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Abstract—In this paper, we propose a cross-modal varia-
tional auto-encoder (CMVAE) for content-based micro-video
background music recommendation. CMVAE is a hierarchical
Bayesian generative model that matches relevant background
music to a micro-video by projecting these two multimodal inputs
into a shared low-dimensional latent space, where the alignment
of two corresponding embeddings of a matched video-music
pair is achieved by cross-generation. Moreover, the multimodal
information is fused by the product-of-experts (PoE) principle,
where the semantic information in visual and textual modalities
of the micro-video are weighted according to their variance
estimations such that the modality with a lower noise level is given
more weights. Therefore, the micro-video latent variables contain
less irrelevant information that results in a more robust model
generalization. Furthermore, we establish a large-scale content-
based micro-video background music recommendation dataset,
TT-150k, based on approximately 3,000 different background
music clips associated to 150,000 micro-videos from different
users. Extensive experiments on the established TT-150k dataset
demonstrate the effectiveness of the proposed method. A qualita-
tive assessment of CMVAE by visualizing some recommendation
results is also included.

Index Terms—Cross-modal matching; Variational auto-
encoder; Product-of-experts system; Recommendation systems

I. INTRODUCTION

Nowadays, micro-videos have become an increasingly
prevalent medium on the Web. Compared with texts or pic-
tures, micro-videos contain rich visual contents, audio sounds,
as well as textual tags and descriptions, which allow people to
more vividly record and share their daily lives. Applications
such as TikTok1 and Kwai2 have witnessed the success of the
micro-video sharing platform with a huge user base. Matching
micro-videos with suitable background music can help up-
loaders better convey their contents and emotions. Moreover,
background music selection is one of the key elements to make
the generated videos attractive and increase the click-through
rate of the uploaded videos. However, manually selecting
the background music becomes a painstaking task due to
the voluminous and ever-growing pool of candidate music.
Therefore, automatically recommending background music to
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videos could help Online micro-video sharing platforms attract
more users and spread the micro-videos, which is a crucial task
for multimedia cross-modal matching.

Existing cross-modal matching methods have mainly fo-
cused on the matching between textual and visual (image
or video) modalities. For example, Xu et al. [1] proposed a
joint video-language framework for text-based video retrieval
evaluated on [2]. Semedo and Magalhães [3] proposed a new
temporal constraint for image-text matching using the NUS-
WIDE benchmark [4]. Zhang et al. [5] utilized inter-modal
attention to discover semantic alignments between words and
image patches for image-text retrieval, where the intra-modal
attention was also exploited to learn semantic correlations
of fragments for each modality. Meanwhile, metric-learning-
based methods have been proposed to better implement cross-
modal matching [6–8]. The continual success in such areas is
facilitated by the establishment of Flickr [9], MS-COCO [10],
MSR-VTT [11], etc., which are widely employed benchmarks
for the evaluation of visual-textual retrieval models. He et al.
[12] further proposed a new dataset for fine-grained cross-
modal retrieval. However, there exists no publicly available
dataset for matching videos with background music, which
becomes the main obstacle for future research regarding the
automatic recommendation of background music to videos.

It is very challenging to construct such a video background
music recommendation dataset. For example, how to collect
different music clips and acquire different videos using the
music clips as background music is a problem. Taking the
issues into consideration, we manage to establish a micro-
video background music matching dataset, which we name
TT-150k, based on the popular micro-video sharing platform
TikTok. Specifically, the candidate music clips are selected
from the TikTok pop charts and the background music adopted
by popular micro-videos. The established TT-150k dataset
includes extracted features from more than 3,000 music clips
and about 150,000 micro-videos that use the music clips
from the candidate list. In our establishment, we ensure that
the popularity of the music clips is proportional to its true
distribution in the population of TikTok, and therefore the
dataset can faithfully reflect the music popularity distribution
in the real-world scenario.

With the TT-150k dataset established, we aim to design an
effective algorithm for the automatic matching of micro-videos
with background music. Previous studies on video-music
matching [13, 14] mainly rely on manually annotated emotion
tags to match music and videos in the affective space. How-
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ever, such manual annotation is laborious and time-consuming
for large datasets. Therefore, it is imperative to seek methods
that match music to videos without manually-labeled infor-
mation. Moreover, the semantic structure of micro-videos can
vary drastically with that of the music: A silent micro-video
is a hodgepodge of visual and textual information, while
the music contains only audio information. Therefore, it is
challenging to match the semantic-rich video latent space with
the monotonous music latent space. In addition, the weak asso-
ciation between micro-videos and background music makes it
hard to learn the matching patterns with the typical matching
loss [15]. To address the above challenges, we propose a
Cross-Modal Variational Auto-Encoder (CMVAE) for content-
based micro-video background music recommendation. CM-
VAE is a hierarchical Bayesian generative model that matches
relevant background music to micro-videos by projecting them
into a shared low-dimensional latent space. Specifically, the
latent space is constrained by cross-generation such that the
embeddings of a matched video-music pair are closer than that
of an unmatched pair. Through this, a more accurate similarity
measurement between micro-videos and music can be obtained
and utilized for the recommendation. Meanwhile, to fully
utilize the heterogeneous visual and textual information of the
micro-video for matching, the bimodal information in micro-
videos is comprehensively fused according to the product-
of-experts (PoE) principle. In this way, the information in
each modality is weighted by the reciprocal of its variance
estimation to give the modality with a lower noise level more
weights, such that irrelevant information in the micro-video
embeddings can be reduced. Besides, the PoE fusion is shown
to be robust to the textual modality missing problem, which
is a commonly encountered problem when performing micro-
video analysis. The main contributions of this paper can be
concretely summarized as follows:

• We propose a novel hierarchical Bayesian genera-
tive model, CMVAE, for content-based micro-video
background music recommendation. CMVAE projects
micro-video and background music into a shared low-
dimensional latent space, where the alignment of two
corresponding embeddings of a matched video-music
pair is achieved by constraining their latent variables
to generate each other. Through the cross-generation, a
better alignment of the latent pairwise distributions and
matching between the micro-video and music can be
realized in the latent space for recommendations.

• The product-of-experts (PoE) principle is adopted to fuse
the modality-specific embeddings of visual and textual
modalities of the micro-video so that the complementary
multimodal information can be better exploited. With
PoE, the semantic information in different modalities are
weighted according to their variance estimations for giv-
ing more weights to the modality with a lower noise level,
such that the micro-video embeddings could contain less
irrelevant information for a more robust generalization.

• A large-scale content-based micro-video background mu-
sic recommendation dataset, TT-150k, is established.
The dataset contains extracted features from more than

3,000 candidate music clips and about 150k correspond-
ing micro-videos, where the popularity distribution is
consistent with that of the real-world scenario. On the
established TT-150k dataset, experiments show that the
proposed CMVAE significantly outperforms the state-of-
the-art methods.

The remainder of this article is organized as follows. Section
II gives a literature review of the work related to our proposed
method. Section III introduces the establishment of the dataset
TT-150k. In Section IV, we illustrate the proposed CMVAE
with details. Section V presents the experimental settings and
analyzes the experimental results. Finally, Section VI briefly
summarizes the article.

