
IEEE TRANSACTIONS ON MULTIMEDIA 1

Cross-domain Contrastive Learning for
Unsupervised Domain Adaptation

Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, Fellow, IEEE, and Yu-Gang Jiang

Abstract—Unsupervised domain adaptation (UDA) aims to
transfer knowledge learned from a fully-labeled source domain to
a different unlabeled target domain. Most existing UDA methods
learn domain-invariant feature representations by minimizing
feature distances across domains. In this work, we build upon
contrastive self-supervised learning to align features so as to
reduce the domain discrepancy between training and testing
sets. Exploring the same set of categories shared by both
domains, we introduce a simple yet effective framework CDCL,
for domain alignment. In particular, given an anchor image from
one domain, we minimize its distances to cross-domain samples
from the same class relative to those from different categories.
Since target labels are unavailable, we use a clustering-based
approach with carefully initialized centers to produce pseudo
labels. In addition, we demonstrate that CDCL is a general
framework and can be adapted to the data-free setting, where
the source data are unavailable during training, with minimal
modification. We conduct experiments on two widely used domain
adaptation benchmarks, i.e., Office-31 and VisDA-2017, for image
classification tasks, and demonstrate that CDCL achieves state-
of-the-art performance on both datasets.

Index Terms—Contrastive Learning, Unsupervised Domain
Adaptation, Source Data-free.

I. INTRODUCTION

At the heart of many machine learning and computer vision
tasks is to learn robust feature representations that generalize
well to novel testing samples. However, state-of-the-art deep
learning models still suffer from significant performance drops
even when the testing distribution slightly drifts from the
training distribution. To mitigate this issue, unsupervised
domain adaptation [1]–[6] aims to reduce the discrepancy
between training and testing, which is also known as domain
shifts. This is generally achieved by aligning the distribution
of a labeled training set (source domain) with that of an
unlabeled testing set (target domain) [4], [7]. In particular,
feature alignment aims to minimize carefully designed metrics
like Maximum Mean Discrepancies (MMD) [8], covariances
[9], [10], and adversarial loss functions [5], [11] such that
the distances between training and testing distributions are
reduced.

The idea of reducing feature distance in UDA tasks is
similar in spirit to recent advances in self-supervised con-
trastive learning, which pulls an image to be closer to its
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own augmented copy on a hypersphere compared to other
images. In this paper, we ask the following question: can
we leverage contrastive learning that produces decent feature
representations in a variety of downstream tasks [12]–[14] for
domain alignment in unsupervised domain adaptation? While
appealing, this is non-trivial as in standard contrastive learning
a positive pair can be naturally generated considering two
related views of the same image, since they contain the same
content but are transformed with different augmentations. In
domain adaptation, it is not clear how to form positive and
negative pairs in order to align feature distributions.

Exploring the fact that categories are shared between the
source and target domain, we propose to align feature repre-
sentations conditioned on class information to learn domain-
invariant features. In particular, we argue that samples within
the same class should be closer to each other while samples
from different categories should lie far apart, even when they
are from different domains.

In light of this, we introduce CDCL, a simple yet effective
framework for unsupervised domain adaptation under both
standard and data-free settings. As shown in Figure 1, given
an anchor image from the source domain, we randomly select
samples from the target domain that belong to the same class
as the anchor to form positive pairs, based on pseudo labels
of target samples in lieu of manual labels. We minimize the
distance of all positive pairs relative to negative pairs, which
are formed by cross-domain samples from different categories.
Since labels are not available for the target domain, we generate
pseudo labels with k-means clustering, whose initial clusters are
set to class prototypes learned on the source domain. Through
minimizing feature distance with the proposed cross-domain
contrastive loss, CDCL produces domain-invariant features. We
further show CDCL can be conveniently adapted to the newly
proposed data-free scenario [15], where the source data are
not available, by replacing sample features with prototypical
features.

We conduct extensive experiments on two widely used
domain adaptation benchmarks, i.e., Office-31 [6] and VisDA
[16] and demonstrate that our method achieves state-of-the-art
performance on both datasets. We further show that CDCL
can effectively produce domain-invariant features even when
source data are not available. We also conduct a set of
ablation experiments to validate the effectiveness of different
components of our approach.

