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Abstract

Unsupervised Domain Adaptive (UDA) object re-identification (Re-ID) aims at
adapting a model trained on a labeled source domain to an unlabeled target domain.
State-of-the-art object Re-ID approaches adopt clustering algorithms to generate
pseudo-labels for the unlabeled target domain. However, the inevitable label
noise caused by the clustering procedure significantly degrades the discriminative
power of Re-ID model. To address this problem, we propose an uncertainty-aware
clustering framework (UCF) for UDA tasks. First, a novel hierarchical clustering
scheme is proposed to promote clustering quality. Second, an uncertainty-aware
collaborative instance selection method is introduced to select images with reliable
labels for model training. Combining both techniques effectively reduces the
impact of noisy labels. In addition, we introduce a strong baseline that features a
compact contrastive loss. Our UCF method consistently achieves state-of-the-art
performance in multiple UDA tasks for object Re-ID, and significantly reduces the
gap between unsupervised and supervised Re-ID performance. In particular, the
performance of our unsupervised UCF method in the MSMT17—Market1501 task
is better than that of the fully supervised setting on Market1501. The code of UCF
is available at https://github. com/Wang-pengfei/UCF.

1 Introduction

The goal of object re-identification (Re-ID) is to retrieve object images belonging to the same identity
across different camera views. Due to its broad range of potential applications, (e.g., smart retail),
Re-ID research has experienced explosive growth in recent years [66} 124, 45| 56,130} 153} |6l 157, 22|
S1L 1150148l 167, 164]]. Most existing approaches achieve remarkable performance when the training
and testing data are drawn from the same domain. However, due to the presence of significant
domain gaps, Re-ID models trained on source datasets typically exhibit clear performance drops
when directly applied to the target datasets. Unsupervised Domain Adaptive (UDA) object Re-ID is
therefore proposed to adapt the model trained on the source image domain with identity labels to the
target image domain without the need for identity annotations. Unlike the traditional UDA setting,
which assumes that both domains share the same classes, UDA in object Re-ID is a more challenging
open-set problem, in that the two domains have totally different identities (classes).

State-of-the-art methods [43. [11} 162, (9} 165] 49, 168 23| [13]] adopt clustering algorithms to generate
pseudo-labels for the target domain. At the beginning of each epoch, a clustering algorithm is applied
on the features extracted from the current model to generate pseudo-labels for each image. The
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current model is then updated via retraining with the pseudo-labels. These two steps alternate so
that the model gradually adapts to the target data. While pseudo-label approaches have achieved
promising results, there are still two major challenges to deal with. First, due to the domain gap, the
current model is not an optimal feature extractor for the target domain; second, the unsupervised
nature of the clustering makes it difficult to obtain the real identity labels, even given the optimal
feature extractor. The obtained pseudo-labels therefore usually contain a certain level of noise, which
undermines the final Re-ID performance.

In this paper, we propose an uncertainty-aware clustering framework (UCF) to handle the above
problem from two perspectives. First, we identify and decompose unreliable clusters using a novel
hierarchical clustering algorithm. Due to the domain shift, the Re-ID model has limited discriminative
power in the target domain; as a result, inter-class distances may vary dramatically. This means that
images of visually similar identities may be grouped into the same cluster, the size of which tends
to be large. To handle this problem, we first adopt a clustering algorithm, such as DBSCAN [7], to
perform coarse clustering. We then calculate the silhouette coefficiency [42]], which measures both
the tightness and separation of each cluster. For clusters with small silhouette coefficiency, we further
perform fine-grained clustering within the cluster. In this way, unreliable clusters can be decomposed
into several smaller ones.