II. RELATED WORK

A. Audiovisual Cross-modal Matching

Cross-modal matching aims to match relevant materials
where the modality of the target is different from that of the
query [16]. Compared with the matching of two sources that
come from a single modality, cross-modal matching requires
measuring the similarity of heterogeneous sources composed
of different modalities, and therefore it is a more challenging
task. Recent researches have mainly focused on matching
between textual and visual modalities [8, 17–21], using open-
sourced datasets such as MSCOCO [10] and Flickr [9]. The
need for matching audio and visual contents, such as music
video generation, has existed for a long time with many efforts
dedicated to solving the problem [22–24].

Music recommendations have existed for a long time with
much attention [25, 26]. For example, Andjelkovic et al. [27]
integrated content and mood-based filtering which utilized a
music-specific model of affect, rather than the traditional Cir-
cumplex model to explore music mood. Vystrčilová and Peška
[28] emphasized the importance of lyrics-based embedding for
music recommendations. Cheng et al. [29] explored the effects
of music play sequence on developing effective personalized
music recommender systems using word embedding tech-
niques. Cheng and Shen [30] presented a novel venue-aware
music recommender system to effectively identify suitable
songs for various types of popular venues in our daily lives,
where songs and venue types were represented in the shared
latent space and can be directly matched.

However, background music recommendation for visual
contents has been less explored. Several pioneering methods
for audiovisual cross-modal matching include: Chao et al. [31]
recommended background music for digital photo albums us-
ing the relatedness between image tags and music mood tags.
Li and Kumar [14] utilized emotion tags as metadata to align
the music and video modalities. These emotion tags for the
video, however, were manually annotated from crowdsourcing,
which is high in labor and time costs. Chen et al. [13] relied
on Thayer’s emotion model [32] and the videos and audios
falling in the same quadrant of emotions were regarded as
positive samples. Shah et al. [33] proposed a personalized
video soundtrack recommendation system by matching mood
tags of videos and music with mood clusters as ground truth,
where the mood tags of videos were extracted from location
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information with sensor-annotated data and video content.
Sasaki et al. [34] matched an input video with music using an
emotional plane through the valence/arousal model of affect
[35]. Shin and Lee [36] also utilized the emotion (arousal
and valence) for video and music pair where the music was
arranged with the video using emotion similarity. Shang et al.
[37] aimed to automatically retrieve relevant music on social
media based on the connotation that implicitly expressed the
abstract idea or inherent emotion beyond the explicit content
of visual inputs. A metaphor-enriched connotation extraction
module was exploited to explicitly identify metaphors through
a set of semantic and emotion entities extracted from both the
image and music using crowdsourcing image-to-song labels.
Lin et al. [38] argued the importance of matching the rhythm
of the music with the visual movement of the video, where
the tags of videos provided by users were used to calculate
their relationship with song lyrics of music candidates.

Above methods heavily depend on the emotion labels to
match background music for visual contents. Wu et al. [39],
however, proposed content-based cross-modal matching of
music and images, where features are extracted first and
ranking canonical correlation analysis (CCA) was utilized to
model the local relationship between video and music for each
cluster. Suris et al. [40] further employed the visual features
and audio features provided by Youtube-8M [41] to constrain
the visual and audio embeddings of the same video as close
as possible and predicted the corresponding label of the video.
Wu et al. [42] constructed a music-image dataset with manual
annotation to explore the matching patterns between the two
modalities using CCA-based method. CBVMR [43] introduced
a content-based retrieval model that only used the matching
signal between music and videos without any metadata like
emotions. However, since there exists no publicly available
dataset, these methods are not directly comparable to each
other, which motivates us to establish the content-based micro-
video background music recommendation dataset, TT-150k,
in this paper. Moreover, manually annotating emotion tags to
match music and videos in the affective space is laborious
and time-consuming for large datasets, and therefore, we seek
for content-based methods without any additional annotation.
However, since the matching status between video-music
pairs is extracted from micro-videos which are User-generated
content (UGC), the professionalism of the matching might be
worse than crowdsourcing. Considering this, we propose the
cross-generation module to overcome the weak supervision of
the matching status.

B. Variational-based Recommendation
Variational auto-encoder (VAE) provides a probabilistic

manner for describing an observation in the latent space which
takes data as input x and discovers latent variable z with a
probability distribution to govern the generation of x. VAE
aims to find an approximation to the intractable posterior
p(z | x) of z from the distribution family qφ(z | x). Typically,
parameters of the variational posterior distribution are obtained
through an encoder network, where the likelihood conditioned
on the latent variable z is generated from a decoder net-
work. The objective of VAE is to maximize the marginal

log-likelihood log p(x), which is proved to be equivalent to
optimizing an Evidence Lower BOund (ELBO) [44]:

L
(
x(i); θ, φ

)
=

Ez∼qφ

[
log pθ

(
x(i) | z

)]
−DKL

(
qφ

(
z | x(i)

)
| p(z)

)
,

(1)

where x(i) is sampled from the observation population. θ and
φ are parameters to be trained of the decoder and encoder,
respectively.

Compared to auto-encoder (AE) [45], which would suffer
from performance degradation when facing noisy inputs, and
denoising auto-encoder (DAE) [46], which adds fixed noise to
the input during the training phase and cannot handle diverse
noise for different samples, VAE could capture semantic struc-
tures of high-dimensional data into latent variables with the
inferred latent embeddings corrupted with dynamic Gaussian
noise to improve the robustness. Owing to its advantages,
VAE has recently been extended for recommendations. For
example, MultiVAE [47] assumed a multinomial likelihood of
the click feedback of a user with a variational auto-encoder
to model user’s interactions among items. MacridVAE [48]
extended MultiVAE by constraining the user representations
to be disentangled in both the macro and the micro-level.
On the other hand, Li and She [49] utilized VAE to model
item contents where the item content VAE was coupled into
the probabilistic matrix factorization model. In this way, item
contents and collaborative information are fully considered
for better recommendations. Wang et al. [50] proposed a
side information-aided website recommendation system that
used the browsing history of a set of users and their side
information to predict the recommended websites. Both user-
website interaction information and side information were
treated as input, and a VAE model was adopted to generate
user’s interested websites from partial observations. Chen
and de Rijke [51] proposed to simultaneously recover user
ratings and side information of items by using a VAE, where
user ratings and side information were encoded and decoded
collectively through the same inference network and gener-
ation network. Due to the heterogeneity of user ratings and
side information, the final layer of the generation network
followed different distributions. Karamanolakis et al. [52]
exploited online item reviews to collaborative filtering methods
by replacing the user-agnostic standard Gaussian prior with
heterogenous, user-dependent priors which were estimated
empirically as functions of the user’s review text. Yi and Chen
[53] proposed a multimodal variational graph auto-encoder
method that learned a Gaussian variable for each node and
the modality-specific Gaussian node embeddings were fused
according to the product-of-experts principle such that the
semantic information in each modality was weighted based
on the impotence level to the recommendation. However,
the utilization of VAE for multimodal cross-modal retrieval
is comparatively less explored, which leads us to propose
CMVAE for micro-video background music recommendation
in this work.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 12, JULY 2021 4

0 50 100 150 200
Music Popularity

0

250

500

750

1000
# 

M
us

ic

25th
50th

75th
90th Percentile

Fig. 1: Popularity distribution of the candidate music clips in
our TT-150k dataset.

