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Abstract—Recent advances in unsupervised domain adaptation
(UDA) techniques have witnessed great success in cross-domain
computer vision tasks, enhancing the generalization ability of
data-driven deep learning architectures by bridging the domain
distribution gaps. For the UDA-based cross-domain object detec-
tion methods, the majority of them alleviate the domain bias by
inducing the domain-invariant feature generation via adversarial
learning strategy. However, their domain discriminators have
limited classification ability due to the unstable adversarial train-
ing process. Therefore, the extracted features induced by them
cannot be perfectly domain-invariant and still contain domain-
private factors, bringing obstacles to further alleviate the cross-
domain discrepancy. To tackle this issue, we design a Domain
Disentanglement Faster-RCNN (DDF) to eliminate the source-
specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the
global and local stages, with a Global Triplet Disentanglement
(GTD) module and an Instance Similarity Disentanglement (ISD)
module, respectively. By outperforming state-of-the-art methods
on four benchmark UDA object detection tasks, our DDF method
is demonstrated to be effective with wide applicability.

Index Terms—domain adaption, object detection, feature dis-
entanglement, automatic drive

I. INTRODUCTION

OBJECT detection, which aims to assign a bounding box
and category prediction for each foreground instance,

is essential for modern computer vision. Taking advantages
from the deep learning techniques, previous object detection
methods based on convolutional neural networks (CNN) have
achieved appealing performance on various benchmarks [1]–
[5]. However, these fully-supervised models have been crit-
icized for the lack of generalization ability and suffer from
severe performance drop when validated on other unseen
datasets, since they tend to bias towards the data distribution
of the training domain [6], [7]. On the other hand, collecting
sufficient annotations for each new domain is impractical
in real applications, due to time-consuming and expensive
annotation procedure.

To address this dilemma, unsupervised domain adaptation
(UDA) methods have been proposed to transfer the domain-
invariant information from the labeled source domain to an
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Fig. 1. The visualization results on the image-level features. ‘No DA’ is
the Faster R-CNN without adaptation, and ‘Baseline’ is the Faster R-CNN
with basic adversarial domain discriminator. For the No DA and Baseline,
the features are collected and visualized from the backbone network. For
our method, we simultaneously visualize the global-level domain-shared and
domain-private features. All the features and labels are overlapped on the
original images. (Best viewed in color and zoom in)

unlabeled target domain [8]–[10]. For the UDA object detec-
tion methods, the majority of them incorporate the adversarial
domain discriminators with the object detection architectures
(e.g Faster-RCNN), to alleviate the cross-domain discrepancy
by inducing the domain-invariant features generation [11]–
[14].

Despite the state-of-the-art performance of the adversarial
learning-based UDA object detection methods, they overlook
the entanglement between the domain-shared and domain-
private features in the latent manifold space [15]–[17]. Due to
the unstable learning process, the decision boundary for the ad-
versarial domain classifiers in these methods is inaccurate [18].
As such, the extracted features in the typical adversarial UDA
methods cannot be perfectly domain-invariant and inevitably
contain domain-private factors. Optimizing the UDA models
with these entangled features induces the model bias towards
the source domain, and further degrades the performance on
the target domain. As indicated in Figure 1, the Baseline
method with the adversarial domain discriminator tends to
focus on the source-specific information in the background,
which leads to suboptimal adaptation performance.

Previously, several methods have been proposed to solve
the feature entanglement issue in UDA classification [15]–
[17], [19], [20]. They are established based on auto-encoder
architectures, incorporated with latent code independence in-
duction mechanism, and classifier entropy regularization to
decompose the domain-private factors from the features for
classifier learning. However, directly extending the feature
disentanglement-based UDA classification methods to cross-

ar
X

iv
:2

20
1.

01
92

9v
1 

 [
cs

.C
V

] 
 6

 J
an

 2
02

2



2

domain object detection suffers from challenges. First, [15]–
[17] decompose the shared and private features in each do-
main by inducing their distributions to be independent, which
always requires the batch size of the features to be suffi-
ciently large to describe the characteristics of the distribution.
However, the batch size for UDA object detection is very
limited (sometimes even equals to 1 [11], [13]), due to the
mandatory larger model sizes than those for classification.
Second, these methods ignore the feature entanglement at
the local level for each foreground object since their ob-
jective is to assign a category label for the whole image.
For cross-domain object detection which typically contains
multiple object instances in an image, the adaptation ability
of these UDA disentanglement-based classification model is
limited, resulting from the instance-level feature entangle-
ment. Although PD [21] was previously proposed for UDA
object detection via feature decomposition based on mutual
information minimization [17], the limited batch size for the
object detection framework causes the suboptimal adaptation
performance. Subsequently, there currently still lack feature
disentanglement UDA methods particularly for cross-domain
object detection.

Motivated by the aforementioned observations, we propose
a Domain Disentanglement Faster-RCNN (DDF) method in
this work, to improve the typical adversarial learning-based
UDA object detection via feature disentanglement. Specifi-
cally, our DDF achieves feature disentanglement at the global
and local levels. Throughout this paper, the global-level fea-
tures represent the output of the backbone network, which
contain the information of the object structure, and spatial
distribution for the whole images. The local-level features
represent the region of interests (ROIs) for object localization
and classification. Domain-invariant features represent the fea-
tures containing shared factors between the source and target
domains, and the instance-invariant features represent the
domain-invariant features at the instance-level for the ROIs.
First, we design a Global Triplet Disentanglement (GTD)
module jointly optimized with a domain discriminator, which
improves the feature adaptation ability at the global level via
a triplet feature disentanglement strategy. To further facilitate
the feature disentanglement at the local stage, an Instance
Similarity Disentanglement (ISD) module is proposed, based
on the similarity regularization between the shared and private
features for instance objects. Our DDF method is validated on
four benchmark UDA object detection tasks and outperforms
the state-of-the-art methods.