II. RELATED WORK

Unsupervised domain adaptation (UDA). Existing UDA
methods focus on learning domain-invariant feature represen-
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Fig. 1: A conceptual overview of our approach in the standard UDA setting (left) and the data-free setting (right). Left: Given
an anchor image from the source domain, we pull its feature to be closer to samples of the same category from the target
domain while pushing apart its feature with those from a different class in the target domain. Right: when source data are not
available, we replace source samples with prototypical features derived from a pre-trained model in the source domain. See
texts for more details.

tations. One direction of UDA methods is minimizing the
discrepancy between different domains [4], [7], [9], [10], [17].
In early approaches [4], [7], MK-MMD and joint MMD are
employed to measure the discrepancy between the source
domain and target domain. Besides, higher-order statistics and
other well-designed discrepancies are utilized in [17]–[21]. To
leverage category information for domain alignment, CAN
[22] introduces intra- and inter-class domain discrepancies. In
[22], class information from the target domain is obtained
by K-means clustering, which is similar to the generation of
pseudo labels in our method. However, CAN is unpractical
for source data-free UDA due to the utilization of source
data when minimizing the domain discrepancy between source
samples and target samples. Another direction is to design an
adversarial optimization objective for a domain discriminator
and to obtain domain-invariant representations by adversarial
learning [5], [23]. GVB-GD [24] promotes adversarial domain
adaptation with a gradually vanishing bridge mechanism.
GSDA [25] implements hierarchical domain alignment with
multiple adversarial discriminators. Recently, in addition to
discrepancy-based methods and adversarial-based methods,
there are other UDA methods, e.g., domain-adaptive dictionary
learning [26], multi-modality representation learning [27] and
feature disentanglement [28]. Some recent approaches [29]–
[31] also explore feature norm or batch norm for UDA.
SAFN [29] enlarges feature norms of different domains to
improve the transferability of features. [30] uses the domain-
specific batch normalization and [31] performs batch nuclear-
norm maximization to generate discriminative and diverse
predictions. To improve feature discriminability, BSP [32]
penalizes the largest singular values and ADR [33] applies
dropout on the classifier. To avoid ambiguous target features,
MCD [34] maximizes the discrepancy between two classifiers
and STAR [35] samples classifiers from Gaussian distributions
without more parameters. In this paper, we align features with

contrastive learning, which is simple and easy to optimize.
Contrastive learning. Great progress in unsupervised rep-

resentation learning has been achieved by self-supervised
contrastive learning [12]–[14], [36]. The standard approach of
contrastive learning is to learn discriminative representations by
pulling together positive pairs and pushing apart negative pairs.
In self-supervised learning methods [12]–[14], the positive
pairs are produced by creating different augmented views of
each sample, while negative pairs can be randomly chosen
from different samples. Instance discriminative representations
learned by self-supervised contrastive learning can be trans-
ferred well to downstream tasks with fine-tuning. However,
without task-specific semantic information, representations with
intra-class compactness and inter-class discrimination can not
be learned through instance-level contrastive learning. Recently,
supervised contrastive learning [37] leverages category labels
to compose positive and negative pairs and achieves promising
performance on fully-supervised image classification. [38]
proposes a self-paced contrastive learning framework for
domain adaptive object re-ID with multi-level supervision
in each domain. Nonetheless, feature alignment, which is
critical for domain adaptation methods, is not considered in
these contrastive learning methods. There are some approaches
[39]–[41] applying contrastive learning for other UDA tasks.
[39] simply performs contrastive learning on each domain
independently and minimizes MMD to reduce the domain gap.
Nevertheless, neither domain alignment nor class alignment
is considered in the contrastive loss of [39]. CoSCA [40]
enhances the MCD [34] framework with contrastive loss that
separates the ambiguous target samples, and uses MMD to
obtain better global domain alignment. As mentioned in [34],
the classification loss on the source data is necessary for MCD
when maximizing the discrepancy of two classifiers on the
target data. Therefore, CoSCA can not be directly transferred
to source data-free UDA. [41] proposes an effective feature
clustering-based strategy to capture the different semantic
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modes of the feature distribution and group features of the
same class into tight and well-separated clusters for improved
unsupervised domain adaptation in semantic segmentation.
However, it confuses the data of the source and target
domains during the clustering-based training process, making
it impossible to fit in source data-free setting. It is worth noting
a concurrent work explores the idea of contrastive learning
for domain adaptation [42]. However, the approach mixes
samples from all domains and thus can only be used in the
standard UDA setting. Besides, the results of our ablation study
show that if ignoring the domain-level information and simply
considering label information in the contrastive loss like [42],
the performance will degrade.

Source Data-free UDA. Recently, due to the concern of
source data privacy in the realistic applications of UDA
methods, source data-free UDA has been proposed by [15]. The
main challenge of source data-free UDA is that a pre-trained
model on the source domain should be adapted to the target
domain without access to source data. Based on hypothesis
transfer learning, [15] proposes a self-training framework with
mutual information maximization and pseudo-labeling strategy.
In [43], a collaborative class conditional generative adversarial
network is employed to avoid the usage of source data with
target data generation and model adaptation. In this paper,
instead of using entropy minimization, we leverage contrastive
learning for cross-domain alignment.