III. INTRODUCTION OF THE TT-150K DATASET

To bridge the gap that there exists no publicly available
matching dataset that associates videos with background mu-
sic, we establish TT-150k to consider the practical scenario
where a music clip could be associated to multiple videos
while the relevant datasets such as Youtube-8m [41] mainly
associate one music clip to one video only. TT-150k is
intended to be a benchmark for micro-video background
music recommendation. It is collected on the popular micro-
video sharing platform TikTok, where numerous videos are
uploaded every day with fantastic background music. The
central criterion for establishing this dataset is to faithfully
reflect the distribution of micro-videos and candidate music
clips in the real-world scenario to facilitate research regarding
the discovery of matching patterns between music and micro-
videos. Then, relevant background music can be automatically
recommended upon the upload of a micro-video.

A. Dataset Introduction

We first built a music candidate list based on approximately
3,000 music clips. A music clip was selected into the list if it
satisfied one of the two criteria: 1) it appeared on the TikTok
pop charts, or 2) it was used in a randomly collected popular
video (which ensures the quality of the background music).
Note that the background music clip of a popular micro-
video is not necessarily a popular music clip, and therefore the
popularity distribution of the music clips in the candidate list
can still faithfully reflect the real-world scenario. The music
clips with the title “original music” were eliminated because
these music clips are often made and uploaded by users that
are tailored for a certain video, which may not be able to
generalize well to other micro-videos. Besides, varied remixes
of the same music were indexed as different music clips in our
dataset. With the music candidate list established, we gathered
a list of videos that use a certain music clip in the above
music set as background music according to TikTok’s song
search function. We also collected the number of videos using
a certain music clip as background music (i.e., music usage
amount) at the same time.

To approximate the true distribution of music adoption, i.e.,
its popularity, we used the collected music usages to sample
videos with the principle to make the relative popularity of
these music clips as close as possible to the relative popularity

of the music clips in the real-world scenario. Specifically, we
used a Gamma distribution to fit the distribution of music
usage amount through Maximum Likelihood Estimation. The
specific popularity distribution of the candidate music clips
after sampling is shown in Figure 1. With the sampling strat-
egy, we can reduce the number of videos without losing the
original distribution of real-world data, which makes it suitable
to analyze the matching pattern of videos and background
music. After calculating the number of videos that needed to
be gathered based on the relative music popularity distribution,
we sampled the latest uploaded videos for different music
clips. At the same time, brief descriptions or several hashtags
attached to the video were also collected if they exist. In this
way, the micro-videos consist of bimodal representations of
visual and the corresponding textual contents.

B. Feature Engineering

For visual information of the micro-videos, we preprocess
the videos and extract video-level features using an effective
pre-trained ResNet model [54]. The structure of ResNet en-
hances the quality of image representations by refining the
raw information from the input images in a cascade manner
by residual modeling. Specifically, we first utilize FFmpeg3

to extract video frames at three frames per second. Then we
could use the pre-trained model such as ResNet [54] or I3D
[55] to extract the visual features. We adopt ResNet in this
work for its simplicity and follow the work [41] of temporal
global average pooling to fuse features extracted from different
frames to get final video-level features.

For textual information of the micro-videos, observing that
TikTok is an international micro-video sharing platform where
the languages the users use are diverse, we use the multi-
lingual Bert-M model [56] to extract the textual features.
Bert-M is pre-trained on a large corpus composed of 104
languages where multi-lingual aligned semantic structures
could be learned.

For music features, we extract the spectrograms from the
raw audio clips, and then utilize the Vggish network [57]
pre-trained on AudioSet [58] to extract the song-genre-related
features. Moreover, we exploit openSMILE [59] to extract
the pitch and emotion-related features. Specifically, we reduce
the dimension of openSMILE features to the same size as
Vggish features with principal component analysis (PCA) after
normalizing them to zero mean and unit variance.

C. Dataset Statistics

The statistics of the micro-video background music recom-
mendation dataset are presented in Table I. In summary, the
established TT-150k dataset contains extracted features from
3,003 music clips and 146,351 videos, where a music clip is
selected by as least 3 micro-videos and at most 219 micro-
videos. Figure 2 shows an exemplar subset of music clips and
micro-videos for the established TT-150k dataset. TT-150k is
established based on videos that use a certain music clip in
the candidate music set as the background music. In this way,

3https://www.ffmpeg.org/

https://www.ffmpeg.org/
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Fig. 2: An exemplar subset of videos and their matched
background music for the established TT-150k dataset.

for each video, the ground truth is the background music that
the uploader chose for the video.

TABLE I: Statistics of the established TT-150k dataset.

#Music #Video avg ± std #v/#m min/max #v/#m

3,003 146,351 49 ± 57 3 / 219

IV. METHODOLOGY

The overall framework of CMVAE is shown in Figure 3.
Specifically, CMVAE aims to align the latent embeddings of
music and videos via a cross-modal generative process to
model the matching of the music and videos. With the gen-
erative process defined, the intractable posterior distributions
of the latent variables are estimated by variational inference.
Furthermore, to effectively utilize the comprehensive multi-
modal video contents, CMVAE fuses the modality-specific
latent variables by a product-of-experts system, where the
information in each modality is weighted by its importance
for the matching purpose. The details of the proposed model
are expounded in the following sections. Notations used in this
article are summarized in Table II.

A. Problem Definition

Suppose we have a set of music M and a set of video
V , where each music m ∈ M is associated with a music
feature from its audio clip. Each video v ∈ V is associated
with a visual feature vv extracted from the image sequence
and a textual feature vt from its description. For each music
m ∈M and video v ∈ V , we define a mapping f : V ×M→
{0, 1} that depicts whether or not music m matches a video
v. The mapping f induces a set of triad {(v,m, y)}, where
y = f(v,m) is the matching indicator. Given a new video v,
our goal is to retrieve a list of music candidates C(m) ⊂ M
where each music m ∈ C(m) is a potential match for the
query video.

TABLE II: Notations used in our method.

