggregates sign visual features in a frame-wise manner, thus
neglecting the temporal semantic structure of sign gestures.
To overcome this problem, we propose a CPTcn module to
generate neighborhood-enhanced sign features by leveraging
the temporal semantic consistency of sign gestures. Specifically,
we introduce a novel content-aware neighborhood gathering
method to select relevant features dynamically. And then,
we apply position-informed temporal convolution layers to
aggregate them.

The second disadvantage is the absolute position encoding
used in the vanilla SLTR model. It is demonstrated unable
to capture the direction and distance information, which are
critical for sign video understanding and sentence learning.
Therefore, we inject relative position information to SLTR
model with disentangled relative position encoding (DRPE)
method. Extensive experiments on two large-scale sign lan-
guage datasets demonstrate the effectiveness of our PiSLTRc
framework.
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