II. RELATED WORK

A. Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) aims at bridging

the gap between an annotated source domain and an unan-
notated target domain. Typically, UDA methods transfer the
knowledge in four ways: 1) directly minimizing the statistical
distribution distance between two domains [22], [23]; 2) in-
ducing the domain-invariant feature generation [9], [10], [24];
3) learning from the synthesized images [25]–[29], and 4) self-
training via pseudo labels [30], [31]. By alleviating the cross-
domain discrepancy at the feature and appearance levels, UDA

methods have achieved outstanding performance in cross-
domain classification [9], [10], [27], segmentation [32]–[34],
and detection [11], [13], [14], [30], [35], [36]. Since our
proposed method aims at tackling the feature entanglement
issue for cross-domain object detection, only the literature
of UDA object detection and feature disentanglement are
reviewed in detail.

B. UDA for Cross-domain Object Detection

Recent UDA object detection methods are designed based
on the two-stage detector Faster-RCNN and induce the
domain-invariant feature learning by domain adaptive modules
at the feature and appearance levels. Among the feature-
level adaptation methods, Chen et al. [11] first proposed
to learn domain-invariant features for the global image and
local instance features. To align the image-level features with
different scales, strong-weak feature alignment was then pro-
posed [13]. [35] designed a selective adaptation architecture to
focus on the local regions. Later, hierarchical feature alignment
with multi-stage domain discriminators further improves the
baseline [12], [36], [37]. Additionally, category-aware feature
alignment is effective in alleviating the class-imbalance issues
during adaptation [38]–[41]. In [42], a domain randomization
strategy is proposed based on the spectrum learning at the
frequency space, which has achieved appealing performance
on the cross-domain object detection under the domain gener-
alization setting. For the appearance-level adaptation, target-
like synthetic images and pseudo labels are commonly em-
ployed [30], [43]. Even though the previous methods alleviated
the domain-bias by various feature-level or appearance-level
adaptations, few of them have discussed and attempted to
explicitly address the entanglement of the domain-shared
and domain-private factors, limiting the model’s adaptation
abilities.

C. UDA with Feature Disentanglement

Previous feature disentanglement methods decomposed the
features by encouraging the independence between them,
based on the variation autoencoders (VAE) [44], [45] and
generative adversarial networks (GAN) [46], [47]. By sep-
arating the appearance-level (e.g., texture, brightness) and
the global-level factors (e.g., object structure, spatial dis-
tribution) in the latent feature space, [26], [48] achieved
compelling performance on multi-modal image synthesis. For
UDA classification, [15]–[17], [19] have been proposed to
decompose the domain-private and domain-shared information
using autoencoder-based structures. As essential steps for these
methods, the independence induction for the latent feature
distribution requires large batch sizes, which is impractical
for UDA object detection. In addition, [49] proposed to
decompose the features via the attention mechanism based
on uncertainty learning. In [50], a variational information
bottleneck was designed to filter out the redundant domain-
private information and achieve the disentanglement. However,
the feature entanglement issue for each object instance has
not been considered among these methods, which is essential
for UDA object detection. Therefore, it is not intuitive to
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Fig. 2. The overall architecture of our proposed DDF method. Please refer to Section III-A for detailed definitions on all the symbols. Note that the MLP
module before Issha., I

t
sha., I

s
pri. and Itpri. is omitted. (Best viewed in color)

directly extend current UDA feature disentanglement methods
for cross-domain object detection.

In [51], a Conditional Domain Normalization (CDN) mech-
anism was proposed for UDA object detection via feature
decomposition, by incorporating the source-specific factors
with the target features. However, there lacks feature de-
composition for the target features, which would cause the
model to suffer from domain bias during inference. Although
Wu et al. [21] designed a PD method with progressive feature
disentanglement mechanism for UDA object detection, their
feature entanglement modules are based on Mutual Infor-
mation minimization [17], which requires batch-wise feature
shuffling [52]. Based on the implementation of [17], the
features have a batch size of 128, sufficiently large to contain
the distribution characteristics of their corresponding domains.
When adapting the method to UDA object detection, the
disentanglement module in [21] has to work with small batch
sizes and hence could not fully utilize the Mutual Information
minimization strategy. To tackle this issue, we propose a DDF
method for cross-domain object detection via feature disentan-
glement at the global and local levels, without requiring a large
image batch size for training. Particularly, our DDF method
has achieved better performance than PD [21] (detection
mAP: Ours: 39.1; PD: 36.6). This further demonstrates the
superiority of our designed feature decomposition modules
compared to the typical ones, when the batch sizes for the
framework are limited for cross-domain object detection.

III. DOMAIN DISENTANGLEMENT FASTER-RCNN
In this section, we present the detailed framework of

our Domain Disentanglement Faster-RCNN (DDF) model.
Denote a labeled source domain with Ns i.i.d images as
Ds = {(xsi , csi , bsi )}i=1,2,...,Ns

, where csi and bsi represent
the category labels and bounding box coordinates for all the
foreground objects in each image xsi , respectively. Then, an
unlabeled target domain with Nt i.i.d images is defined as
Dt = {(xtj)}j=1,2,...,Nt

, with a different data distribution from

the Ds. Our DDF method aims at transferring the knowledge
from the labeled Ds to the unlabeled Dt and achieving
competitive detection performance on the target domain.

A. Framework Overview

The overall diagram of our proposed DDF model is shown
in Figure 2. First, we establish a baseline UDA object detection
model, by incorporating a global-level adversarial domain
discriminator with a Faster-RCNN detection model. During
each training iteration, the source and target images, defined
as xs and xt, are fed into the network. First, a backbone is em-
ployed to extract the global-level features of the input images,
constructed by a basic feature encoder Eb with fixed weights,
and a domain-shared feature extractor Es with dynamically
updated weights.