Notation Description

m ∈M a music feature in music set M
v ∈ V a video feature in video set V
vv ,vt visual and textual features of a video
y indicator of the matching status
f mapping of triads {(m,v, y)}
d the dimension of latent variables
zm the music latent variable
zv the video latent variable
zvv , zvt visual and textual variables of a video
µm, σm mean and variance of the music latent variable
µv , σ2

v mean and variance of the video latent variable
µvv , σ

2
vv

mean and variance of the video visual variable
µvt , σ

2
vt

mean and variance of the video textual variable
p(zm |m) true posterior of the music latent variable
p(zv | v) true posterior of the video latent variable
q(zm |m) variational posterior of the music latent variable
q(zv | v) variational posterior of the video latent variable
p(m | zm) conditional likelihood of the music latent variable
p(v | zv) conditional likelihood of the video latent variable
p(zm) prior of the music latent variable
p(zv) prior of the video latent variable
f(·) the non-linear function

B. Cross-modal Variational Auto-encoder

Given a video-music pair (v,m), considering that their
original feature spaces are high-dimensional and misaligned,
CMVAE aims to first map v and m to a shared d-dimensional
Gaussian latent space Rd where their matching degree can be
properly judged. Such a latent space should have the property
that the distance of latent variables for a matched video-music
pair is closer than that of an unmatched pair. In CMVAE, this is
achieved by constraining the music latent embedding zm and
video latent embedding zv to be able to generate the video
feature v and music feature m for a matched pair, i.e., cross-
generation. Based on such criteria, the generation process can
be formulated as:

p(v |m) = Ezm∼p(zm|m) [p (v | zm)] (2)
p(m | v) = Ezv∼p(zv|v) [p (m | zv)] , (3)

where the process could be viewed as an auto-encoding
procedure with cross-generation. Take Eq. (2) for an example,
the music feature m is first encoded into the music latent
embedding zm, and then the video feature v is cross generated
based on zm. In this way, the alignment of two corresponding
embeddings of a matched video-music pair is achieved by
constraining their latent variables to generate each other.
Specifically, we first draw the video latent variable zv and
music latent variable zm in a latent low-dimensional space
from their posterior distributions p (zv | v) and p (zm |m).
The features of the video v and music m are then generated
from the music latent variable zm and item latent variable
zv through generation neural networks, e.g., MLPs as with
variational auto-encoder [60].

In addition to the cross-generation, we also define the gen-
eration of the matching status, i.e., f(m,v), by the matching
generative distribution p(y | m,v), where the probability
depicts the matching degree of the given video-music pair.
Since we measure the matching degree of m, v in the latent



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 12, JULY 2021 6

Pre-trained

Bert_M Network

Pre-trained

ResNet Network

Pre-trained

I3D Network

Title

Audio

Video

recon_m

Matching

Hey, Let us in! 

#holidaymusic 

#christmas2020

#maltese

KL Loss

Recon. loss

Recon. loss

recon_v

KL Loss

PoE 
Fusion

Pre-trained

Vggish Network

Multimodal Feature Extraction

Video to Music Generation

Music to  Video Generation

Music Clip

Micro-video

Music feature

Video feature

Textual feature
Modality-specific 

embeddings

Micro-video 

embeddings

Matching. loss

Music embedding

m

m

vv

tv

vv

vv

v

v

vz

mz

mz vz

Pre-trained

Bert_M Network

Pre-trained

ResNet Network

Text

Audio

Video

recon_m

Matching

Hey, Let us in! 

#holidaymusic 

#christmas2020

#maltese

KL loss

Recon. loss

Recon. loss

recon_vv 

KL loss

PoE 
Fusion

Pre-trained

Vggish Network

Multimodal Feature Extraction

Video to Music Generation

Music to  Video Generation

Music Clip

Micro-video

Music feature

Visual feature

Textual feature
Modality-specific 

embeddings

Micro-video 

embedding

Matching loss

Music embedding

m

m

vv

tv

vv

vv

v

v

vz

mz

mz vz

Avg

vt

Fig. 3: The framework of our proposed CMVAE for background music recommendation of micro-videos. Specifically, music
feature m is encoded into the latent variable zm which follows N (µm, σm) by an MLP. Video features (vv and vt) are fed into
modality-specific encoders with the latent variables from visual and textual modalities fused by the product-of-experts (PoE)
principle to compute zv . The final loss function consists of reconstruction losses, KL divergence losses, and the matching loss.
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Fig. 4: The probabilistic graphical model (PGM) of the
proposed CMVAE. Hierarchically, we first model modality-
level latent embeddings, and then the micro-video-level latent
embedding zv is obtained for cross-generation.

space via zm, zv , p(y |m,v) can be specified as the expected
conditional distribution:

p(y |m,v) = Ezm∼p(zm|m),zv∼p(zv|v) [p (y | zm, zv)] . (4)

In this paper, we utilize dot product of the latent embeddings
of video and music to calculate the matching degree of a video-
music pair.

Considering that each video v consists of multimodal fea-
tures (i.e., visual and textual features vv and vt), both of
which are important for the matching of background music,
the generative process is extended to multimodal scenarios as
shown in Figure 4, where the cross-generation is specified with
finer granularity as follows:

p(vv,vt |m) = Ezm∼p(zm|m) [p (vv | zm) p (vt | zm)] (5)
p(m | vv,vt) = Ezv∼p(zv|vv,vt) [p (m | zv)] , (6)

where the music latent embedding zm is assumed to generate
both visual and textual features of the video, and the video
latent embedding zv generates the matched music feature.

To infer the joint video latent embedding zv based on
the complementary information from both visual and textual
modalities, inspired by [61], we assume the observations of
the two modalities, vv,vt, are conditional independent given
zv , where the joint posterior can be factorized into modality-
specific posteriors as follows:

p(zv | vv,vt) ∝ p(zvv | vv)p(zvt | vt), (7)

where zv is the joint latent embedding inferred from mul-
timodal video features. zvv and zvt are latent embeddings
inferred from the visual modality and the textual modality,
respectively. Eq. (7) shows that the multimodal fusion of the
bimodal information of micro-videos is in essence a product-
of-experts (PoE) system. For Gaussian variables, the product is
also Gaussian where the new mean and new variance become:

µv =
µvv �

(
1/σ2

vv

)
+ µvt �

(
1/σ2

vt

)
1/σ2

vv + 1/σ2
vt

(8)

σv = sqrt

(
1

1/σ2
vv + 1/σ2

vt

)
, (9)

where µvv and µvt are mean vectors of the visual and
textual latent variables, σvv and σvt are variance vectors.
Since theoretically, the mean of a Gaussian variable depicts
its semantic structure and variance denotes uncertainty, the
mean vector of the micro-video embedding is a weighted sum
of the semantic information in each modality according to
its informative level for the matching purpose. Therefore, the
heterogeneous information from the visual and textual modal-
ities is comprehensively fused where irrelevant information is
down-weighted for a better generalization. Another by-product



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 12, JULY 2021 7

of such factorization is that, if the textual modality is missing
in the training or test phase, which is a commonly encountered
problem when the users are reluctant to add descriptions to
their videos, we can temporarily drop the textual network in
CMVAE and proceed the training or test process with the
visual network.

After defining the inference process for the joint video
variational posterior zv , our discussion shifts to the estimation
of zvv , zvt and zm with the collected matching video-music
pairs. Since the generative processes of the modalities and the
matching status are parameterized as deep neural networks,
the posterior distributions for zvv , zvt and zm are intractable.
Therefore, we resort to variational inference, where we assume
zvv , zvt and zm come from tractable families of distributions
(which are also parameterized by deep neural networks) and
in those families find the distributions closest to the true
posteriors measured by the KL-divergence [62]. Specifically,
we approximate the true intractable posteriors with simpler
variational posteriors, i.e., diagonal Gaussian distributions.
Take the variational posterior of the music latent variable zm
for an example:

q (zm |m) = N
(
µm,diag

{
σ2
m

})
, (10)

where the variational posterior is parameterized by µm and
σ2
m. The parameters are outputs of the music inference neural

network, which is also an MLP. The inference of variational
posteriors of video visual and textual latent variables zvv and
zvt is the same as the music latent variable with visual and
textual inference networks.

