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Abstract—In this paper, we propose a radio-assisted human
detection framework by incorporating radio information into the
state-of-the-art detection methods, including anchor-based one-
stage detectors and two-stage detectors. We extract the radio
localization and identifer information from the radio signals to
assist the human detection, due to which the problem of false
positives and false negatives can be greatly alleviated. For both
detectors, we use the confidence score revision based on the radio
localization to improve the detection performance. For two-stage
detection methods, we propose to utilize the region proposals
generated from radio localization rather than relying on region
proposal network (RPN). Moreover, with the radio identifier
information, a non-max suppression method with the radio
localization constraint has also been proposed to further suppress
the false detections and reduce miss detections. Experiments on
the simulative Microsoft COCO dataset and Caltech pedestrian
datasets show that the mean average precision (mAP) and
the miss rate of the state-of-the-art detection methods can be
improved with the aid of radio information. Finally, we conduct
experiments in real-world scenarios to demonstrate the feasibility
of our proposed method in practice.

Index Terms—Human detection, radio localization, two-stage
detector, anchor-based one-stage detector.

I. INTRODUCTION

Human detection is a fundamental problem in computer
vision, which can power many other vision tasks such as
instance segmentation [1], [2] and pose estimation [3], [4].
Generally, existing detection methods first extract the features
from the images and then output the bounding boxes together
with the corresponding confidence scores. Compared with the
traditional methods [5], [6], deep learning based detection
methods can achieve much better performance [1], [7] since
the deep neural backbone can extract more useful features
from the images.

However, problems still exist in the existing detection meth-
ods. As shown in Figure 1, there are mainly two problems:
false positives and false negatives. The false positives stand
for the bounding boxes that do not correctly cover an object
or cover an object which has been already detected, e.g., the
green bounding boxes, while the false negatives represent the
miss detections for the objects, e.g., the blue bounding boxes.
Note that most of the state-of-the-art detection methods use the
confidence score to filter the detections, i.e., if the confidence
score is larger than a pre-defined threshold, the detection will
be displayed in the image. Thus, the false positives are those
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Fig. 1: The false positives (false detections) and false negatives
(miss detections) still exist in the state-of-the-art detection
methods (left figure). The false positives stand for the bound-
ing boxes that do not correctly cover a person or cover a person
which has been already detected, e.g., the green bounding
boxes, while the false negatives represent the miss detections
for the persons, e.g., the blue bounding boxes. With the aid
of radio information, e.g., the orange regions, the proposed
method can well alleviate the false positives and false negatives
(right figure).

“incorrect” bounding boxes with confidence scores larger than
the pre-defined threshold, while the false negatives are those
“correct” bounding boxes but with confidence scores smaller
than the pre-defined threshold.

On the other hand, with the development of wireless com-
munications and internet of things, radio signals are nowadays
pervasive in our daily life. For example, people always carry
smart phones, and more and more objects are attached with
RFID to track their statuses [8], [9], [10]. Such radio signals
can provide us a unique identifier and localization information
for each person. The identifier can be the MAC address or
the RFID information, while the localization can be estimated
through the angle of arrival (AoA) and time of flight (ToF)
information extracted from the channel state information (CSI)
of the radio signals. The question now is how to utilize the
identifier and localization information to improve the detection
performance?

In this paper, we propose a radio-assisted human detection
framework by incorporating the identifier and localization
information obtained from the radio signals. We first align
the localization (i.e., the AoA and ToF) information with the
image according to the camera’s effective focal length (EFL)
and field of vision (FOV), and obtain an initial estimation of
each person. For both the anchor-based one-stage detectors and
two-stage detectors, we generate different ways to revise the
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detection’s confidence score based on the localization results.
For the two-stage detectors, we further propose to replace
the region proposal network (RPN) with multi-scale anchors
generated from the initial estimation as proposals.

Moreover, we utilize the number of identifiers as a constraint
for the number of persons to be detected. Based on the specific
constraint, we propose an improved non-maximum suppres-
sion (NMS) to guarantee that the detections are born from
different localizations, and the number of the detections will
not exceed the number of the localizations. It is worth pointing
out that, with the proposed NMS, there is no need to use the
confidence threshold to process the visible detections. Thus,
the proposed framework can greatly alleviate the problems of
false positives and false negatives in final detections.