Second, we identify images with unreliable pseudo-labels using a novel uncertainty-aware collabora-
tive instance selection method. Specifically, we adopt a deep network and its temporally averaged
model, i.e., the mean-Net [47]], to cluster images in the target domain, respectively. Since these two
models have different learning capabilities, their clustering results will be different. We then evaluate
whether each instance is located in similar clusters across the two networks. If a large number of
overlapping samples exist in the two clusters, the clustering result of this instance is considered to be
reliable. Finally, we only adopt instances with reliable labels for model training, which reduces the
impact of noise in the pseudo-labels.

Through joint hierarchical clustering and reliable sample selection, our UCF framework can effectively
reduce the adverse effects of noisy pseudo-labels. We further propose a compact contrastive loss
for UDA Re-ID. Recent approaches [[13} 73} 23] typically adopt contrastive loss for model training.
However, these losses require all image features in the target domain to be stored in the memory bank.
This may result in two problems: first, this strategy consumes a lot of memory; second, only the
features of a small number of images are updated in each iteration. These problems become especially
serious for large-scale Re-ID datasets, such as MSMT17 [52]. To solve the above mentioned problems,
we propose an improved contrastive loss using a class-level memory bank, which stores one single
feature vector for each class rather than the features of all images.

Our main contributions can be summarized as follows: 1) We propose a strong baseline that adopts
an improved contrastive loss using compact class-level memory banks; 2) We design a hierarchical
clustering scheme to improve the quality of clustering, which decomposes unreliable clusters from
coarse to fine; 3) We introduce a novel collaborative clustering method to identify images with
unreliable pseudo-labels, which significantly relieves the impact of noise in pseudo-labels; 4) Our
approach outperforms state-of-the-art methods by large margins on many UDA tasks for Re-ID.

2 Related Works

We review the literature in three parts: 1) unsupervised domain adaptive (UDA) object Re-ID, 2)
contrastive learning, and 3) deep learning with noisy labels.

2.1 UDA Object Re-ID

Existing UDA approaches for object Re-ID can be roughly divided into two categories: pseudo-label-
based methods [43] 9,165} 11} 162,73, 60, 49]] and domain translation-based methods [5, 52} 12| [14].
Domain translation-based methods transfer labeled images in the source domain to the style of the
target domain images, then use these transferred images and the inherited ground-truth labels for
model training. However, a gap inevitably arises between the translated image and the real target
domain image, which affects the performance of these approaches. Pseudo-label-based methods
group unannotated images using clustering algorithms and then train the network with pseudo-labels
generated by clustering. For example, Li ef al.[23] employed both visual and temporal similarity cues
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Figure 1. (a) SpCL [11] regards all instances in one unreliable cluster as outliers. (b) NRMT [68]] removes
unreliable triplets. (c) Our UCF measures the uncertainty of each instance, which is more fine-grained. (Best
viewed in color.)

to promote the quality of pseudo-labels. However, existing approaches typically ignore the noise
remaining in pseudo-labels.

Recently, some methods have been proposed that attempt to solve the label noise problem. Ge
et al. [11] proposed generating more robust soft labels via mutual mean-teaching. However, the
classifier trained with noisy labels forms the foundation for soft label generation, which hinders the
improvement of Re-ID performance. Ge et al. [[13]] further proposed the SpCL approach. As shown in
Fig. [I(a), it identifies and regards all instances in one unreliable cluster as outliers with reference to
their proposed reliability criterion. However, removing all images in a cluster may waste samples with
reliable pseudo-labels. Similarly, Zhao et al. [68] introduced the Noise Resistible Mutual-Training
(NRMT) approach, as shown in Fig. [[(b), which removes triplets that are considered to be unreliable.
The reliability of a triplet is measured with reference to the distance between the features of the triplet
samples extracted by two networks. Unlike the above works, our approach is more fine-grained, as
it first improves the clustering quality and then removes unreliable instances rather than complete
clusters or triplets.