Previous work proves that the minimization of the KL-
divergence of variational posteriors and true posteriors is
equivalent to the maximization of the Evidence Lower BOund
(ELBO) [44], which is composed of two parts: the cross
reconstruction term Lcross recon and the KL-divergence term
LKL. The reconstruction part is as follows:

Lcross recon = Ezm∼q(zm|m)[log p(vv | zm)]

+ Ezm∼q(zm|m)[log p(vt | zm)]

+ Ezv∼q(zv|v)[log p(m | zv)],
(11)

which aims to reconstruct the input features with latent vari-
ables. The likelihood we consider in this paper is Gaussian,
and therefore, maximizing the log-likelihoods for video v
and music m conditioned on the music latent variable zm
and video latent variable zv are equivalent to maximizing the
negative mean square error (MSE) losses as:

Lcross recon =−
∑

i
(vvi − fvv (zm)i)

2

−
∑

i
(vti − fvt (zm)i)

2

−
∑

i
(mi − fm (zv)i)

2
,

(12)

where fvv , fvt , and fm are non-linear functions implemented
by video visual, video textual, and music generation networks,
respectively. Through Eq. (12), the reconstruction term could
be implemented by MSE losses between the observations and
reconstructed inputs.

The LKL term penalizes the latent variables over deviating
from the prior, which prevents encoding excessive information

from the inputs and serves as a regularizer. It can be formulated
as:

LKL = Ezv∼q(zv|v) [DKL (p (zv | v) | p (zv))]

+ Ezm∼q(zm|m) [DKL (p (zm |m) | p (zm))] ,
(13)

where p (zm) and p (zv) are the priors for the music and
video latent variables, respectively, both of which are specified
as the standard Normal distribution N (0, Id). For Gaussian
variables, the KL-divergence has an analytical solution. In
addition, inspired by [15, 63], the video-music matching loss
Lmatching that maximizes the p(y | m,v) for matched pairs is
specified as a bi-directional ranking loss as follows:

Lmatching =
∑

m+,m−,v

[
margin+ zm+ � z>v − zm− � z>v

]
+

+ α ·
∑

m,v+,v−

[
margin+ zv+ � z>m − zv− � z>m

]
+
,

(14)
where [t]+ = max(0, t). The first term of the right-hand
side of Eq. (14) is the video-to-music matching loss, where
for a fixed video v, m+ ,m− denote the matched music
and unmatched music, respectively. We constraint the dis-
tance between zv and zm+ to be smaller than the distance
between zv and zm− , with a margin. The second term is
the music-to-video matching loss, where the symbols are
defined accordingly. Through the bi-directional ranking loss,
the distance of latent variables for a matched video-music pair
is closer than that of unmatched pairs. Moreover, the relevant
music clips are pairwise close in semantics since they are all
relevant to the same video query, and the same to videos.
Thus, the latent structures of the music and videos are well
explored. During training, the negative samples are selected
in the mini-batch scale, where we select unmatched samples
with top-k inner-product similarities in the mini-batch as the
negative samples for each term. In this way, the most hard-to-
train negative samples are selected and the constraint that the
distances between matched video-music pairs are smaller than
unmatched ones could be maximized, as well as the training
efficiency is highly improved.

Finally, combining the ELBO and matching loss, the joint
training objective can be specified as:

L(zm,zv) = β · Lcross recon − LKL + γ · Lmatching, (15)

where β and γ control the weight of the cross reconstruction
loss and the matching loss, respectively. Note that to increase
the model’s robustness to modality missing in the test phase,
we utilize a sub-sampled training strategy inspired by [61],
where the latent embedding of the visual modality zvv or the
textual modality zvt of a micro-video is also constrained to
complete the matching task by adding the single-modal ob-
jective L(zm,zvv ) and L(zm,zvt )

to the joint training objective
L(zm,zv) as:

L = L(zm,zv) + L(zm,zvv ) + L(zm,zvt )
. (16)

Specifically, L(zm,zvv ) and L(zm,zvt )
replace the term of joint

video latent variable zv with visual and textual latent variables
zvv and zvt in the training objective. By doing so, our model
could deal with modality missing in the test phase by using
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Algorithm 1: CMVAE-SGD: Training CMVAE with
SGD.

Input: A video-music matching dataset
D = {V,M, f};

the video feature set V contains the visual
modality vv and the textual modality vt for each
video v;

the music feature set M contains the audio
modality m;

the mapping f = {(v,m, y)} with y ∈ {0, 1};
Θ indicates the model parameters.

Randomly initialize Θ.
while not converged do

Randomly sample a batch D̂ from D.
forall mod ∈ {m, vv, vt, } do

Compute µmod, σmod via variational encoders.
end
Compute µv, σv of p(zv | vv,vt) from (µvv , σvv )
and (µvt , σvt) with the PoE module via Eq. (8)
and Eq. (9).

Add the KL-divergence via Eq. (13) to the loss.
Sample ε ∼ N (0, I) and compute zm and zv via
the reparametrization trick.

Add the cross reconstruction loss and matching
loss as Eq. (12) and Eq. (14) to L(zm,zv).

Add the loss of modality-specific L(zm,zvv ) and
L(zm,zvt )

to get final L.
Compute the gradient of loss ∇ΘL.
Update Θ by taking stochastic gradient steps.

end
return Θ
Output: CMVAE model trained on dataset D.

the remaining posteriors to approximate the joint posteriors.
During training, we use the reparameterization trick [44] to
maximize the above objective. Mathematically, we sample
ε ∼ N (0, Id), and reparametrize the latent embedding ẑk =
µk + σk � ε with k ∈ {m, v, vv, vt}. Thus, the stochasticity
in the sampling process is isolated and the whole model
can get the gradient when performing the back-propagation.
This reparameterization operation can also be interpreted as
a corruption where the latent mean vectors are injected with
Gaussian noise and the latent variance vectors influence the
noise level. In this way, more robust presentations could be
obtained in the training phase. The detailed training steps of
the proposed CMVAE are summarized in Algorithm 1 for
reference.

V. EXPERIMENTS

In this section, we conduct extensive experiments based
on the established TT-150k dataset to evaluate our proposed
model CMVAE. Specifically, we aim to answer the following
research questions:
• How does CMVAE perform compared with the baseline

methods for the micro-video background music recommen-
dation? Among them, content-based and variational-based

cross-modal matching methods are included for comprehen-
sive comparisons.

• Since the cross-generation strategy and the PoE fusion
module are the main designs in our proposed CMVAE, we
investigate how do the two components contribute to the
performance as ablation studies.

• Textual modality missing is a commonly encountered prob-
lem when users are reluctant to add descriptions to their
videos. Therefore, we conduct experiments to verify the
adaptation of CMVAE to the realistic background music
recommendation scene by checking its performance when
textual modality is missing in the test phase.
Moreover, a visualization of the recommendation results by

CMVAE is included to qualitatively assess the performance.