We evaluate the proposed method on both simulative
datasets and real-world scenarios. The simulative datasets
are constructed based on the COCO and Caltech pedestrian
datasets. Specifically, we reshape the ground-truth bounding
boxes into squares and randomly shift the positions and sizes
to simulate the initial estimation from the radio localizations.
The experimental results show that, compared with the state-
of-the-art detection methods, the proposed method can achieve
better detection results in terms of both the mAP metric and the
miss rate (MR) versus false positives per image (FPPI) metric.
The experimental results on the real-world scenarios also
demonstrate that the proposed method can greatly alleviate
the problems of the false positives and false negatives, i.e.,
the false and miss detections.

II. RELATED WORK

Object detection: The state-of-the-art object detectors can
be classified as either two-stage detectors [1], [11], [12], [13],
[14] or one-stage detectors [7], [15], [16], [17], [18], [19].
For two-stage detectors, the first stage is to filter out the back-
ground anchors to generate a sparse set of object proposals,
while the second stage is to classify the proposals as well
as refining the bounding boxes to obtain the final detections.
Early two-stage detectors such as R-CNN [11] select regions
of interest with traditional algorithms to construct proposals,
while the latest two-stage detectors are equipped with RPN for
more efficient and accurate proposals [1], [12]. Although the
development of two-stage detectors may differ in multi-scale
features [14], [20], [21], regression layers [13] and balance
training [14], [22], their region proposals are all similar, which
can be replaced by the initial estimations from the radio
signals.

Some one-stage detectors are anchor-based methods [7],
[15], whose idea is to classify and refine each cell’s multi-
scale anchors and output the final detections with NMS. For
example, YOLO[7] divides the image into multiple cells and
directly refines the pre-defined multi-scale anchors located
at each cell as the detection bounding boxes. For the one-
stage detector, the anchor stands for the proposal boxes.
Recently, anchor-free detectors have raised more and more
attention, some of which rely on keypoint detection to output
the bounding boxes [17], [18], while others mainly tackle the
problem by dense prediction to predict the center of each
object [16], [19].

There have been works focusing on object detection tasks
with extra information. For example, [23] and [24] use extra
context from the image to improve the detection performance.
The authors in [25] utilize the depth image as extra information
while the authors in [26] propose to utilize the extra thermal
data. Generally, the performance can be improved when the
extra information is carefully utilized.

Because the state-of-the-art detectors use confidence score
(classification score) to estimate the detection, for the average
precision (AP) metric, if the confidence scores of the false
positives are lower than those of the true positives, the
detection is recognized as a good result. However, in such
a case, false positives with enough confidence displayed in
the image will still bother the users with their observation.
By simply rising the confidence score threshold to process
the result, some correct detections with lower score will be
removed instead. Therefore a detector performs well in COCO
dataset with the mAP evaluation metric may not provide clear
visual result.

Radio localization: The radio localization methods can be
classified as received signal strength indication (RSSI) based
approaches [27], [28], [29], AoA based approaches [30], [31],
[32], and ToF based approaches [33], [34], [35]. All these
approaches measure the RSSI, AoA, or ToF from the target at
multiple antennas and localize the target through triangulation.
The RSSI based approaches measure the RSSI from the target
at multiple access points and locate the target by combining
the RSSI via triangulation with a propagation model. With
RSSI data of multiple access point, the system can work out
the distance of the object to each antenna and finally achieve
the coordinate of the object. The ToF localization is similar
as the RSSI localization, which also uses the distance of the
object to each antenna to get the object’s destination. The AoA
based approaches work out the AoA of the direct path of each
receiver to the target. Similar as the RSSI based methods, the
AoA based approaches require multiple estimations at different
access points and use the triangulation to localize.

The joint AoA-ToF estimation is considered in [36], [37],
[38], [39], [40], where the localization of the target can be
estimated with the AoA and ToF from one single antenna.
If the environment is equipped with a single access point,
we can provide the accurate localization with the joint AoA-
ToF estimation. The position of the object can be worked out
with the angle and the distance of the object from the antenna
receiver.