III. METHODOLOGY

Unsupervised domain adaptation aims to transfer models
learned on a labeled source domain to an unlabeled target
domain, whose data distribution is different from that of the
source domain. During training, UDA assumes access to all
labeled samples in the source domain as well as unlabeled
images from the target domain. Formally, given a fully-labeled
source domain dataset with 𝑁𝑠 image and label pairs 𝐷𝑠 =

(X𝑠 ,Y𝑠) = {(𝑥𝑖𝑠 , 𝑦𝑖𝑠)}
𝑁𝑠

𝑖=1, and an unlabeled dataset in a target
domain with 𝑁𝑡 images 𝐷𝑡 = X𝑡 = {𝑥𝑖𝑡 }

𝑁𝑡

𝑖=1, both {𝑥𝑖𝑠} and {𝑥𝑖𝑡 }
belong to the same set of 𝑀 predefined categories. We use
𝑦𝑖𝑠 ∈ {0, 1, . . . , 𝑀 − 1} to represent the label of the 𝑖-th source
sample while the labels of target samples are unknown during
training. UDA aims to predict labels of testing samples in the
target domain using a model 𝑓𝑡 : X𝑡 → Y𝑡 trained on 𝐷𝑠 ∪𝐷𝑡 .
The model, parameterized by θ consists of a feature encoder
𝑔 : X𝑡 → R𝑑 and a classifier ℎ : R𝑑 → R𝑀 , where 𝑑 is the
dimension of features produced by the encoder.

Our goal is to align feature distributions between the source
and the target domain through contrastive self-supervised
learning. To this end, we first briefly review contrastive learning,
and then introduce CDCL that forms positive and negative pairs
in a cross-domain manner to learn domain-invariant features.
Finally, we show that the proposed approach is not only suitable
for standard UDA but can also be applied to data-free scenarios,
where the source data are unavailable during training.

A. Contrastive Learning with InfoNCE

State-of-the-art contrastive learning frameworks typically use
the N-pair loss [44], also known as the InfoNCE [12], [36] and

NT-Xent loss [13], to minimize the distance of a positive pair
relative to all other pairs. More formally, let u and v denote
ℓ2-normalized feature representations of a pair and the loss
function is then defined as:

L = −
∑︁

v+∈𝑉 +
log

exp(u>v+/𝜏)
exp(u>v+/𝜏) +∑v−∈𝑉 − exp(u>v−/𝜏) , (1)

where v+ ∈ 𝑉+ and v− ∈ 𝑉− represent the positive and
negative samples with respect to u, and 𝜏 is a temperature
parameter that is manually set. In practice, a positive pair is
derived by two random data augmentations (i.e., blurring and
color jittering, e.t.c.) operated on the same image sample,
resulting in two correlated views. In contrast, in domain
adaptation, it remains unclear how to obtain positive and
negative pairs for feature alignment.

B. Cross-domain Contrastive Learning

We now introduce how to form pairs to learn domain-
invariant features with contrastive learning. Since samples
from the source domain and the target domain belong to the
same set of classes in current UDA settings, we build upon
this assumption to reduce domain shift. More specifically, we
hypothesize that samples within the same category are close to
each other while samples from different classes lie far apart,
regardless of which domain they come from. More formally, we
consider the ℓ2-normalized features z𝑖

𝑡 from the 𝑖-th sample x𝑖
𝑡

in the target domain as an anchor, and it forms a positive pair
with a sample in the same class from the source domain, whose
features are denoted as z𝑝

𝑠 , we formulate the cross-domain
contrastive loss as:

L𝑡 ,𝑖

𝐶𝐷𝐶
= − 1
|𝑃𝑠 ( 𝑦̂𝑖𝑡 ) |

∑︁
𝑝∈𝑃𝑠 ( 𝑦̂𝑖𝑡 )

log
exp(z𝑖

𝑡

>
z𝑝
𝑠 /𝜏)∑

𝑗∈𝐼𝑠
exp(z𝑖

𝑡

>
z
𝑗
𝑠 /𝜏)

(2)

where 𝐼𝑠 denotes the set of source samples in a mini-batch
and 𝑃𝑠 ( 𝑦̂𝑖𝑡 ) = {𝑘 | 𝑦𝑘𝑠 = 𝑦̂𝑖𝑡 } indicates the set of positive samples
from the source domain that share the same label with the
target anchor 𝑥𝑖𝑡 . Since we do not have access to labels of
target samples, we use estimated pseudo labels 𝑦̂𝑖𝑡 (as will be
introduced below) to generate pairs. The cross-domain loss
forces intra-class distance to be smaller than inter-class distance
for samples from different domains so as to reduce domain
shift. It is worth pointing out that compared to the standard
InfoNCE loss, we sum over all samples in a mini-batch from
the source domain that belong to the same category as the
anchor 𝑥𝑖𝑡 , which could reduce sampling variance.