To facilitate the feature disentanglement, we design a
domain-private feature encoder Ep following the Eb, to obtain
the feature maps containing specific factors of each domain.
As shown in Figure 2 and Equation 1, F ssha. and F tsha.
represent the domain-shared features across the source and
target domains, and F spri. and F tpri. indicate the domain-private
features specific to the source and target domains:

F ssha. = Es(Eb(xs)), F tsha. = Es(Eb(xt)),

F spri. = Ep(Eb(xs)), F tpri. = Ep(Eb(xt)).
(1)

For the global-level feature disentanglement, F ssha., F
t
sha.,

F spri., and F tpri. are optimized with the Global Triplet Dis-
entanglement (GTD) module, which aligns the distributions
of the domain-shared features between the source and target
domains, as well as enlarges the discrepancy between the
domain-shared and domain-private features within each do-
main. Leveraging the GTD module, the global-level domain-
specific factors are thus decomposed from the domain-shared
features for the detection task learning.
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Fig. 3. The detailed structure of our proposed Global Triplet Disentanglement
(GTD) module in Section III-B. The definitions for all the symbols are the
same as Figure 2. (Best viewed in color, and in conjunction with Figure 2)

At the local level, we employ a Region Proposal Network
(RPN) and a ROIAlign layer to extract the local instance
features in F ssha., F

t
sha., F

s
pri., and F tpri.:

Issha. =MLP
(
ROIAlign

(
F ssha., RPN(F ssha.)

))
,

Itsha. =MLP
(
ROIAlign

(
F tsha., RPN(F tsha.)

))
,

Ispri. =MLP
(
ROIAlign

(
F spri., RPN(F spri.)

))
,

Itpri. =MLP
(
ROIAlign

(
F tpri., RPN(F tpri.)

))
,

(2)

where MLP contains a flatten layer followed by three fully
connected layers. In Equation 2, Issha. and Itsha. denote the
instance-wise domain-shared features captured from each do-
main, while Ispri. and Itpri. represent the domain-private ones.
Then, the instance-level Issha., I

t
sha., I

s
pri., and Itpri. are fed

into the Instance Similarity Disentanglement (ISD) module to
facilitate the feature disentanglement at the local stage, based
on feature similarity optimization. Eventually, the domain-
shared features at the instance-level (Issha.) are employed for
the object classification and location regression learning. The
detailed structure of the private components of the domain-
specific feature extractor is shown in Table I.

TABLE I
DETAILED MODEL STRUCTURE OF THE OVERALL ARCHITECTURE. in AND
out REPRESENT THE INPUT AND OUTPUT CHANNEL NUMBERS OF EACH

LAYER, RESPECTIVELY. k, s, AND p ARE THE KERNEL SIZE, STRIDE, AND
PADDING OF EACH LAYER.

Layer Ep Hyperparameters
1 Conv, ReLU k = (3, 3), s = 1, p = 1, in = 256, out = 256
2 Maxpooling k = (2, 2), s = 2, p = 0
3 Conv, ReLU k = (3, 3), s = 1, p = 1, in = 256, out = 512
4 Maxpooling k = (2, 2), s = 2, p = 0
5 Conv, ReLU k = (3, 3), s = 1, p = 1, in = 512, out = 512

Layer Dglb Hyperparameters
1 Conv, ReLU k = (3, 3), s = 1, p = 1, in = 512, out = 512
2 Conv, ReLU k = (3, 3), s = 1, p = 1, in = 512, out = 256
3 Conv, ReLU k = (3, 3), s = 1, p = 1, in = 256, out = 128
4 Conv, ReLU k = (3, 3), s = 1, p = 1, in = 128, out = 64
5 Conv k = (3, 3), s = 1, p = 1, in = 64, out = 2

B. Global Triplet Disentanglement

In previous UDA object detection methods, the invariance
between the domain-shared F ssha. and F tsha. is induced by

optimizing an adversarial domain discriminator at the global
level [11], [13], [14] through:

Ldi = max
θEs

min
θD

Lce

(
Dglb(F

s
sha.), 0

)
+ Lce

(
Dglb(F

t
sha.), 1

)
,

(3)
where Lce(·, ·) measures the cross entropy between the feature
maps and labels, while θEs and θD indicate the parameters for
the domain-shared feature extractor Es and domain discrim-
inator Dglb, respectively. We denote the domain label as 0
for the source domain and 1 for the target domain. However,
as suggested in [16], [18], obtaining the precise classifica-
tion decision boundaries for the adversarial discriminators
in typical UDA methods is always challenging due to the
unstable learning procedure. As such, the features induced by
Dglb in Equation 3 cannot be perfectly domain-invariant, and
some lurking domain-private factors would inevitably bring
domain bias into the detection task learning. Although recent
autoencoder-based feature disentanglement methods attempt to
alleviate this issue for UDA classification tasks [15]–[17], they
are suboptimal for UDA object detection architectures. Due
to the large model size, the batch size for the typical UDA
object detection framework is always set to 1 [11], [13], [21].
However, the feature independence learning paradigms for
feature disentanglement in [15]–[17] involve the calculations
across a batch with average and shuffling, which would
become redundant when the batch size is 1.