Radio-video fusion: Several literatures have attempted to
combine radio signals with video data for tracking/localization
tasks [41], [42], [43], [44], [45], [46], [47], [48]. Ishihara et
al. in [41] proposed a network for BLE signals and integrated
it with the PoseNet. [42] focused on minimizing the root mean
squared error of the predicted tracking. Their method shows
better accuracy for the camera’s indoor position and rotation.
In [43], the authors fused the vision and wireless modalities
and improved the localization and tracking of individuals. With
the received signal strength (RSS) from individual’s mobiles,
individual’s tracking and localization can be accomplished
with the RGB view and a corresponded wireless ring image.
Zhao et al. implemented an easy-to-deploy system with multi-
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modal data for indoor localization [46], which achieved 92-
percentile error within 0.2m for indoor targets. Wang et al. per-
formed localization with images and RFID tags and achieved
6.23cm localization error [47], while Bai et al. proposed
visible light communication-assisted indoor localization that
achieved less than 3cm positioning error[48]. Zhao et al. in
[44] trained the RF encoder and decoder networks for human
pose estimation with the image-based keypoint method as
supervision, while Li et al. in [45] proposed a neural network
to predict the human’s pose with the input of both RGB image
and radio heatmap.

Different from the aforementioned radio-video fusion work,
our work focuses on utilizing the identifier and localization
information extracted from the radio signals to improve the
performance of the state-of-the-art object detection methods.

III. OUR METHODS

A. Radio localization and imaging

Joint AoA-ToF estimation. We assume that each person
to be detected is equipped with an RF component that can
emit radio signals. This assumption is reasonable given the
development of wireless communications, e.g., people nowa-
days always carry smart phone. The receiver is equipped with
a vertical and horizontal antenna array, which is capable of
estimating vertical and horizontal AoA of the person. The
signal from a person with a specific AoA-ToF can be expressed
as

P (θ, τ) =

M∑

m=0

K∑

k=0

sm,ke
j2πfk

mdcosθ
c ej2πk∆fτ , (1)

where θ and τ denote the AoA and ToF, respectively, m and
k are the indexes of antenna and frequency, d is the inter-
element space of antenna array, c is the speed of light and ∆f
is the frequency interval. Then, the AoA-ToF can be estimated
by

(θ̂, τ̂) = arg max
θ,τ

|P (θ, τ)|, (2)

where (θ̂, τ̂) denotes the estimated AoA-ToF. In other words,
we could estimate the AoA-ToF by pick the peak with the
highest amplitude shown in Figure 2.

Radio imaging. With the estimated AoA-ToF, the 3D
locations of the person to the camera can be obtained with
the camera imaging model. Specifically, with the estimated
ToF, we first derive the distance of the person to the camera,
as shown in Figure 3. Then, we calculate the point-to-plane
distance L with the horizontal and vertical AoA, α and β.
With the ratio of L to the camera’s focal length l, the sizes
of the estimated regions in the image can be calculated. The
coordinate of the person can then be known with the horizontal
angle, the vertical angle and the focal length by using the
tangent. In this way, we can obtain the initial estimate of the
area occupied by a person.

B. Radio localization aware detectors

While the existing detection methods have achieved state-
of-the-art detection performance, the false positives and false
negatives problems still commonly exist in the final detection

Fig. 2: Joint AoA-ToF estimation from radio signals. Left:
The raw CSI is sampled on different frequencies and antennas
shown in the figure above. It is further transformed into
AoA-ToF domain as shown in the figure below. The peak
corresponds to the device location with highest confidence.
Right: An initial estimated region with the radio information.

Fig. 3: Radio imaging to the image plane with the estimated
AoA and ToF.

results. In this subsection, we discuss how to incorporate the
radio localization information into the detectors to alleviate
the false positives and false negatives, the details of our
proposed radio localization guided methods will be introduced,
respectively. The pipeline of the whole proposed radio-assisted
human detection is shown in Figure 4.

Method 1: Radio confidence revision. We utilize the local-
ization information from radio signals to revise the confidence
scores of the detection results before NMS. In general, if
the bounding box correctly covers the target, its confidence
score should be larger than those of the boxes which only
partly include the target. Thus, we introduce a decay factor,
γ ∈ [0, 1], for each detection bounding box. For anchor-based
one-stage detectors, given a radio-assisted region in an image,
γ is defined as the normalized intersection between the radio
region and the detection’s corresponding divided cell in the
backbone over the cell, i.e.,

γ =
area(localization)

⋂
area(cell)

area(cell)
. (3)