In Eqn. 2, we consider samples from the target domain as
anchors. Alternatively, we can use source samples as anchors
and compute L𝑠,𝑖

𝐶𝐷𝐶
similarly by setting 𝑃𝑠 (𝑦𝑖𝑠) = {𝑘 | 𝑦̂𝑘𝑡 =

𝑦𝑖𝑠}. Then, we combine L𝑠,𝑖

𝐶𝐷𝐶
with L𝑡 ,𝑖

𝐶𝐷𝐶
to derive the cross-

domain contrastive loss as follows:

L𝐶𝐷𝐶 =

𝑁𝑠∑︁
𝑖=1
L𝑠,𝑖

𝐶𝐷𝐶
+

𝑁𝑡∑︁
𝑖=1
L𝑡 ,𝑖

𝐶𝐷𝐶
. (3)
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The cross-domain contrastive loss aligns features in a bi-
directional manner by using anchors from both domains for
improved performance. Finally, combining the cross-domain
contrastive loss with a standard cross-entropy loss L𝐶𝐸

enforced on the source domain, we have the final objective
function for training:

minimize
θ

L𝐶𝐸 (θ;𝐷𝑠) + 𝜆L𝐶𝐷𝐶 (θ;𝐷𝑠 , 𝐷𝑡 ), (4)

where 𝜆 controls the trade-off between the two loss terms and
θ denotes the parameters to be optimized.

Algorithm 1: Pseudo code of CDCL for standard UDA.
Result: θ for the prediction model 𝑓
Input: unlabeled target dataset 𝐷𝑡 = X𝑡 , source dataset

𝐷𝑠 = (X𝑠 ,Y𝑠), model 𝑓 = ℎ ◦ 𝑔, max epoch 𝐸 ,
iterations per epoch 𝐾

Initialize encoder 𝑔 with ImageNet pre-trained weights
for 𝑒 = 1 to 𝐸 do

Initialize cluster centers with source class
prototypes using Eqn. 7

Perform K-means clustering on target data X𝑡 ,
obtain pseudo labels 𝑦̂𝑖𝑡

for 𝑘 = 1 to 𝐾 do
Sample batch (𝑥𝑖𝑠 , 𝑦𝑖𝑠) from 𝐷𝑠 and compute
L𝐶𝐸

Sample batches (𝑥 𝑗𝑠 , 𝑦 𝑗𝑠) and (𝑥 𝑗𝑡 , 𝑦̂
𝑗
𝑡 ) from 𝐷𝑠

and 𝐷𝑡

Compute L𝐶𝐷𝐶 using Eqn. 3
Back-propagate and update model 𝑓 via Eqn. 4

end
end

Algorithm 2: Pseudo code of CDCL for source data-
free UDA.

Result: θ for the prediction model 𝑓
Input: unlabeled target dataset 𝐷𝑡 = X𝑡 , model

𝑓 = ℎ ◦ 𝑔 pre-trained on source dataset 𝐷𝑠 , max
epoch 𝐸 , iterations per epoch 𝐾

Freeze the parameters of classifier ℎ
for 𝑒 = 1 to 𝐸 do

Initialize cluster centers with source class
prototypes using Eqn. 5

Perform K-means clustering on target data X𝑡 ,
obtain pseudo labels 𝑦̂𝑖𝑡

for 𝑘 = 1 to 𝐾 do
Sample batch (𝑥𝑖𝑡 , 𝑦̂𝑖𝑡 ) from 𝐷𝑡 and compute
L𝑡 ,𝑖

𝑆𝐷𝐹−𝐶𝐷𝐶
using Eqn. 6

Back-propagate and update model 𝑓 via Eqn. 8
end

end

C. Pseudo Labels for the Target Domain

Ground-truth labels from the target domain are not available
during training, and thus we leverage k-means clustering to pro-
duce pseudo labels [15], [22], forming pairs for cross-domain

contrastive learning. Since K-means is sensitive to initialization,
using randomly generated clusters fails to guarantee related
semantics with respect to predefined categories. To mitigate
this issue, we set the number of clusters to the number of
classes 𝑀 and use class prototypes from the source domain as
initial clusters. The benefits of initializing the cluster centers
with class prototypes are twofold: i) source class prototypes can
be seen as the approximation of target class prototypes, since
features used are high-level and contain semantics information
(ii) with the alignment of samples in the same category by
CDCL, this approximation will be more accurate as the training
continues. More formally, we first compute the centroid of
source samples in each category as the corresponding class
prototype and the initial cluster center O𝑚