2.2 Contrastive Learning

As a promising paradigm of unsupervised learning, contrastive learning has lately achieved state-of-
the-art performance in unsupervised visual representation learning. Recently, contrastive learning
methods combined with data augmentation strategies achieved great successes, such as SimCLR [[1]],
MoCo [18]], and BYOL [16]. These methods treat each instance as a class represented by a feature
vector and data pairs are constructed through data augmentations. These methods treat each instance
as a class, which yields poor results for the domain adaptive object Re-ID task, because the intra- and
inter-class similarity on the unlabeled target domain cannot be measured accurately. Some recent
works [49, |13} 23| [73] have introduced improved contrastive loss to domain adaptation. For example,
the SpCL approach [13]] includes a unified contrastive loss, which jointly distinguishes source-domain
classes, target-domain clusters, and un-clustered instances. One common drawback of these methods
is the need to store all instance features, which requires a large amount of memory. To solve this
problem, we propose a new contrastive loss with a compact class-level memory bank, which resolves
these issues by storing a single feature vector for each cluster rather than all instance features.

2.3 Deep Learning with Noisy Labels

Many studies have attempted to effectively train deep neural networks in the presence of noisy
labels for close-set classification problems. Some recent works have introduced a sample selection
approach that selects data with reliable labels for training [31} 33]. Notably, the small loss trick,
which regards samples with small training loss as clean, has demonstrated powerful ability. However,
the small loss trick is not suitable to select clean samples in UDA object Re-ID task. This is because
the number of target domain clusters (classes) changes through re-clustering during the training
process. Moreover, recent studies suggest various ways in which additional performance gain can be
achieved by maintaining two networks to avoid accumulating sampling bias [17,161]. For example,
Co-teaching [17] works by training two deep models simultaneously, where each network selects
the small-loss instances as reliable samples for the other one. These methods focus primarily on
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Figure 2. (a) Illustration of the proposed hierarchical clustering (HC) method. (b) Illustration of the proposed
uncertainty-aware collaborative instance selection (UCIS) method. (c) Illustration of the overall clustering results
by UCF. (Best viewed in color.)

the close-set problems with pre-defined classes, which cannot be generalized to our open-set object
Re-ID task with completely unknown classes on the target domain.

3 Methodology

In this section, we present the details of our uncertainty-aware clustering framework (UCF), which
reduces the effects of the noisy pseudo-labels in clustering-based Unsupervised Domain Adaptation
(UDA). Our key idea is to select samples with reliable pseudo-labels in the target domain for model
training purposes. To this end, we propose hierarchical clustering and uncertainty-aware collaborative
instance selection methods to reduce the adverse effects of noisy pseudo-labels, and therefore
improves the ability of model to learn cross-domain discriminative representations. In addition, we
propose a strong baseline with a new contrastive loss using compact class-level memory banks.

Formally, we denote the source domain data as Dy = { (x,y7) |;N:sl}, where x? and y; denote the
i-th training instance and its annotation, respectively. The target-domain data without ground-truth
labels are denoted as D; = {:cl|fV:t1} Ny and N, denote the sample size in the source and target
domains, respectively.

3.1 Supervised Pre-training for Source Domain

In the first stage of UCF, we train the Re-ID model F'(:|@) with the labeled source dataset D, using
the cross-entropy loss and the triplet loss [20]]; here, 8 denotes parameters of the deep network. The
pre-trained Re-ID model has the basic discriminability for domain adaptation. We then adopt this
pre-trained network F'(-|@) to extract the features of the target domain images. Following the existing
clustering-based UDA methods [65} 13} 23], we use DBSCAN [7]] and Jaccard distance to cluster the
extracted features into K clusters before each epoch. We consider each cluster as a class and assign
the same pseudo label for the instances belonging to the same cluster.

3.2 Uncertainty-aware Clustering Framework

Hierarchical clustering As explained in Section[I] images of visually similar identities may be
grouped into the same cluster, which introduces significant noise to the pseudo-labels. Recent
method [13]] simply regards all instances in the unreliable clusters as outliers. However, this strategy
may result in a large number of informative instances being lost. In the following, we handle this
problem using a hierarchical clustering (HC) method that conducts fine-grained clustering in these
clusters.