For two-stage detectors, we adjust each detection’s confi-
dence score using the intersection between the bounding box
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Fig. 4: Pipeline of the radio-assisted human detection. Method 1: The pipeline of the detectors with radio-assisted confidence
revision. Method 2: The pipeline of the two-stage detector with radio-assisted proposals.

and the localization area over the localization area, i.e.,

γ =
area(bbox)

⋂
area(localization)

area(localization)
. (4)

Then, the new confidence score is obtained as follows

Snew = (1− λ+ λ ∗ γ) ∗ S, (5)

where λ is a pre-defined constant defined by the expected
accuracy of the radio localization, i.e., a larger λ means a
higher expected accuracy. The case where λ = 0 reflects that
the method is only determined by the traditional detection
framework, while the case where λ = 1 means the revised
score is processed by directly multiplying with the decay
factor.

Method 2: Radio region proposals for two-stage de-
tectors. For the two-stage detectors, we can directly replace
the RPN with the radio region proposals. The RPN in two-
stage detectors is in charge of selecting and refining proposals
from multi-scale anchors to filter out the proposals of the
background. For our detectors, the radio localization provides
the multi-scale anchors as region proposals whose centers
and sizes are determined by the radio imaging discussed
in the previous subsection. If we only focus on the single-
class person detection, the anchor shape and ratio can be
designed in advance based on the people’s potential postures
and general size. With the proposed method, by refining
the anchors only once, the detector is capable of outputting
accurate detections. Note that by replacing the RPN with the
radio region proposals, our method is capable of speeding up
the two-stage detectors.

C. NMS with radio region constraint

An NMS method with the number constraint has been
proposed in [49], where the constraint is not from the radio
localization. In [49], the authors choose the final detections
by maximizing the sum of their scores with the constraint of
the scores’ count and the Intersection over Union (IoU) of the
detections. IoU specifies the amount of overlap between the

Algorithm 1: Radio-assisted constraint NMS

Input: Detection boxes sorted with confidence
B = {b1, b2, ..., bN},

sorted confidence scores S = {s1, s2, ..., sN},
radio-assisted regionsW = {w1, w2, ..., wM},
root regions of the boxesR = {r1, r2, ..., rN},
IoU threshold T
begin
Rb ← {},Rs ← {},Rw ← {}, i = 0
while i < |B| and |Rw| < |W| do

i = i+ 1
if ri ∈ Rw or iou(Rb, bi) ≥ T then

continue
end
Rb ← Rb

⋃{bi},Rs ← Rs

⋃{si},
Rw ← Rw

⋃{ri}
end
if |Rw| < |W| then
W =W −Rw

for wi inW do
Rb ← Rb

⋃{bwi
},Rs ← Rs

⋃{swi
}

end
end
returnRb,Rs

end

4321

Supplied for radio 
proposal detectors

Fig. 5: NMS with the one-on-one constraint of the radio-
assisted region and the detection bounding box. The procedure
marked red is only feasible for detectors with the radio region
proposal input.
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predicted and ground truth bounding box, which is an impor-
tant metric to evaluate the performance of object detection. In
this paper, we consider the constraint that each bounding box
should be born from different radio localizations. The radio
localization constraint could be recognized as a reinforced
constraint of the number of persons because each localization
finally will be matched with at most one bounding box. The
details of the proposed radio region constraint NMS algorithm
is illustrated in Figure 5.

In the proposed NMS algorithm, the first loop is a similar
process as the common NMS. The main improvement of the
first loop is that one radio localization will at most output
one bounding box. The condition iou(Rb, bi) ≥ T represents
that the IoU of bi and any bounding box in Rb is not smaller
than the threshold T . The condition ri ∈ Rw refers that the
radio region ri of the current detection bi has already existed
in the result set, which is set to satisfy the constraint that
one radio localization at most matches one detection bounding
box. With the first procedure, it can be guaranteed that the
neighbourhood boxes all lie out of the pre-defined overlap
and different bounding boxes are born from different radio
localizations.

For the two-stage detectors with the radio region proposal
input, it is easy to know each detection comes from which
proposal and belongs to which radio region. For the one-stage
detectors with radio confidence mask, it is difficult to know the
responsible radio region because the detections are the end-to-
end results and one cell/detection may be covered by multiple
radio regions. In such a case, we formulate the relation by the
IoU of each single radio region and the detection box.