To this end, we propose a Global Triplet Disentangle-
ment (GTD) module, which aims to improve the adversarial
learning-based feature adaptation at the global level via feature
disentanglement. Our GTD module focuses on the triplet
optimization among the domain-private and domain-shared
features across two domains without batch-wise calculations
as [15]–[17], hence mitigating the influence of feature batch
size. Detailed illustrations of the GTD module are shown
in Figure 3. We consider that under the ideal situation, the
domain-private F spri. and F tpri. contain the specific factors for
the source and target domains, respectively. Subsequently, the
domain discriminator Dglb should be able to distinguish them.
Based on this assumption, we first introduce a domain-specific
classification loss Lds to enhance the classification ability of
Dglb:

Lds = min
θD,θEp

Lce

(
Dglb(F

s
pri.), 0

)
+ Lce

(
Dglb(F

t
pri.), 1

)
,

(4)
where θEp indicates the parameters of the domain-private
encoder Ep.

To further enlarge the discrepancy between the domain-
shared and private features within each domain, and mean-
while to align the domain-shared features across the domains,
we propose a triplet optimization strategy for F ssha., F

t
sha.,

F spri., and F tpri.. Specifically, the triplet feature decomposition
loss Ltri is defined as:

Ltri =
1

2

(
max

(
d(F ssha., F

t
sha.)− d(F ssha., F spri.) +m, 0

)
+max

(
d(F ssha., F

t
sha.)− d(F tsha., F tpri.) +m, 0

))
,

(5)
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where d(f1, f2) = ||Dglb(f1) − Dglb(f2)||2, measuring the
square Euclidean distance between the SoftMax domain
predictions of f1 and f2. We have set the margin value m as
0.25 to ensure the domain probability predictions of the F ssha.
and F tsha. close to 0.5. In Equation 3, Dglb for distinguishing
F ssha from F tsha is trained in an adversarial manner with the
feature extractor Es. Under the ideal optimization scenario,
the features from Es should be able to confuse Dglb for being
domain-invariant. To this end, the domain category predictions
for both F ssha and F tsha are expected to be 0.5, which is
consistent with the objective of Equation 5.

Overall, the GTD module improves the adaptation abil-
ity of the adversarial domain discriminator by decomposing
the global-level source-specific factors. Meanwhile, the GTD
module could be intuitively implemented without any batch-
wise calculations, which is more practical-friendly to UDA
object detection tasks by loosening the restrictions on large
batch size. The loss function for the GTD module is defined
as:

LGTD = Lds + Ltri. (6)

C. Instance Similarity Disentanglement

The GTD module promotes the global-level feature adapta-
tion by removing the domain-specific factors. However, there
still exist domain-bias issues in the local-level features of each
object. In previous work, adversarial domain discriminators are
employed to alleviate the discrepancy for the cross-domain
instance features at the local levels [11], [12]. However,
similar to the global-level issues, the local-level adversarial
learning-based feature adaptation also suffers from the feature
entanglement, due to its inaccurate decision boundary for
domain classification.

To this end, we propose an Instance Similarity Disentangle-
ment (ISD) to facilitate the instance-level feature alignment
based on feature similarity optimization. First, we obtain
the domain-shared and domain-private features at the local
level, following Equation 2. Since the batch sizes of the
local-level Issha., I

t
sha., I

s
pri. and Itpri. features equal to the

number of ROIs, they are sufficiently large for dependency-
aware optimization. Based on the assumption that the domain-
shared factors in each domain should be independent from the
domain-private ones [15]–[17], we next propose to enlarge the
distribution distance between the domain-shared and domain-
private instance features within each domain. This step could
be achieved by minimizing their cosine similarity as:

LISD−intra = sim(Issha., I
s
pri.) + sim(Itsha., I

t
pri.), (7)

where sim(·, ·) denotes the cosine similarity between two
vectors: sim(a, b) = aT b

||a|| ||b|| . Since Issha., I
t
sha., I

s
pri. and

Itpri. are acquired after the ReLU activation layers, the cosine
similarity between each pair of them is in range [0, 1]. In
addition to the intra-domain feature similarity minimization in
Equation 7, we then propose to minimize the feature similarity
between the domain-private features across two domains. This
is motivated by [53]: under the ideal disentanglement scenario,
each pair of domain-private factors in the manifold space from

two different domains should not intersect. Therefore, enlarg-
ing the distribution distance between the domain-private Ispri.
and Itpri. is beneficial to facilitate the instance-level feature
disentanglement, which could be mathematically described as
minimizing:

LISD−inter = sim(Ispri., I
t
pri.). (8)

The loss function for the ISD module is defined by inte-
grating the intra- and inter-domain feature disentanglement at
the local stage:

LISD = LISD−intra + LISD−inter. (9)

D. Training and Inference

Our DDF method is build on Faster-RCNN with a VGG16
and ResNet50 backbone. For model initialization, the back-
bones are pretrained on the ImageNet classification task [54]
and the weights of the remaining layers are initialized with
normal distribution initialization. Following the implementa-
tion of [13], [36], [40], the fixed-weight Eb is the model before
the conv3 3 layer of the VGG16 backbone, and Es is the rest.
The batch size is 1 and we do not use batch normalization
due to the small mini-batch size. Each batch contains two
images, one from the source domain and the other from the
target domain. For all the experiments, the shorter side of the
training image is resized to 600, while maintaining the aspect
ratio. During training, we employ the SGD optimizer with a
momentum of 0.9, and the weight decay is set to 0.0005. The
initial learning rate is 0.001 for the first 50K training iterations
and decreased to 0.0001 for the last 20K iterations.

The overall loss function of our proposed DDF is defined
as:

Lddf = Ldet + Ldi + LGTD + LISD, (10)

where Ldet represents the detection loss function in the stan-
dard Faster-RCNN, including the classification and bounding
boxes regression loss for the RPN and the final task. Note that
we do not include any trade-off weight for each loss in Lddf ,
which avoids the time-consuming process of hyperparameter
fine-tuning. In addition, the overall DDF framework is opti-
mized in an end-to-end manner. The GRL layer between Dglb

and Es was employed when optimizing Equations 3 and 5.
During inference, the target images directly pass through

the vanilla Faster-RCNN with off-the-shelf weights for object
detection. For evaluation, we report the mean average precision
(mAP) with a threshold of 0.5. Our experiment is implemented
with PyTorch [55] on one NVIDIA GeForce 1080Ti GPU.