Intuitively, a reliable cluster should be compact and independent from other clusters. This means
that the distances between instances in the same cluster should be small, and the distance between
different clusters should be large. To measure the reliability of one cluster, we first calculate the
silhouette coefficiency [42] for each of its instances. Specifically, the silhouette coefficiency for the
i-th instance in the k-th cluster is formulated as follows:
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(a) Select instances with reliable labels before each epoch. (b) Train the network with our new contrastive loss.

Figure 3. Model architecture of UCF in the training stage. UCF adopts a deep network and its temporally
averaged model, i.e., the mean-Net, to cluster images in the target domain. After that, the proposed novel
hierarchical clustering scheme and the uncertainty-aware collaborative instance selection method are used to
select images with reliable labels for model training. This effectively reduces the impact of noisy labels. Step (a)
and step (b) are performed alternately. Note that the parameters of mean-Net model are not updated during back
propagation. In the testing stage, the mean-Net model is adopted for inference. (Best viewed in color.)

where fi denotes the feature of the instance. a(f}) represents the average distance between the
i-th instance and all the other instances in the k-th cluster. Moreover, b( f}) represents the average
distance between the instance and all instances in the nearest cluster, which can be calculated as
follows:

. 1 o .
_ 1 o ,
o) = min{ iz > ds(fi SO S € T (3)

where d (-, -) represents the Jaccard distance, Zj, (Z;) denotes the set of samples belonging to the
k(l)-th cluster, and | - | denotes the number of features in a cluster. Since the Jaccard distance between
each pair of samples has been calculated during DBSCAN clustering, this step hardly increases time
consumption. Finally, we calculate the average silhouette coefficiency for the k-th cluster:

S(T) = ﬁ SOS(F), i € Th. 4

When S(Zj;) < 0, the intra-class distance surpass the inter-class distance. This usually indicates
unreliable clustering from an object Re-ID perspective. We adopt a threshold of « to select these
unreliable clusters. As shown in Fig. 2{a), we do not change the reliable (S(Zy) > «) clusters, but we
decompose an unreliable cluster into several smaller ones. In more detail, we use DBSCAN with the
maximum neighbor distance d for coarse clustering and then measure the reliability of each cluster.
Within each unreliable cluster, we use DBSCAN with the maximum neighbor distance of 2/3d for
fine-grained clustering. Since the number of samples in each unreliable cluster is limited, this step
only adds a small amount of time consumption.

Uncertainty-aware collaborative instance selection Although hierarchical clustering improves
the quality of clustering, there are still inevitably noisy pseudo-labels in many clusters. In order to
identify individual instances with noisy pseudo-labels, we propose an uncertainty-aware collaborative
instance selection (UCIS) method, which adopts a deep network and its temporally averaged (mean-
Net) [47] model to cluster the samples in the target domain separately. The parameters of the two
models at iteration 7" are denoted as 8 and E(T)[@], respectively. F(7)[8] is obtained as follows:

EDIO) = oETV[0] + (1 —0)8, (5)
where o is a temporal ensemble momentum coefficient whose value is within the range [0, 1).

After hierarchical clustering, we obtain the fine-grained clustering results of the two models. We
regard the clustering result of one instance as reliable if it is located in two similar clusters across
the two models. The similarity of the two clusters is evaluated according to their overlap. More



specifically, we propose the following metric to measure the clustering uncertainty of one instance
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where Z;, and Z.an; denote the clusters containing x; by the two models, respectively. A larger

U(x;) indicates larger overlap between Zj, and Zyean; -

u(wz) € [0,1], (6)

The value of U(x;) is therefore able to reflect the reliability of the pseudo-label for x;. We set
B € [0,1] as a threshold to select instances with reliable pseudo labels. As shown in Fig. b), in
each epoch, we only preserve instances for model training where U (;) is larger than 5.