The second loop in Figure 5 is enabled if the number
of the detections is smaller than the number of the radio
localizations. This may happen when some correct detections
are suppressed by unreasonable IoU threshold. With the sec-
ond loop, the algorithm will output the detection generated
from a pre-defined anchor of the missing radio region. This
loop is implemented only for the two-stage detectors with the
radio proposal input. For the one-stage detectors, it cannot be
guaranteed that every region of radio localization is allocated
at least one detection with the IoU relation. In such a case,
we skip the second process and the proposed NMS can only
ensure that the number of the final detections will not exceed
the number of the radio localizations.

IV. EXPERIMENTS

Extensive experiments on simulative datasets and real-world
scenarios are conducted to verify the effectiveness of our
method by comparing with the state-of-the-art detection meth-
ods. For experiments on detection datasets, we simulate the
wireless localization region from the ground truth and conduct
detections. Firstly, we study the influence of the localization
deviation (AoA and ToF) on the detection precision. We then
compare the performance of existing detectors with our radio
localization aware detectors on these datasets. Note that as
shown in section 3.2, we have proposed two radio localization
aware detectors: one is radio confidence revision, denoted as
“Proposed Method 1”; the other is radio region proposal,

denoted as “Proposed Method 2”. Specifically, for two-stage
detectors equipped with radio region proposal, we choose
the region in the image mapped from the radio localization
and design three scales of the anchor to match the human
potential postures. For the radio confidence revision, based on
the localization region, we adjust each detection’s confidence
score as (3) and (4). Finally for real data, the wireless
localization results together with the detection results in a real-
word scenario are presented and the detections of the existing
detectors are also illustrated for comparison.

A. Experimental Setup

Datasets: The simulative datasets are constructed based
on COCO [50] and Caltech pedestrians [51] datasets. For
COCO, we conduct detection tasks for 80 categories and
person category and evaluate the detectors on the val2017 set.
For Caltech pedestrian, we implement human detections on
every 30 frame in the video sequences in validation set06 to
set10.

In practice, the AoA and ToF estimated from the radio
localization system may deviate from the ground truth due
to the multipath interference in the environment. Since we do
not have the prior knowledge about the shape of the person,
we first reshape the ground-truth bounding box into a square
region whose edge length L equals min(H,W ). Then, to
imitate the ToF estimation errors in radio localization, we
manufacture independent Gaussian distributed noise ζ to the
edge length L of each square region as below

L′ = L× ζ, ζ ∼ N (1, σ), (6)

where σ is a pre-defined standard deviation, N denotes the
Gaussian distribution. Finally, to imitate the AoA estimation
errors, we give the center of each square region a random shift
related to its edge length L′ as

x′ = x+ ξ1, y′ = y + ξ2,

ξ1 ∼ N (0, k1L
′), ξ2 ∼ N (0, k2L

′), (7)

where ξ1 and ξ2 are the random shifts along the x and y
direction, respectively, k1 and k2 are pre-defined standard
deviations.

Metrics: We adopt two widely used metrics for detection
performance: the mean average precision (mAP) defined in
COCO [50] and the miss rate (MR) versus false positives per
image (FPPI) curve defined in Caltech pedestrian [51]. The
mAP evaluates the mean value of the AP with the requirement
of the IoU interval [.5:.05:.95] between the output and ground-
truth bounding boxes. The MR vs FPPI curve draws the MR
curve under different FPPI and finally obtains the average
MR to evaluate the detectors. The runtime is also evaluated
to demonstrate that our method could improve not only the
detection performance but also the detection efficiency.

Implementation details: We apply our method on various
two-stage detectors including Mask R-CNN, Libra R-CNN
with the backbone ResNet-101 and Grid R-CNN with the
ResNext-101-32x4d backbone. We adopt the model weights
in [52]. The confidence score threshold and the IoU threshold
of the NMS in Mask R-CNN and Libra R-CNN are 0.05
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Fig. 6: Effect of radio localization error.

and 0.5, respectively. In Grid R-CNN, the NMS’s confidence
threshold is 0.03 and the IoU threshold is 0.3 based on [53].
We also apply our method on the anchor-based one-stage
detector YOLOv3 on Keras with the model weight in [54]. The
backbone is Darknet-53 in [54] with the 608×608 input image
size and the NMS’s confidence threshold and the IoU threshold
being 0.05 and 0.5 respectively. We perform the experiments
on a single Geforce GTX 1080Ti GPU to measure the runtime.