IV. EXPERIMENTAL DETAILS

A. Dataset Description

Our extensive experiments are conducted on four public
datasets including Cityscapes [63], Foggy Cityscapes [64],
SIM10K [65], and KITTI [66].

CityScapes [63] dataset contains 5000 images of the real
urban scenes collected from 27 cities in different seasons. In
this work, the ground truth for UDA object detection is the
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TABLE II
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CITYSCAPES→ FOGGY CITYSCAPES EXPERIMENT. NO DA REPRESENTS THE
FASTER-RCNN TRAINED WITH THE SOURCE IMAGES AND DIRECTLY TESTED ON THE TARGET IMAGES, WITHOUT ANY DOMAIN ADAPTATION. FOR EACH

COMPARISON METHOD, MAP? AND GAIN REPRESENT ITS RESULT UNDER “NO DA” SETTING SETTING AND THE CORRESPONDING IMPROVEMENT
ACHIEVED VIA ADAPTATION, RESPECTIVELY. ORACLE DENOTES THE FULLY SUPERVISED FASTER-RCNN TRAINED ON THE TARGET DOMAIN.

Methods person rider car trunk bus train moto bicycle mAP mAP? gain
Backbone: VGG-16

No DA 23.2 27.2 32.8 13.0 23.5 9.3 12.9 25.3 20.9 20.9 −
DAF [11] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6 18.8 8.8
MAF [12] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0 18.8 15.2
SWDA [13] 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3 27.8 6.5
CFA [56] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0 18.8 17.2
CDN [51] 35.8 45.7 50.9 30.1 42.5 29.8 30.8 36.5 36.6 26.1 10.5
PD [21] 33.1 43.4 49.6 22.0 45.8 32.0 29.6 37.1 36.6 22.8 13.8
CDTD [37] 31.6 44.0 44.8 30.4 41.8 40.7 33.6 36.2 37.9 20.3 17.6
C2F [41] 43.2 37.4 52.1 34.7 34.0 46.9 29.9 30.8 38.6 20.8 17.8
FAA-SW [57] 39.5 41.3 47.0 34.5 39.3 44.0 31.9 28.4 38.3 22.0 16.3
MCAR [58] 32.0 42.1 43.9 31.3 44.1 43.4 37.4 36.6 38.8 23.4 15.4
DDF (ours) 37.2 46.3 51.9 24.7 43.9 34.2 33.5 40.8 39.1 20.9 18.2
Prior-DA [59] 36.4 47.3 51.7 22.8 47.6 34.1 36.0 38.7 39.3 24.4 14.9
Oracle 37.0 47.2 55.7 31.1 54.4 29.6 38.5 40.2 41.7 20.9 20.8

Backbone: ResNet-50
No DA 28.7 33.7 36.7 18.3 30.1 16.8 21.7 27.3 26.7 − −
MTOR [60] 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1 26.9 8.2
GPA [40] 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5 26.9 12.6
DIDN [61] 38.3 44.4 51.8 28.7 53.3 34.7 32.4 40.4 40.5 26.9 13.6
UaDAN [62] 36.5 46.1 53.6 28.9 49.4 42.7 32.3 38.9 41.1 26.9 14.2
DDF (ours) 37.6 45.5 56.1 30.7 50.4 47.0 31.1 39.8 42.3 26.7 15.6

tightest bounding boxes for the instance mask annotations,
following the previous practices in [11]–[13], [36]. The 5000
total images in the original dataset are officially split into
training, validation, and testing sets with 2975, 500, and 1525
images, respectively.

Foggy CityScapes [64] dataset simulates foggy scenes in
different intensity levels on the CityScapes dataset. Following
the previous methods, we employed the images with the
highest foggy intensity level. The data split and annotations of
the Foggy Cityscapes dataset are the same as the Cityscapes
dataset.

SIM10K [65] dataset contains 10000 simulated images
synthesized by the Grand Theft Auto (GTA) engine, with
around 60K bounding box annotations of car instances.

KITTI [66] dataset contains 14999 real autonomous driving
images obtained from a mid-sized city, with around 80K
bounding boxes annotations for object detection study. Follow-
ing previous works [11], [12], [14], we employed the training
set with 7481 images for all experiments.

B. Comparison Experiments

1) Adapting from the Normal to Foggy Weather: Enhanc-
ing the model generalization ability under different weather
conditions is crucial for automatic driving. In this section, we
evaluate the model adaptation capability from the urban scene
images captured in normal weather to the foggy ones, under
the Cityscapes → Foggy Cityscapes setting. The training set
with 2975 images from the Cityscapes and Foggy Cityscapes
datasets are employed as the source and target domains,
respectively, to train the models. For testing, the models are
validated on the validation set of the Foggy Cityscapes dataset
with 500 images. Under the same data split, our method is
directly compared with the state-of-the-art methods, as shown

in Table II. In addition, we notice that the performance of the
vanilla Faster-RCNN without adaptation is different in each
comparison method. To this end, we first report the detection
performance without adaptation for each method, which is
denoted by the mAP? and directly copied from the original
paper. Next, we report the performance gain of each method
(gain = mAP −mAP?) for a fair comparison, as suggested
in [41]. Note that the performance gain can also be regarded as
the adaptation ability for each cross-domain object detection
method.