𝑡 for the 𝑚-th class
is defined as:

𝑂𝑚
𝑡 ← 𝑂𝑚

𝑠 = E𝑖∼𝐷𝑠 ,𝑦
𝑖
𝑠=𝑚

z𝑖
𝑠 . (5)

Given features from the target domain, we then perform
spherical K-means clustering using these carefully initialized
centers. When determining the assignment of each target
sample, cosine similarity is adopted to measure the distance
between the target feature z𝑖

𝑡 and the 𝑚-th cluster center O𝑚
𝑡 .

Once clustering is finished, each sample in the target domain
x𝑖
𝑡 is associated with a pseudo label 𝑦̂𝑖𝑡 . To reduce the noise

in target pseudo labels, we remove the ambiguous samples
far from its assigned clustered centers. Concretely, one target
sample will be removed when the cosine similarity between
its feature and its assigned cluster center is below a manually
set threshold 𝑑.

D. Source Data-free UDA
In this section, we demonstrate that CDCL can be easily

adapted to a newly introduced source data-free setting [15],
where a model trained on the source domain is provided
yet source data are unavailable due to corruption or privacy
concerns. Formally, the goal is to learn a model 𝑓𝑡 : 𝑋𝑡 → 𝑌𝑡
and predict {𝑦𝑖𝑡 }

𝑁𝑡

𝑖=1 with only unlabeled target data 𝐷𝑡 and a
pre-trained source model 𝑓𝑠 : 𝑋𝑠 → 𝑌𝑠 . The pre-trained source
model is obtained by minimizing the cross-entropy loss on the
source samples.

It is difficult for most previous UDA methods to adapt to
source data-free UDA. For discrepancy-based methods, the
predefined domain discrepancies are statistics that should be
measured between source samples and target samples. Similarly,
for adversarial-based methods, the adversarial discriminators
need to be trained with source samples and target samples.
Without access to source data, both strategies are not applicable
to perform adaptation to the target domain. Besides, for the
standard UDA setting, many UDA methods assume that the
same feature encoder is shared on the source and target domains.
However, this constraint may be hard to implement under source
data-free setting since the feature encoder can not be trained
on the source and target domain simultaneously. Some UDA
methods, e.g., DSBN [30], prove that a domain-specific module
in the feature encoder can improve the performance of domain
adaptation. Therefore, it is practical to remove the parameter-
sharing constraint for feature encoders under source data-free
setting.
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For CDCL, the lack of samples from the source domain 𝐷𝑠

makes it challenging to (1) form positive and negative pairs
and (2) to compute source class prototypes. We address this
issue by replacing source samples with classifier weights from
the trained model 𝑓𝑠 . The intuition is that the weight vectors in
the classifier layer of a pre-trained model can be regarded as
prototypical features of each class learned on the source domain.
In particular, we first remove the bias of the fully-connected
layer and perform normalization for the classifier.

We use w𝑚
𝑠 to denote the weight vector of the 𝑚-th class

in the classification layer W𝑠 = [w1
𝑠 , . . . ,w

𝑀
𝑠 ] learned on the

source domain. Since the weights are normalized, we use them
as class prototypes. When adapting to the target domain, we
freeze the parameters of the classifier layer to keep the source
class prototypes and only train the feature encoder. Through
replacing the source samples with source class prototypes, the
cross-domain contrastive loss under the source data-free setting
can be written as:

L𝑡 ,𝑖

𝑆𝐷𝐹−𝐶𝐷𝐶
= −

𝑀∑︁
𝑚=1

1𝑦̂𝑖𝑡=𝑚
log

exp(z𝑖
𝑡

>
w𝑚

𝑠 /𝜏)
𝑀∑
𝑗=1

exp(z𝑖
𝑡

>
w

𝑗
𝑠/𝜏)

. (6)

Similarly, we estimate labels for samples in the target domain
with clustering. However, it is not feasible to compute class
prototypes using samples anymore. Instead, we replace Eqn. 5
with class weights:

𝑂𝑚
𝑡 ← 𝑂𝑚

𝑠 = w𝑠
𝑚 (7)

The final objective of source data-free UDA is:

minimize
𝑁𝑡∑︁
𝑖=1
L𝑡 ,𝑖

𝑆𝐷𝐹−𝐶𝐷𝐶
. (8)

Compared to Eqn. 4, the cross-entropy loss is not used since
the source data are no longer available for supervised training.