A. Methods for Comparisons

To demonstrate the effectiveness of the proposed CMVAE,
we draw comparisons with several state-of-the-art cross-modal
matching baselines. For background music recommendation in
this article, each video has exactly one background music as
the ground truth, so the co-occurrence information necessary
for collaborative filtering methods does not exist. Therefore,
collaborative-based methods (e.g. NCF [68]) are not applicable
to our paper. For methods where the original task is to match
two sources with a single modality, we concatenate the visual
and textual features as the “single modality” representations
of the micro-videos. The baselines are listed as follows:
• Random: For each video, K music clips are randomly

selected as the candidates for recommendation.
• PopularRank: The number of adoption of a music clip, i.e.,

its popularity, is utilized to select and recommend top-K
popular music clips for every video.

• CCA [64]: CCA (Canonical correlation analysis) is a widely
adopted multivariate correlation analysis method. We ex-
tract two canonical variates from music features and video
features via CCA, and then calculate cosine similarity for
matching.

• CEVAR [40]: CEVAR aims to make the visual and audio
embeddings which come from the same video close using
a cosine similarity loss with the supervision loss of the
corresponding class of the video optimized together. To
make it amenable to our problem, we eliminate the label
prediction loss for comparison.

• CMVBR [43]: CMVBR is a content-based method that
introduces a soft intra-modal structure loss to better align
intra-modal features for matching two multimodal sources.

• DSCMR [19]: DSCMR is a supervised model with semantic
category labels of the samples attached, which minimizes
the recognition loss in the label space and the common
representation space. A weight-sharing strategy is used to
reduce the cross-modal difference of multimedia data. We
eliminate the recognition loss of the label space to make it
applicable for our dataset.

• UWML [8]: UWML is a metric learning-based method with
a triplet loss utilized to encourage the closeness of positive
pairs than that of negative pairs. It introduces a weighting
framework for the positive and negative pairs where a larger
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TABLE III: Comparison between the proposed CMVAE and various baselines under weak and strong generalization scenarios.

Existing music (Weak generalization) New music (Strong generalization)
Recall@10 Recall@15 Recall@20 Recall@25 Recall@10 Recall@15 Recall@20 Recall@25

CMVAE 0.2606 0.3684 0.4489 0.5137 0.1610 0.2274 0.2881 0.3479

Random 0.0959 0.1398 0.1788 0.2191 0.0978 0.1443 0.1866 0.2268
PopularRank 0.0689 0.1030 0.1390 0.1766 - - - -

CCA [64] 0.0465 0.0640 0.0934 0.1278 0.0412 0.0670 0.0941 0.1273
CEVAR [40] 0.1262 0.1749 0.2302 0.2794 0.1223 0.1823 0.2416 0.3019
CMVBR [43] 0.0927 0.1431 0.1929 0.2425 0.0966 0.1441 0.1940 0.2395
DSCMR [19] 0.1062 0.1553 0.2077 0.2651 0.1133 0.1775 0.2241 0.2793
UWML [8] 0.1053 0.1554 0.2103 0.2573 0.0933 0.1299 0.1729 0.2255

Dual-VAE [65] 0.1607 0.2272 0.2897 0.3514 0.1450 0.2143 0.2705 0.3294
DA-VAE [66] 0.1645 0.2390 0.3063 0.3698 0.1417 0.2104 0.2740 0.3280
Cross-VAE [67] 0.2584 0.3590 0.4360 0.5077 0.1391 0.2008 0.2706 0.3233

weight calculated by polynomial functions based on the
similarity scores is assigned to a harder-to-match pair.

We also compare our proposed cross-modal variational auto-
encoder with the state-of-the-art variational-based generative
models:

• Dual-VAE [65]: Dual-VAE aims to exploit deconvolution on
word sequence in the decoder part in a text-based retrieval
model. It is trained jointly on question-to-question and
answer-to-answer reconstructions.

• DA-VAE [66]: This dual-aligned variational auto-encoder
focuses on the situation where samples in some modalities
are missing for image-text retrieval. DA-VAE utilizes an
entropy-maximization constraint to further align two modal-
ities along with the self-reconstruction loss.

• Cross-VAE [67]: This crossing variational auto-encoder
utilizes a cross-reconstruction strategy where answers are
reconstructed from question embeddings and questions are
reconstructed from answer embeddings for text-based re-
trieval.

For the above three methods, we only use the correspond-
ing cross-modal generation module to replace the PoE-based
multimodal cross-generation module in the proposed CMVAE
for a fair comparison, where we concatenate the multimodal
features of the micro-video to be the query modality. Dual-
VAE and DA-VAE both optimize the self-reconstruction loss
and the matching loss, whereas DA-VAE further utilizes an
entropy-maximization constraint to better align two modalities.
For Cross-VAE, a cross-reconstruction loss is utilized along
with the matching loss to form the training objective.

B. Evaluation Metric

We use Recall@K [8] to evaluate the model performance,
which is a standard metric for cross-modal retrieval that
calculates the average hit ratio of the matched music clips over
all the music clips that are ranked with top K match scores.
Since in our dataset, the popularity of different music clips
varies considerably, as shown in Figure 1, weighting the match
equally for different music clips could lead to systematic bias
that favors the popular music clips. Therefore, following [69],
music clips for evaluation are weighted by the inverse of their

popularity levels (i.e., estimated propensity scores), and thus
the Recall@K we adopt in this paper is formalized as follows:

Recall@K =
∑
v∈Vte

λv ·#Hits v@K (17)

λv =
1/P (v → m)∑
i∈Vte 1/P (i→ m)

, (18)

where Vte represents the set of test videos and λv denotes
the weight of the video v calculated by Eq. (18). Specifically,
1/P (v → m) represents the reciprocal of the popularity of the
music clip that the target video v used as background music.
With Eq. (17), the Recall@K used in this paper calculates
the popularity-debiased hit-ratio of relevant music clips ranked
among the top-K recommendation list for all videos in the test
set.

C. Experimental Setup

We use two dataset split strategies to create train, validation,
and test sets. The first strategy is the “weak generation”, where
for each background music clip, the interacted videos are split
by a ratio of 8:1:1 to construct train, validation, and test sets.
After splitting the dataset, we have 16,036 video-music pairs
for the test set. In this case, although the videos in the test set
are new, the candidate music clips in the test set have been
adopted by at least one micro-video in the training set.

The second strategy we consider is “strong generalization”
where the music clips in the test set are not present in the
training set. To keep the popularity distribution of music
candidates in the test set identical to that of the training set, a
stratified sampling strategy is adopted to split the music clips.
Specifically, in each of the popularity stratum, we randomly
sample the music clips with an 8:1:1 ratio for train, validation,
and test sets with all their associated videos. After splitting
the dataset, 14,656 video-music pairs are sampled for the test
set. The “strong generalization” is relatively more difficult
than ”weak generalization” where the music clips do not
appear on the training set and are not trained for evaluations.
We consider it to be more realistic and robust as well. By
default, we evaluate the models under both the weak and
strong generalization scenarios. For weak generalization, all
the music clips in the test set have been adopted by at least one
micro-video in the training set, while for strong generalization,
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music clips in the test set are not present in the training
stage. We report evaluation scores averaged over three different
randomly sampled train/validation/test splits.