B. Effect of radio localization error

We first analyze the effect of radio localization error on
the mAP when the simulative COCO dataset is used. The
influences of scale to the region size and shift to the region
center are illustrated in Figure 6(a) and Figure 6(b) respec-
tively. When conducting the analysis of σ or k(k1 = k2) in
Eqn. (6) or (7), the other parameter is set as k = 0.1 or
σ = 0.2. By comparing Figure 6(a) and 6(b), we observe that
the AoA error has a more significant influence on the mAP
than the ToF error. Therefore, it’s more important to provide
a precise coordinate of each person’s center by accurate
AoA estimation. From the figure, we can also see that with

higher accuracy, the radio-assisted radio proposal in two-
stage detectors performs better than the confidence adjustment.
While on the other hand, the radio-assisted confidence revision
is more robust than the radio-assisted region proposal at the
lower localization accuracy. This phenomenon may be due to
the fact that two-stage detectors crop features in the proposals
to the classification and regression layers, and thus the region
proposal requires higher localization precision.

C. Ablation study

In this subsection, we conduct the ablation experiments to
show that both the radio region proposal/confidence revision
and our proposed NMS are effective. The parameters of radio
localization errors are set as: σ = 0.2, k1 = k2 = 0.1.

COCO mAP evaluation. Table I and Table II show the
ablation results on COCO for person category. For the human
detection as shown in Table I, we can see that with the help
of radio-assisted confidence revision, the mAP performance
for person category can be improved about 0.4%, 1.2%, 0.6%
and 1.4% for Mask R-CNN, Grid R-CNN, Libra R-CNN,
and YOLOv3, respectively. With radio localization region
proposal, the performance can be raised for about 2% and
0.6% for Mask R-CNN and Libra R-CNN, although the Grid
R-CNN’s performance may be slightly worse.

We also compare the mAP performance in human detection
while we constrain the number of the detections by the count
of the ground truth instead of using confidence threshold.
In this case we can conduct a fair performance evaluation
on our proposed NMS method. The results are shown in
Table II. In the results, we find that if the number of the
detections is limited, the improvement of the radio-assisted
methods is much more obvious. Furthermore, we can see that
equipped with our proposed NMS, the detectors’ performance
can even increase about 2% for confidence revision and 3%
for localization’s region proposal. In Table II, we also make
performance comparison with a mentioned NMS in [49],
which is an NMS for weakly supervised localization with
object’s count constraint. And we find that their NMS doesn’t
perform well in our person category detection tasks for it only
optimizes the specific case where detected bounding boxes are
loose and contain two or more object instances.

MR vs FPPI evaluation.
To give enough penalty on the false positives, we employ the

MR v.s. FPPI metric [51]. The MR v.s. FPPI curves of human
detection on the COCO dataset are shown in Figure 7(a) to
evaluate the ability of the proposed method on suppressing
false positives while conducting correct detections, where the
numerical percentages in the legend stand for the average miss
rates. The results show that the average miss rate and the FPPI
at low miss rate are both improved with the proposed method.
Compared with the mAP metric in Table II, the improvement
of the average miss rate in Figure 7(a) can be explicitly
observed.

We also evaluate the Caltech pedestrian dataset with the
‘reasonable’ experiment and the ‘all’ experiment, respectively.
In the ‘reasonable’ experiment, the ground truth only contains
people of height more than 60 pixels and occlusion ratio
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TABLE I: Ablation studies of the radio-assisted detectors on COCO val-2017 for person category.

Methods radio localization AP AP50 AP75 APS APM APL

Mask R-CNN 53.8 83.3 58.4 36.3 61.8 70.1
proposed method 1 54.2 86.0 58.8 39.7 61.7 67.8
proposed method 2 55.8 87.0 61.2 41.1 61.3 68.6

Grid R-CNN 56.5 82.8 60.7 38.4 63.3 74.4
proposed method 1 57.7 85.4 62.2 42.2 64.0 73.7
proposed method 2 56.5 83.0 61.0 40.7 61.8 71.2

Libra R-CNN 54.7 83.3 59.6 36.3 62.0 71.6
proposed method 1 55.3 86.4 60.1 40.3 62.2 69.6
proposed method 2 55.3 84.5 61.0 38.9 61.5 69.6

YOLOv3 48.9 82.4 52.2 30.7 56.4 66.2
proposed method 1 50.3 84.6 53.7 33.3 58.0 66.6

TABLE II: Ablation studies of the radio-assisted detectors on COCO val-2017 for person category with detection’s count
constraint.