IV. EXPERIMENTS

A. Datasets and Compared Approaches

We use two public benchmarks to evaluate our method for
unsupervised domain adaptation under both standard and data-
free settings.

VisDA-2017 [16] is a challenging large-scale benchmark
including 12 classes from two domains: the source domain
with 152,397 synthetic images, and the target domain contains
55,388 real-world images. Our method is evaluated on the
synthesis-to-real domain adaptation task.

Office-31 [6] is a common DA benchmark which contains
4,110 images from three distinct domains, i.e., Amazon (A with
2,817 images), DSLR (D with 498 images) and Webcam (W
with 795 images). Each domain consists of 31 object categories.
Our method is evaluated by performing domain adaptation on
each pair of domains, which generates 6 different tasks.

Compared Approaches. We first report the results of a
model trained on the source domain only, and compare with
the following state-of-the-art approaches:(a) DANN [5], which
utilizes a domain discriminator with adversarial optimization

objective to reduce the domain gap. (b) DAN [4] and JAN
[7], which learn domain-invariant features by minimizing
MK-MMD and Joint MMD. (c) ADR [33], which encourages
the encoder to generate more discriminative features by using
dropout on the classifier. (d) SAFN [29], which adapts the
feature norms of different domains to a large range of values.
(e) SWD [18], which measures the dissimilarity between
the output of classifiers with sliced Wasserstein discrepancy.
(f) MMAN [27], which introduces semantic multi-modality
representation learning into adversarial domain adaptation and
captures fine-grained category information by multi-channel
constraint. (g) CDAN [23], which aligns the conditional
distribution in adversarial learning. (h) DSBN [30], which
adopts the domain-specific batch normalization in models.
(i) BSP [32], which improves the feature discriminability
by penalizing the largest singular values. (j) BNM [31],
which achieves the discriminability and diversity of the predic-
tions with batch nuclear-norm maximization. (k) MDD [19],
which proposes a hypothesis-induced discrepancy for domain
adaptation. (l) GVB-GD [24], which proposes a gradually
vanishing bridge mechanism for adversarial-based domain
adaptation. (m) GSDA [25], which aims to learn domain
invariant representations by hierarchical domain alignment.
(n) STAR [35], which tries to employ more classifiers by
sampling from Gaussian distribution without more parameters.
(o) CAN [22], which introduces class information into domain
alignment by minimizing the contrastive domain discrepancy.
(p) SHOT [15], which develops a framework for data-free
UDA based on hypothesis transfer learning. (q) ModelAdapt
[43], which adopts a collaborative class conditional generative
adversarial networks to avoid using source data.

Among these methods, SHOT and ModelAdapt are devel-
oped under the source data-free UDA setting. We implement
our method under both standard UDA and source data-free
UDA settings.

B. Implementation Details

Network architecture. We adopt a ResNet-50 (for Office-
31) and ResNet-101 (for VisDA-2017) pre-trained on ImageNet
[46] as the feature encoder in the experiments of the standard
UDA task. We replace the last FC layer with the task-
specific FC classifier layer. All the network parameters are
shared between different domains except those of the batch
normalization (BN) layers as we utilize the domain-specific
BN [30]. Under the source data-free UDA setting, following
[15], we use one bottleneck layer containing a FC layer and
a BN layer after convolutional layers in the feature encoder
module 𝑔. Furthermore, we remove the bias of the task-specific
FC classifier layer and perform normalization for the classifier.

Training details. The network is trained by using mini-batch
SGD with a momentum of 0.9. The initial learning rate 𝜂0
is set as 1𝑒−3 for pre-trained convolutional layers and 1𝑒−2
for newly added layers. We employ the same learning rate
scheduler 𝜂 = 𝜂0 · (1+10 · 𝑝)−𝑏 as [4], [5], [7], where 𝑝 denotes
training process linearly increase from 0 to 1. Following [22],
for Office-31, 𝑏 = 0.75 while for VisDA-2017, 𝑏 = 2.25. When
pre-training models with source samples under source data-free
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TABLE I: Accuracy(%) on VisDA-2017 for unsupervised domain adaptation (ResNet-101). † denotes that this method is
developed under the source data-free UDA setting.