As illustrated in Table II, our DDF method has achieved the
highest performance gain to the Faster RCNN without UDA.
Compared with the Progressive Disentanglement (PD) [21]
and Conditional Domain Normalization (CDN) [51] methods,
which tackle the UDA object detection via feature disentangle-
ment, our method has a better detection performance among
most categories (7 out of 8). For the global-level disentangle-
ment in PD [21], the calculation for the Mutual Information
is suboptimal for decomposing the features in the UDA object
detection architectures. In addition, its instance-level feature
disentanglement requires reconstruction task learning, which
introduces a decoder with auxiliary parameters. On the other
hand, our GTD can avoid the influence from the batch size
issue, and the ISD module requires no extra parameters, which
further demonstrates the superiority and efficiency of our DDF
method. During the inference process of CDN [51], the target
features for detection predictions contain the domain-specific
information from both the source and target domains. There-
fore, the detection model trained on the source data still suffers
from domain bias, which would lead to suboptimal adaptation
performance for the target data. By feature disentanglement for
both the source and target domains, our DDF method is able
to alleviate the influence of the target-specific factors during
testing and achieve better adaptation performance.
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Besides, we notice that the Coarse-to-Fine Feature Adap-
tation (C2F) method [41] has achieved the best performance
under a few categories. Leveraging prototype alignment for
the instance-level features, the C2F has a better object classi-
fication ability. However, our method can still achieve better
overall performance by decomposing the irrelevant factors that
cause domain shift. Although the mAP for Prior-DA [59] has
outperformed our DDF method, their mAP? is still inferior
to ours. MAP? indicates the improvement of the proposed
UDA method over the vanilla Faster R-CNN without adaption,
which can alleviate the influence of the various implementation
conditions for the comparison methods and therefore brings
fairer comparison. Moreover, we notice that our DDF even
outperforms the oracle fully supervised Faster-RCNN over two
categories, which further demonstrates the feature adaptation
ability of our DDF method.

To further evaluate the effectiveness of our proposed method
with various backbone models, we have also incorporated our
DDF with Faster R-CNN using the ResNet50 backbone and
compared with the state-of-the-art UDA object detection meth-
ods using the same backbone [40], [60]–[62]. As indicated in
Table II, our DDF method has achieved state-of-the-art detec-
tion and adaptation performance, which further demonstrates
the robustness of the DDF method under different backbone
models. Compared to DIDN [61] on the disentanglement-
based cross-domain object detection via feature reconstruction,
our DDF method has shown superior adaptation performance
by decomposing the features based on global-level triplet
optimization and local-level similarity learning.

TABLE III
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE

SIM10K→ CITYSCAPES EXPERIMENT.

Methods mAP mAP? gain
No DA 34.0 34.0 −
Baseline 39.5 34.0 5.5
DAF [11] 39.0 30.1 8.9
SWDA [13] 40.1 34.6 7.7
MAF [12] 41.1 30.1 11.0
SCDA [35] 43.0 34.0 9.0
ATF [14] 42.8 34.6 8.2
HTCN [36] 42.5 34.6 7.9
CDTD [37] 42.6 34.6 8.0
UMT [67] 43.1 34.3 8.8
C2F [41] 43.8 35.0 8.8
DDF (ours) 44.3 34.0 10.3

2) Adaptation from the Synthetic to Real Scene: Learning
from synthetic images is essential for object detection since
it alleviates the extensive costs in acquiring the bounding
and category annotations for each instance. In this section,
we study the UDA object detection for the car object from
the synthesized dataset to the real one, i.e., the adaptation
from the SIM10K to Cityscapes dataset. During training, the
whole SIM10K dataset is employed as the source domain,
and the Cityscapes training set with 2975 images as the
target domain. The detailed results are shown in Table III. By
outperforming the state-of-the-art methods such as HTCN [36]
and UMT [67], the superiority of our proposed DDF method
is further demonstrated. Among all the comparison methods,
we notice that MAF [12] has a slightly better performance

gain than ours. By outperforming MAF under other settings
(Table II, and IV), our DDF method is still more effective.

TABLE IV
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE
UDA OBJECT DETECTION TASKS BETWEEN THE KITTI AND CITYSCAPES
DATASETS. K → C REPRESENTS ADAPTATION FROM THE KITTI TO THE

CITYSCAPES DATASET, AND VICE VERSA.

Methods K → C C → K

Method mAP mAP? gain mAP
No DA 32.6 32.6 − 53.5
Baseline 40.8 32.6 8.2 68.6
DAF [11] 38.5 30.2 8.3 64.1
SCDA [35] 42.5 37.4 5.1 −
MAF [12] 41.0 30.2 10.8 72.1
CDN [51] 44.9 37.1 7.8 −
DSS [68] 42.7 34.6 8.1 −
MeGA-CDA [69] 43.0 30.2 12.8 75.5
DDF (ours) 46.0 32.6 13.4 75.0

3) Adaptation between Different Cameras: Due to a large
diversity of the hardware devices, there exists a domain shift
between two datasets captured through various cameras. In this
section, we conduct a UDA car object detection experiment
between the KITTI and Cityscapes datasets. For the adaptation
from the KITTI to Cityscapes, the whole KITTI dataset is
employed as a source domain, and the training set for the
Cityscapes dataset is adopted as the target domain. When
adapting from the Cityscapes to KITTI, the training set of the
Cityscapes is employed as the source domain, and the whole
KITTI dataset is used as the target domain. The results are
presented in Table IV. Under the KITTI → Cityscape setting,
our method achieves the best performance, in terms of both the
overall mAP and the performance gain. When adapting from
Cityscapes to KITTI, we observe that the results for the “No
DA” reported in all the other comparison methods [11], [12],
[14], [69] are the same. To reach a fair comparison, we directly
report the comparisons on the overall mAP for each method,
where our DDF also achieves competitive performance.