Methods radio localization NMS AP AP50 AP75 APS APM APL

Mask R-CNN 49.3 74.3 54.6 30.8 57.2 68.4
proposed method 1 50.1 80.6 54.0 35.4 57.4 63.7
proposed method 1 GRS[49] 49.5 77.9 54.1 35.6 57.3 61.3
proposed method 1 proposed 52.0 82.7 57.1 37.7 58.9 65.5
proposed method 2 54.5 85.1 59.3 39.8 59.8 68.1
proposed method 2 GRS[49] 52.0 80.1 56.8 36.1 58.7 64.9
proposed method 2 proposed 58.3 93.2 63.0 45.3 63.4 70.2

Grid R-CNN 52.4 75.1 56.9 33.0 59.1 72.7
proposed method 1 54.8 81.2 59.3 38.5 61.2 71.0
proposed method 1 GRS[49] 51.5 75.1 56.0 36.9 58.9 65.7
proposed method 1 proposed 56.3 82.7 61.1 40.6 62.3 72.5
proposed method 2 56.3 83.1 61.1 41.4 61.3 70.8
proposed method 2 GRS[49] 53.6 79.7 57.9 38.4 59.7 66.8
proposed method 2 proposed 59.1 88.4 63.1 43.4 64.3 74.0

Libra R-CNN 50.6 75.3 56.6 31.3 57.8 69.9
proposed method 1 51.4 80.8 56.0 36.2 58.6 65.9
proposed method 1 GRS[49] 51.1 78.4 56.2 36.7 58.6 64.0
proposed method 1 proposed 53.1 82.7 58.1 38.3 60.2 67.1
proposed method 2 55.1 83.9 61.0 39.5 61.2 68.8
proposed method 2 GRS[49] 51.6 79.5 56.4 34.8 58.7 64.9
proposed method 2 proposed 58.9 92.0 64.0 44.7 64.3 71.9

YOLOv3 46.8 77.9 50.5 28.0 54.2 65.6
proposed method 1 48.9 81.4 53.1 31.6 56.3 66.0
proposed method 1 GRS[49] 47.1 79.9 49.5 30.0 54.7 63.5
proposed method 1 proposed 50.8 86.4 54.1 34.6 58.0 66.0
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Fig. 7: Miss rate versus false positives per image.

Fig. 8: Scenarios of the adopted validation dataset.
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TABLE III: Performance of the radio-assisted detectors on our validation dataset.

Methods Localization Proposed NMS FP & FN per image True Detections Ratio(%)
Mask R-CNN 1.152 46.44

Method 1 X 0.990 52.18
Method 2 X 1.001 49.04

Grid R-CNN 1.003 48.28
Method 1 X 0.984 52.42
Method 2 X 1.088 46.25

Libra R-CNN 1.564 42.03
Method 1 X 0.990 52.82
Method 2 X 1.004 48.71

YOLOv3 0.499 69.87
X X 0.329 75.03

less than 35%, while in the ‘all’ experiment, detectors should
detect people of height more than 20 pixels and occlusion
ratio less than 80%. The results are shown in Figure 7(b)
and Figure 7(c). Similar to the results on the COCO dataset,
both the ‘reasonable’ and ‘all’ experiments reflect that the
proposed method can efficiently reduce the average miss rate.
Furthermore, it can be observed from the figures that with our
proposed NMS, the FPPI is significantly decreased at low miss
rates, which demonstrates that our proposed NMS can reduce
the number of the false positives.

D. Experiments in real-world scenarios

Finally, we conduct experiments in the real-world scenarios
to verify the feasibility of our method in practice.