Method pl
an

e

bc
yc

l

bu
s

ca
r

ho
rs

e

kn
if

e

m
cy

cl

pe
rs

on

pl
an

t

sk
tb

rd

tr
ai

n
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k

Avg

ResNet-101 [45] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DANN [5] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN [4] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
ADR [33] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8
CDAN [23] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.7
CDAN+BSP [32] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SAFN [29] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD [18] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MSTN+DSBN [30] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2
STAR [35] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
CoSCA [40] 95.7 87.4 85.7 73.5 95.3 72.8 91.5 84.8 94.6 87.9 87.9 36.8 82.9
CAN [22] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
JCL [42] 97.0 91.3 84.5 66.8 96.1 95.6 89.8 81.5 94.7 95.6 86.1 71.8 87.6

CDCL (ours) 97.4 89.5 85.9 78.2 96.4 96.8 91.4 83.7 96.3 96.2 89.7 61.6 88.6

SHOT [15] † 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
ModelAdapt [43] † 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
CDCL (ours) † 97.3 90.5 83.2 59.9 96.4 98.4 91.5 85.6 96.0 95.8 92.0 63.8 87.5

TABLE II: Accuracy(%) on Office-31 for unsupervised domain
adaptation (ResNet-50). † denotes that this method is developed
under the source data-free UDA setting.

Method A→D A→W D→A D→W W→A W→D Avg

ResNet-50 [45] 68.9 68.4 62.5 96.7 60.7 99.3 76.1

DAN [4] 78.6 80.5 63.6 97.1 62.8 99.6 80.4
DANN [5] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
JAN [7] 84.7 85.4 68.6 97.4 70.0 99.8 84.3
MMAN [27] 85.8 85.8 70.3 97.4 71.2 100. 85.1
SAFN+ENT [29] 92.1 90.3 73.4 98.7 71.2 100. 87.6
CDAN [23] 92.9 94.1 71.0 98.6 69.3 100. 87.7
CDAN+BSP [32] 93.0 93.3 73.6 98.2 72.6 100. 88.5
CDAN+BNM [31] 92.9 92.8 73.5 98.8 73.8 100. 88.6
MDD [19] 93.5 94.5 74.6 98.4 72.2 100. 88.9
GVB-GD [24] 95.0 94.8 73.4 98.7 73.7 100. 89.3
GSDA [25] 94.8 95.7 73.5 99.1 74.9 100. 89.7
CAN [22] 95.0 94.5 78.0 99.1 77.0 99.8 90.6

CDCL (ours) 96.0 96.0 77.2 99.2 75.5 100. 90.6

SHOT [15] † 94.0 90.1 74.7 98.4 74.3 99.9 88.6
ModelAdapt [43] † 92.7 93.7 75.3 98.5 77.8 99.8 89.6
CDCL (ours) † 94.4 92.1 76.4 98.5 74.1 100 89.3

setting, following [15], we randomly split the source dataset
into 0.9/0.1 train-validation sets and select the optimal source
pre-trained model based on the validation set. We use one RTX
3090 with 24GB for experiments.

C. Main Results

Table I and Table II summarize the results of our ap-
proach and comparisons with state-of-the-art methods. On
both datasets, We can see that all domain adaptation methods
achieve significantly better results compared to the source-
only method, confirming the importance of feature alignment.
On VisDA, we observe CDCL achieves a mean accuracy of
88.6% across all categories, outperforming all state-of-the-art
approaches and boosting the accuracy of source-only baseline
by 26.2%. In particular, CDCL is better than CAN [22] by

1.4% absolute point and beats JCL [42] by 1.0%, which is
notable given that VisDA is a challenging benchmark.

When the source data are no longer available, CDCL achieves
a mean accuracy of 87.5%, outperforming the state-of-the-
art approach SHOT [15] by 4.6% point, highlighting the
effectiveness of our approach. Comparing the data-free setting
and the conventional UDA setting, we see that CDCL is slightly
(0.9%) worse in the data-free setting. It is noteworthy that
CDCL for source data-free setting still surpasses many UDA
methods for standard setting. This suggests that one can simply
explore a model trained on the source domain for effective
transfer without the need to access the source data.

We observe similar trends on Office-31 under both settings.
In particular, in the conventional UDA setting, CDCL offers a
mean accuracy of 90.6% across 6 different tasks, which is on
par with the best results in the literature. Under the data-free
setting, CDCL achieves a mean accuracy of 89.3%, comparable
to ModelAdapt. It is worth mentioning that results are better
on Office-31 compared to VisDA since the dataset is smaller.
Besides, due to the small domain gap between D and W, it is
easy to achieve high accuracy on Office-31 tasks D→W and
W→D, even for source-only models. Since domains W and D
contain fewer samples compared to domain A, the performance
on tasks W→A and D→A is relatively poor.