We have also presented visual comparisons in Figure 4,
where the Baseline is the basic adaptation method without
disentanglement, and DAF is a state-of-the-art UDA object
detection method [11]. It can be seen that our disentanglement-
based method generated more true-positive predictions as well
as fewer false predictions, further indicating the advantage of
our method.

C. Ablation Studies

In this section, we conduct an ablation analysis of the
effectiveness of the proposed modules under the Cityscapes→
Foggy Cityscapes setting. The results are shown in Table V,
where “No DA” represents the Faster-RCNN without domain
adaptation and Baseline is the Faster-RCNN with global-level
feature alignment (Ldi in Equation 3). The w / o ISD method
is implemented by removing LISD in Equation 10, which can
also be treated as Baseline + GTD. Similarly, the w / o GTD
method is equivalent to Baseline + ISD that neglects LGTD in
Equation 10. Apart from the ablated modules, all the methods
have the same implementation details as in Section III-D.

Aligning the features at the global level, the Baseline
outperforms the “No DA” method among all categories. To
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Fig. 4. Visual comparison of results achieved under various UDA settings: C → F : CityScapes → Foggy CityScapes, S → C : Sim10K → CityScapes, K
→ C : KITTI → CityScapes, and C → K : CityScapes → KITTI. The bounding box predictions are overlapped on the original images. (Best viewed in
color and zoom in)

TABLE V
ABLATION STUDIES FOR THE GTD AND ISD MODULES ON THE CITYSCAPES→ FOGGY CITYSCAPES EXPERIMENT.

Method person rider car trunk bus train moto bicycle mAP
No DA 23.2 27.2 32.8 13.0 23.5 9.3 12.9 25.3 20.9
Baseline 25.8 32.8 46.1 21.4 36.9 24.7 17.9 25.7 28.9
w / o GTD 33.2 41.0 51.0 30.0 43.4 24.0 25.8 35.1 35.4
w / o Lds 36.6 46.9 55.2 28.4 46.3 26.9 28.4 38.7 38.4
w / o Ltri 36.8 44.7 55.4 26.5 45.1 27.1 28.8 38.7 37.9
w / o ISD 35.0 44.4 51.0 23.4 42.0 22.3 30.0 38.2 35.8
w / o LISD−intra 36.0 42.2 54.0 27.2 42.5 25.1 32.2 37.4 37.1
w / o LISD−inter 35.7 44.0 51.5 25.6 40.5 36.0 28.6 38.5 37.5
DDF 37.2 46.3 51.9 24.7 43.9 34.2 33.5 40.8 39.1

further strengthen the model adaptation ability at the global
and local levels, the GTD and ISD modules are proposed
to bring consistent performance gains under most categories
except for “trunk” and “train”. As two types of large-scale

vehicles, parts of the trains and trunks are more likely to
be covered by the fog and thus become obscure and vague
for the perception system, compared to the objects from the
rest categories. To this end, detecting these two categories
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Fig. 5. Qualitative analysis on the disentanglement effectiveness of our DDF method under all UDA settings: C → F : CityScapes → Foggy CityScapes, S
→ C : Sim10K → CityScapes, K → C : KITTI → CityScapes, and C → K : CityScapes → KITTI. The left three columns are the results on the source
domain (src), and the right three are on the target domain (tgt). All the features and labels are overlapped on the original images. (Best viewed in color and
zoom in)

under the foggy situation is challenging, which is also proved
by the inferior performance achieved by the fully supervised
benchmark shown in Table II.

Although solely utilizing the GTD or ISD models incurs
a slight performance drop on the “train” class, integrating
them can still improve the performance significantly (about
10%). This indicates the cross-domain detection for the “train”
class is challenging and requires feature disentanglement at
both global and local stages. In addition, we notice that the
DDF incorporating ISD and GTD degrades the performance
than only using ISD. However, by achieving the best overall
detection performance, incorporating GTG with ISD in DDF
method is still demonstrated to be superior.

Moreover, we also include ablation studies on the inter-
domain ISD (LISD−inter in Equation 8), intra-domain ISD
(LISD−intra in Equation 7), global-level triplet optimization
mechanism (Ltri in Equation 5), and the global-level domain-
specific classification learning (Lds in Equation 4). The results
show performance drop by removing each module, hence
demonstrating that all modules are useful. For the global-
level GTD module, we notice the triplet optimization module
has a stronger decomposition ability than the domain-specific
classifier, as indicated by the larger performance drop when
ablated. At the local level, the inter-domain ISD works slightly

better than the intra-domain one.

TABLE VI
QUANTITATIVE EVALUATION ON THE DOMAIN DISTANCE UNDER THE

CITYSCAPES→ FOGGY CITYSCAPES SETTING. G AND I REPRESENT THE
FEATURES AT THE GLOBAL AND LOCAL LEVELS, RESPECTIVELY.

PAD↓ EMD↓
G I G I

No DA 1.98 1.69 6.37 10.46
Baseline 1.51 0.53 1.83 10.34
Ours 0.75 0.39 1.38 9.64

D. Disentanglement Evidence Analysis

In this section, we first perform a qualitative analysis on
the effectiveness of our disentanglement-based DDF method.
For the No DA and Baseline, the visualized features are the
outputs of the backbone network. For our DDF method, we
visualize the domain-shared features as well as the domain-
private features at the global level. All the features are firstly
averaged along their channel dimensions and then normalized
to range [0, 255]. Finally, the features are resized and over-
lapped with the original images for visualization. Note that
we only visualize the image-level features. The instance-level
features Issha., I

t
sha., I

s
pri, and Itpri, on the other hand, are
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vectors instead of tensors. Therefore, they do not have height
and width and cannot be resized and overlaid on the original
images for visualization.