Our CMVAE model is implemented in Pytorch. The embed-
ding size is fixed to 512 and the batch size is set to 1,024 for all
models, empirically. The overall architecture for the music and
video networks would be [F → 64→ 64→ 64→ F ] with F
to be the dimension of different features. We use ReLU as the
non-linear activation. For all the models, the hyperparameters
are selected based on evaluation metrics on the validation set.
The learning rate is tuned amongst {0.0001, 0.005, 0.001,
0.05, 0.01}. By searching, we set the weight of the L2 norm
penalty as 0.001, the weight of the music-to-video matching
loss α as 3, and choose the ten most confusing negative
samples in the bi-directional ranking loss during training. For
strong and weak generalizations, we set the weight of the
reconstruction loss β to 1e5 and the learning rate to 0.05 and
0.0001, respectively.

D. Performance Comparison with Baselines
The comparisons between the proposed CMVAE and the

state-of-the-art baselines are summarized in Table III. For
strong generalization, since the music clips in the test set
are not present at the training stage, we assume that the
popularity of the test music clips is unknown or cannot be
accurately estimated due to the lack of data, and thus exclude
the PopularRank method from comparisons.

Among the methods that we draw comparisons with, CCA
finds a linear projection that maximizes the correlation be-
tween projected vectors of two different modalities. The in-
ferior performance of CCA demonstrates that the matching
pattern between video and music could not be modeled by a
simple linear relation. For the deep learning-based methods,
CEVAR and CMVBR are originally designed for video-music
matching, whereas DSCMR and UWML are designed for
matching between visual (i.e., image or video) and textual
modalities. Therefore, the modules that are specifically de-
signed for image-text matching tasks such as stacked cross
attention network [70], which aligns image regions and text
words, are not applicable to our task and are therefore
removed. We find that directly extending these image-text
matching methods to the video-music setting where one of
the sources is composed of multiple modalities could not
achieve satisfying results. The reason may be that the patterns
that are responsible for the matching between videos and
background music are more elusive than that of image-text
matching, and therefore the naive matching loss could not
force the model to capture the complex matching patterns for
the alignment of the music and video latent spaces. CEVAR
performs the best among the selected deep learning-based
baselines. Compared to CMVBR, CEVAR utilizes a cosine
matching loss to constrain the closeness of the embeddings of
the matched video-music pairs instead of the inner-product
loss, which eliminates the systematic difference of image
embeddings due to varied lightness or saturation, etc.

The generative-based matching approaches listed at the
bottom of Table III improve significantly over the matching-
loss-based baselines. Among them, Dual-VAE and DA-VAE

TABLE IV: The results of Recalls on different generation
strategies.

(a) Existing music

Recall@10 Recall@15 Recall@20 Recall@25

CMVAEw/o 0.1305 0.1979 0.2583 0.3173
CMVAEDual 0.1637 0.2302 0.2937 0.3544
CMVAECross 0.2606 0.3684 0.4489 0.5137

(b) New music

Recall@10 Recall@15 Recall@20 Recall@25

CMVAEw/o 0.1163 0.1767 0.2287 0.2935
CMVAEDual 0.1470 0.2183 0.2730 0.3314
CMVAECross 0.1610 0.2274 0.2881 0.3479

employ self-reconstruction, which leads to a more structured
shared latent space for the micro-video and music embeddings.
DA-VAE further imposes an entropy-maximization constraint
on the joint representations motivated by Jaynes’s theory [71]
which improves the performance over Dual-VAE. By replacing
the self-reconstruction module with a cross-reconstruction
module compared to Dual-VAE, Cross-VAE performs sig-
nificantly better than DA-VAE for weak generalization and
performs on par with DA-VAE for strong generalization.

CMVAE performs significantly better compared to all other
methods. We attribute the improvement of CMVAE to the
following two designs: 1) CMVAE takes advantage of both
generative-based and matching-loss-based models, which is
optimized against the composite loss consisting of the cross
reconstruction loss, the bi-directional ranking loss, and the
VAE regularization loss. Therefore, the latent embeddings
are constrained to encode more matching-relevant information
from the videos and music while regularizing them from
overfitting. 2) By aggregating information in the textual and
visual modalities with the PoE module, the information in each
modality is fused according to its importance to the matching
purpose. Consequently, the irrelevant and redundant informa-
tion contained in the micro-video embeddings is reduced such
that a more robust generalization can be achieved for the
model.

E. Ablation Study of CMVAE

In this section, we investigate the effectiveness of different
components in CMVAE. In detail, as the cross-generation
strategy plays a vital role in CMVAE, we compare it with
other generation strategies. Moreover, we explore the effec-
tiveness of PoE fusion by comparing it with other variational
multimodal fusion methods.

1) The effectiveness of cross-generation strategy: To ex-
plore the effectiveness of the cross-generation strategy which
is a core component of our method, we compare different
generation strategies with cross-generation. The method with
only matching loss and without the generation module [72]
and the method with the dual-generation (self-reconstruction
strategy with VAE is utilized) [65] are selected for compar-
isons. We can see significant performance improvements with
results shown in Table IV. Superior results verify that the
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TABLE V: The results of Recalls on different multimodal
variational models for videos.

(a) Existing music

Recall@10 Recall@15 Recall@20 Recall@25

CMVAEJMVAE 0.1990 0.2929 0.3673 0.4453
CMVAEMoE 0.2144 0.3058 0.3856 0.4498
CMVAEPoE 0.2606 0.3684 0.4489 0.5137

(b) New music

Recall@10 Recall@15 Recall@20 Recall@25

CMVAEJMVAE 0.1408 0.2008 0.2633 0.3325
CMVAEMoE 0.1238 0.1879 0.2614 0.3249
CMVAEPoE 0.1610 0.2274 0.2881 0.3479

cross-generation strategy can force the latent embeddings of
videos and background music clips to align with each other
where similarities could be calculated to recommend music
clips to videos. However, the dual-generation strategy can only
enhance the modeling of latent embeddings by constraining
the video latent embeddings to generate video features and
the music latent embeddings to generate music features. While
the alignment of video and music embeddings is not guaran-
teed. Inferior results yield on the method without using any
generation strategy where the semantic-rich video latent space
and the monotonous music latent space are naturally hard to
align for matching videos and music. Moreover, the weak
association between videos and background music makes it
hard to learn the matching patterns with the matching loss
and perform effective recommendations.

2) The effectiveness of PoE fusion: In this section, we
explore the effectiveness of PoE by comparing it with other
multimodal variational fusion methods: the mixture-of-experts
(MoE) [73] which assumes the joint variational posterior fol-
lows a Gaussian mixture distribution, and the joint variational
auto-encoder (JMVAE) [74] which concatenates encoded fea-
tures of multiple modalities to learn a joint variational pos-
terior. Table V shows that CMVAE with the PoE module
performs significantly better than the other two methods for
both the strong and weak generalizations. The superior results
demonstrate that the video latent variable, where the mean
is a sum of mean vectors from visual and textual modalities
weighted by the reciprocal of corresponding variance, con-
tains less irreverent information and therefore improves the
model generalization. In contrast, MoE treats each modality
as equally important and JMVAE simply concatenates the
available modalities as the micro-video representations, which
makes the utilization of multimodal information less effective
than the PoE module used in CMVAE.