D. Ablation Studies and Discussions

In this section, we conduct a set of ablation experiments to
justify the effectiveness of different components and provide
discussions.

Positive and Negative Pairs. We mainly form positive pairs
and negative pairs using cross-domain samples. We now discuss
alternative ways to form pairs and report results on VisDA. In
particular, we use the following approach to form pairs: (1) In-
domain, where anchors come from both domains but samples
that are used to form pairs are from the same domain and
same category as the anchor; (2) Combined-domain, where the
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(a) Features without adaptation (b) Features aligned by CDCL.
Fig. 2: The t-SNE [47] visualization of features from the source domain and the target domain before and after alignment. The
triangle and circle markers indicate the source and target samples respectively, and different colors denote different classes.

Early Training Stage

plant plant plant plant plant

Later Training Stage

person person person person person

Anchor1

person

Similarity Decreases

Early Training Stage

knife knife knife knife knife

Later Training Stage

horse horse horse horse horse

Anchor2

horse

Similarity Decreases

Fig. 3: Given an anchor from one domain, top-5 cross-domain samples are retrieved by comparing feature similarity after the
first epoch of training (Top) and at the end of training (Bottom).

source and target domains are mixed and pairs are generated
by simply considering label information; (3) Cross-domain
(L𝑠,𝑖

𝐶𝐷𝐶
only), which simply L𝑠,𝑖

𝐶𝐷𝐶
in Eqn. 3 using samples in

the source domain as anchors; (4) Cross-domain (L𝑡 ,𝑖

𝐶𝐷𝐶
only),

which uses samples in the target domain as anchors. From
the results shown in Table III, we observe that cross-domain
alignment achieves better results compared to performing a
simply in-domain alignment. This suggests the importance of
forming pairs from two domains in order to produce domain-
invariant features. In addition, we observe that mixing both
domains together is worse than CDCL, possibly due to the fact
that jointly modeling intra-class and inter-class information
is challenging. Moreover, the bi-directional use of anchors is
better compared to using anchors simply from one domain.

The impact of hyper-parameters. We test the sensitivity of
CDCL to the temperature 𝜏 on VisDA-2017 for standard UDA.
As shown in Figure 4(a), the accuracies around 𝜏 = 0.05 are
not sensitive. When the 𝜏 grows larger, the accuracy steadily
increases before decreasing. Additionally, we study the effect
of 𝜆 on VisDA. Results in Figure 4(b) show that the accuracy
around 𝜆 = 1.6 are also not sensitive and the gap of accuracies
is smaller than 0.2 when 𝜆 > 1.4. Therefore, CDCL is not
sensitive to its hyper-parameters.

TABLE III: Ablation study for the selection of anchors, positive
samples and negative samples in contrastive loss.

Method Anchor Positive Negative VisDA

In-domain all same same 86.5
Combined-domain all all all 87.3
Cross-domain (L𝑠,𝑖

𝐶𝐷𝐶
only) source different different 87.5

Cross-domain (L𝑡,𝑖

𝐶𝐷𝐶
only) target different different 86.6

CDCL all different different 88.6

Feature Visualization. We further use t-SNE [47] to visu-
alize features from the source and target domain before and
after alignment in Figure 2. We can see that before alignment,
source and target features are separated into two clusters, which
demonstrates the gap between the two domains. After alignment
with CDCL, we see that features from different domains are
mixed together and features from different classes are well
separated.

Learned Feature Distance. We visualize in Figure 3 top-5
retrieved images given an anchor image at the beginning and
the end of training. We observe that in early states, retrieved
samples are similar to the anchor in shape but belong to a
different category. As training continues, CDCL gradually pulls
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Fig. 4: Performance sensitivity of 2 hyper-parameters 𝜏, 𝜆 in CDCL.

features from the same class to be closer. This highlights the
effectiveness of CDCL in learning domain-invariant features.

V. CONCLUSION

In this paper, we presented CDCL, a simple yet effective
framework for unsupervised domain adaptation. CDCL builds
upon contrastive learning to align features for domain alignment
and is suitable for both the standard UDA setting and the
source data-free setting. In particular, given an image from
one domain, we minimize its distance with respect to samples
in the same class but from a different domain relative to all
other cross-domain samples from different categories. Since
labels are not available for the target domain, we generate
pseudo labels using clustering. Further, we showed that CDCL
can be easily adapted to the source data-free settings through
considering classifier weights as class prototypes. We conducted
extensive experiments on two widely used domain adaptation
benchmarks and demonstrated that CDCL achieves state-of-
the-art performance on both datasets.
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