As shown in Figures 5 and 1, the domain-shared features
from our DDF at the global stages particularly focus on the
instance objects which are crucial for detection task learn-
ing. However, the domain-shared features for the Baseline
still focus on auxiliary background components, instead of
particularly on the foreground instances. Therefore, in the
Baseline method, the global-level domain-specific factors are
introduced into the detection task learning, which results in
the feature entanglement issue and further degrades the model
adaptation performance. In addition, we observe the domain-
private features for our DDF particularly concentrate on the
information specific to its belonging domain, such as the
components that reflect the weather conditions. This further
demonstrates our Ep and Es successfully extract the private
and shared features for the given domains as expected.

To quantitatively evaluate the disentanglement ability of our
DDF method, we calculate the feature distribution discrepancy
of the domains under the Cityscape→ Foggy Cityscape setting
at both the global and local stages. At the global level, the
feature distributions are acquired by average pooling applied
on the outputs of the network backbone. For the local-level
features, we randomly select 100 foreground object features
from each category in each domain. To measure the domain
distance, Proxy A-distance (PAD) [70] and Earth Movers
Distance (EMD) [71] are employed. As shown in Table VI,
our method achieves a shorter feature distribution distance
than the Baseline at both the global and local levels. Given
a better representation of the domain-invariant features and a
lower cross-domain feature discrepancy, our DDF method is
proved to be effective in improving the Baseline via feature
disentanglement.

E. Model Design Selections

In this section, we discuss the effectiveness of our DDF
methods under different model design choices, including di-
rectly considering the similarity between the local-level shared
cross-domain features, and introducing the adversarial learning
strategies at the local level. The experiments are conducted
under the Cityscape→ Foggy Cityscape setting and the results
are shown in Table VII.

TABLE VII
THE DDF METHOD WITH DIFFERENT MODEL DESIGNS ON THE

CITYSCAPES→ FOGGY CITYSCAPES EXPERIMENT. ‘INS-SIMMAX’
REPRESENTS THE DDF WITH THE DIRECT SIMILARITY MAXIMIZATION

BETWEEN THE CROSS-DOMAIN SHARED FEATURES AT THE LOCAL LEVEL.
‘INS-TD ’ INDICATES THE DDF EMPLOYING TRIPLET DISENTANGLEMENT

MODULE AT THE LOCAL LEVEL.

Method per rid car tru bus tra moto bic mAP
ins-simmax 32.4 36.6 43.5 24.1 40.7 16.5 22.4 32.2 31.1
ins-td 37.6 46.2 51.9 23.4 43.8 23.7 34.8 39.0 37.6
OG DDF 37.2 46.3 51.9 24.7 43.9 34.2 33.5 40.8 39.1

First, we include a similarity maximization mechanism for
the local-level domain-shared features Issha. and Itsha., by
inducing the cosine similarity between Issha. and Itsha. to be 1.
This selection is referred to as ‘ins-simmax’ in Table VII. By

directly maximizing the similarity between the cross-domain
shared features, the model performance drops significantly
under many categories. One of the major reasons is that
the cross-domain local-level features are ROIs under several
categories, and directly narrowing the distribution gap between
them incurs misalignment across different classes.

Next, we conduct an experiment replacing the similarity-
based ISD module of the DDF method at the local level with
the same disentanglement strategies as the global level, i.e.,
using the adversarial learning strategy and triplet optimization.
Specifically, the optimization strategies in Equations 3, 4,
and 5 are adopted into Issha., I

t
sha., I

s
pri. and Itpri. at the

local level. The overall method is referred to as ‘ins-td’ in
Table VII, which achieves less competitive performance than
the DDF method with similarity-based feature disentanglement
at the local level. Due to the lack of annotations for the
target images during training, the instance-level target features
might not be accurate without the detection task learning,
especially at the early training stage. Therefore, we think the
inferior performance of the ‘ins-td’ method results from the
influence of the unstable training process of the adversarial
learning strategy. In addition, a similar phenomenon was also
observed in [13] previously: including an adversarial domain
discriminator for the local features in a UDA object detection
model degrades the overall performance.

F. Computational Complexity Analysis

In this section, we conduct a computational complexity anal-
ysis for each principle module (GTD and ISD) in our proposed
DDF method. The computational cost for the ablation studies
under the C → F settings in Table V is as follows (number
of parameters, and training time per iteration): 1) Baseline:
140M , 0.34s/iter; 2) Baseline + GTD: 145M , 0.39s/iter;
3) Baseline + ISD: 145M , 0.51s/iter; and 4) DDF: 145M ,
0.54s/iter. For the model size, the auxiliary cost for both ISD
and GTD modules is negligible. Although our ISD module
brings extra training time, we think it is acceptable given the
performance gain.

V. CONCLUSION

In this work, we present a novel Domain Disentanglement
Faster-RCNN (DDF) method for cross-domain object detec-
tion via feature disentanglement. Specifically, we propose a
GTD module to decompose the shared and private features
within each domain at the global stage, as well as fitting
the model batch size restrictions. At the instance level, an
ISD module based on inter- and intra-domain similarity opti-
mization is proposed to facilitate the feature disentanglement.
Extensive experiments demonstrate the superiority of our DDF
method by outperforming state-of-the-art methods on several
benchmark UDA object detection tasks. Additionally, the
qualitative and quantitative analysis on the disentanglement
evidence further indicates the effectiveness of our method on
decomposing the domain-specific factors and eliminating the
domain-bias from them. In a larger perspective, the feature
entanglement issues and the restrictions on model batch size
are not limited to cross-domain object detection. With the
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promising performance on cross-domain object detection, the
DDF method can also be extended to other cross-domain
object analysis tasks (e.g., segmentation, and tracing) in future
work.
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