F. Robustness to Modality Missing

In the real-world scenario, it is inevitable to encounter
modality missing when analyzing micro-video contents. For
example, some casual uploaders may be reluctant to write
a title or hashtags when posting a video. Therefore, it is
crucial for our multimodal model to be able to deal with the
modality missing problem in the test phase without training

TABLE VI: The results of Recalls on modality missing
problem in the test phase. (V: Visual, T: Textual)

(a) Existing music

Recall@10 Recall@15 Recall@20 Recall@25

V 0.2479 0.3472 0.4281 0.4977
V + T 0.2606 0.3684 0.4489 0.5137

(b) New music

Recall@10 Recall@15 Recall@20 Recall@25

V 0.1573 0.2275 0.2849 0.3459
V + T 0.1610 0.2274 0.2881 0.3479

multiple networks corresponding to each subset of modality
combinations. With the PoE module to fuse the multimodal
information, our model can easily address the modality miss-
ing problem by using the remaining visual embedding as
a surrogate to the joint video embedding. To explore the
performance of CMVAE when modality missing occurs at the
test phase, we eliminate the textual modality of micro-videos
in the test sets and report the performance. Results listed in
Table VI show that the performance decrease of CMVAE due
to the missing of textual modality is minor. Since CMVAE is
trained on the sub-sampled training paradigm [61] where the
latent embeddings of a single modality are forced to do the
matching task, such results demonstrate the robustness of the
textual modality missing problem.

G. Qualitative Assessment

We conduct experiments to visualize some examples of
query videos for the test set and the retrieved music clips
ranked by their matching levels as illustrated in Figure 5
to better check the effectiveness of the recommendations of
our method. Specifically, the pictures in blue on the left are
the representative frames of the micro-videos with the textual
information attached. The pictures on the right are the cover
images of the music clips which are ranked by their matching
level to the micro-video judged by CMVAE with the ground-
truth music clips marked in red.

From the figure, we can see that our CMVAE can rec-
ommend suitable background music clips by aligning video
and music latent embeddings via cross-generation using multi-
modal information. Moreover, the expression and atmosphere
the video convey contained in the visual and textual in-
formation are matched to the atmosphere expressed in the
background music recommended by CMVAE. Take the first
two given videos in the figure as examples, the uppermost
video expresses the atmosphere of magic and the music ranked
top few basically is in ethereal tunes. The video in the second
line shows a painting procedure that matches more lovely
and light music by our model. At the same time, we have
visualized two bad cases which our model failed to recom-
mend. From the last two lines of examples, we could see that
when users do not consider the matching degree of the music
with the video content but choose the most popular music
while selecting the background music, our model may fail
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Fig. 5: Qualitative assessment of CMVAE for micro-video background music recommendation by visualizing some examples
of query videos for the test set and the retrieved music clips ranked by their matching levels. The pictures in blue on the left
are the representative frames of the micro-videos. The pictures on the right are the cover images of the music clips which are
ranked by their matching level to the micro-video judged by CMVAE with the ground-truth music clips marked in red.

to recommend the ground truth. Since our proposed CMVAE
does not model users’ preference bias for music popularity, it
is difficult to recommend the popular-but-unmatched ground
truth. However, from another aspect, this also inhibits the
Matthew effect of music popularity on recommendation, which
prevents popular music from being overly recommended while
the truly matched music is ignored. We refer readers to some
existing work on popularity debias [75–77].

VI. CONCLUSIONS
In this paper, we introduce CMVAE, a hierarchical Bayesian

cross-modal generative model for content-based micro-video

background music recommendation. To solve the problem of
lacking a publicly available dataset, we establish a large-
scale database, TT-150k, which contains extracted features
from more than 3,000 candidate music clips and about 150k
micro-videos with the popularity distribution reflecting the
real-world scenario. Experimental results demonstrate that by
modeling the matching of relevant music to micro-videos as a
multimodal cross-generation problem with PoE as the fusion
strategy, CMVAE can significantly improve the background
music recommendation quality compared to state-of-the-art
methods, and it is robust to textual modality missing problem



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 12, JULY 2021 13

in the test phase.
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[28] M. Vystrčilová and L. Peška, “Lyrics or audio for music

recommendation?” in Proceedings of the International
Conference on Web Intelligence, Mining and Semantics,
2020, pp. 190–194.

[29] Z. Cheng, J. Shen, L. Zhu, M. Kankanhalli, and L. Nie,
“Exploiting music play sequence for music recommen-
dation,” in Proceedings of the International Joint Con-
ference on Artificial Intelligence, 2017, pp. 3654–3660.

[30] Z. Cheng and J. Shen, “On effective location-aware mu-
sic recommendation,” ACM Transactions on Information
Systems, vol. 34, no. 2, pp. 1–32, 2016.

[31] J. Chao, H. Wang, W. Zhou, W. Zhang, and Y. Yu,
“Tunesensor: A semantic-driven music recommendation
service for digital photo albums,” in Proceedings of the
International Semantic Web Conference, 2011.

[32] R. E. Thayer, The biopsychology of mood and arousal.
Oxford University Press, 1990.

[33] R. R. Shah, Y. Yu, and R. Zimmermann, “ADVISOR:
Personalized video soundtrack recommendation by late
fusion with heuristic rankings,” in Proceedings of the
ACM International Conference on Multimedia, 2014, pp.
607–616.

[34] S. Sasaki, T. Hirai, H. Ohya, and S. Morishima, “Affec-
tive music recommendation system based on the mood
of input video,” in MultiMedia Modeling International
Conference, ser. Lecture Notes in Computer Science, vol.
8936, 2015, pp. 299–302.

[35] J. Posner, J. A. Russell, and B. S. Peterson, “The circum-
plex model of affect: an integrative approach to affective
neuroscience, cognitive development, and psychopathol-
ogy,” Development and psychopathologys, vol. 17, no. 3,
pp. 715–734.

[36] K.-H. Shin and I.-K. Lee, “Music synchronization with
video using emotion similarity,” in IEEE International
Conference on Big Data and Smart Computing, 2017,
pp. 47–50.

[37] L. Shang, Z. Daniel Yue, K. Siamul Karim, J. Shen,
and D. Wang, “CaMR: Towards connotation-aware mu-
sic retrieval on social media with visual inputs,” in
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, 2020, pp. 425–
429.

[38] Y.-T. Lin, T.-H. Tsai, M.-C. Hu, W.-H. Cheng, and J.-L.
Wu, “Semantic based background music recommenda-
tion for home videos,” in International Conference on
Multimedia Modeling, 2014, pp. 283–290.

[39] X. Wu, Y. Qiao, X. Wang, and X. Tang, “Cross matching
of music and image,” in Proceedings of the ACM Inter-
national Conference on Multimedia, 2012, pp. 837–840.

[40] D. Surı́s, A. Duarte, A. Salvador, J. Torres, and X. Giró-
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