To make detection evaluation with real localization data,
we conduct our validation dataset with synchronized image
and localization data. We captured videos in three scenarios
with two cameras and the total length of videos is about
15 minutes. We collected the synchronized localization data
with one localization device to work out the coordinates of
the people. The camera we used is the camera of HUAWEI
honor8lite with the horizontal FOV 64◦ and the vertical FOV
52◦. The sizes of the captured videos are 1280 × 720 pixels
and the pixel-measured focal length approximately equals
to 3000. We divided the videos into nearly 1000 frames
and some of them are shown in Figure 8. The environment
contains laboratory and open spaces in overcast and evening,
and people’s activities include walking, jogging, hugging and
jumping. In order to increase the difficulty of detection, we
choosed to capture the image data in the scenarios where the
brightness is not efficient or some obstacles (i.e. chairs and
tripods) exist in the image which cover half part of one person
at most (i.e. head, legs or body). In one frame there are at most
three people and a data frame may also be empty, i.e., it does
not include any person.

To collect the localization data, we used the TI board of
MMWCAS-RF-EVM to collect the RF signals, and adopted
Equation (1) to work out the coordinates of the people in the
localization space. Finally we calculated the length and the
angle of each person to each camera.

To show the main advantage of our method, we use two
other evaluation methods in our dataset. Because our methods
focus more on the final visual performance in detection
tasks, the evaluation methods consider all of the detection
bounding boxes without sorting them in descending order

Fig. 9: Detection results comparison of our dataset. The left
column is the detection of the original detector. The right
column is the detector with our proposed methods.

by the confidence score. One evaluation is to calculate the
false positives and false negatives per image, the other we
called true detection ratio is to calculate the ratio between
true positives to the sum of true positives, false positives and
false negatives, i.e.

true positives

true positives+ false positives+ false negatives
. (8)

Figure 9 shows the performance comparison of our dataset.
The above row shows the result comparison of mask R-CNN
detector while the below row shows the result comparison of
YOLO detector. Observing the above row, we can find it is the
situation of false positive. The sum of the false positives and
negatives in the left is 2 (two boxes on the same person) and
the true detection ratio is 1/3. The below row stands for the
situation of false negative. The sum of the false positives and
negatives in the left is 1 (one person’s detection is missed) and
the true detection ratio is 1/2. Both of our adopted evaluation
methods will be influenced by redundant detection and missed
detection without considering confidence score. And with our
proposed methods, we find the evaluation will be improved
while the visual performance gets better as well.

Table III shows the performance improvement of our meth-
ods on our dataset and the confidence thresholds of the
original detection methods are both 0.3. We can find that with
the localization and the proposed NMS, the false positives
and false negatives can be restrained, while the ratio of the
true positives can be increased. Different from the results
in simulated COCO dataset, we find that in this case the
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Fig. 10: Detection results in real-world scenarios. First column: Estimated horizontal AoA-ToF heatmap. In real-world
environment, the heatmap would be disturbed by multi-path interference. Nevertheless, the final detection would not be affected
since the AoA-ToF is only utilized as te initial estimate. Second column: Estimated vertical AoA-ToF heatmap. Similar to
the horizontal heatmap, the vertical heatmap is also disturbed by multi-path interference. Third column: Results of Mask
R-CNN. Fourth column: Results of Mask R-CNN equipped with proposed method 2. Fifth column: Results of YOLOv3.
Sixth column: Results of YOLOv3 equipped with proposed method 1.

proposed method 1 performs better. This is because in real
world the localization precision may not be as accurate as the
localization result simulated in COCO dataset.

Figure 10 illustrates more results in real-world scenarios.
Similar to previous experiments, we conduct the real-world
detection with the original Mask R-CNN detector, the original
YOLOv3 detector, and our proposed detectors. For Mask R-
CNN, we set the confidence threshold to 0.5 to make the
detection results more visible. The peaks which are the poten-
tial object locations will be chosen if their magnitudes exceed
half of the highest magnitude. The results clearly demonstrate
that with radio information, our proposed detectors can well
address the problems of false positives and false negatives,
compared with the original Mask R-CNN and YOLOv3.

V. CONCLUSION

In this paper, we proposed a human detection framework
with the aid of radio information for anchor-based one-stage
detector and two-stage detectors. Systematically, based on the
radio signals, we first estimated the localization of each person
in the image with its angle and distance from the camera.
Then, we proposed two ways to utilize the radio localization
information for anchor-based one-stage detector and two-stage
detectors. With the radio identifier and localization informa-
tion, we also proposed a non-maximum suppression with an
extra constraint that the radio localizations and the detections
should be one-on-one matched. Experiments on simulative
datasets and real-world scenarios showed that our proposed

methods could improve the performance of state-of-the-art
detectors and alleviate the problem of false positives and false
negatives.
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