Here we adopt mean-Net to select instances with reliable pseudo labels in offline clustering. Some
methods train two networks together for close-set UDA problems [17], where the two networks
select reliable samples for each other. This strategy may not work well in our framework. This is
because UCF selects samples deemed reliable by both networks based on uncertainty, which requires
the two networks to have different discriminative power. However, as empirically proved in [11]],
the two networks will obtain similar discriminative power if they are trained with exactly the same
supervision signals. Therefore, mean-Net is a better choice in our framework.

3.3 A Strong Baseline for Clustering-based UDA

Fig. [3|illustrates the structure of our method. Aside from the commonly used cross-entropy loss, we
propose to use the following contrastive loss. Given the feature f of one target domain instance, our
proposed contrastive loss is formulated as follows:

log __CoP(F.cP)/T)
Sy eap((f, ex)/7)

where ¢t stands for the positive class prototype corresponding to f, 7 is a temperature factor, and
(-, ) denotes the inner product between two feature vectors. The loss value is low when f is similar
to ¢t and dissimilar to all the other cluster prototypes.

LL(0) = — (7)

Memory initialization FEach cluster is regarded as one class. The class-level memory bank

{e1, -+, ek} is initialized with the mean feature of each cluster. Formally,
1 ,
Ck = m Z Ti- (®)
k FieTy

Memory update During training, ci, is continuously updated within each epoch, according to all
instances in the k-th cluster:

cr — micy + (1 —mhf, fi € Ii, 9

where m! € [0, 1] is the momentum coefficient for updating the target-domain class prototypes.

Discussion Compared with existing methods [55}[18} [1,[37]], our proposed contrastive loss has two
advantages. First, we only need to store class prototypes in the memory rather than the features of
all samples, meaning that our approach has less memory cost. Second, each feature in the memory
bank can be updated frequently within one epoch, which enables accurate loss computation in Eq.
In comparison, each feature in an instance-level memory bank can be updated only once per epoch,
which may bring error in contrastive loss computation.

4 Experiments

4.1 Datasets and Evaluation Protocol

Following [13]], we conduct extensive experiments on multiple large-scale Re-ID benchmarks, includ-
ing two real-world person datasets and one synthetic person dataset, as well as two real-world vehicle
datasets and one synthetic vehicle dataset. We evaluate our proposed method on both the mainstream
real—real adaptation tasks and the more challenging synthetic—real adaptation tasks in person and
vehicle Re-ID problems. The details of these datasets are summarized in Table



Table 1. Statistics of the datasets used for training and evaluation

Dataset # type # train # train # test # query # # total
IDs images IDs images cameras images
Market-1501 [Z71]] real 751 12,936 750 3,368 6 32,217
DukeMTMC- real 702 16,522 702 2,228 8 36,411
RelD [41]
MSMT17 [52] real 1,041 32,621 3,060 11,659 15 126,441
PersonX [44] synthetic 410 9,840 856 5,136 6 45,792
VeRi-776 [27] real 575 37,746 200 1,678 20 51,003
VehicleID [26] real 13,164 113,346 800 5,693 - 221,763
VehicleX [36] synthetic 1,362 192,150 - - 11 192,150

Person Re-ID datasets Market-1501 [71], DukeMTMC-RelD [41]], and MSMT17 [52] are real-
world person image datasets that are widely used in domain adaptive tasks. MSMT17 includes more
images that were captured in more challenging scenarios. The synthetic PersonX database [44]]
was constructed based on the Unity tool [40] with manually designed challenges, including random
occlusion, resolution and illumination changes.

Vehicle Re-ID datasets To verify the generalization ability of our method on different kinds of
objects, we conduct experiments with the real-world VeRi-776 [27]], VehicleID [26], and the synthetic
VehicleX datasets. VehicleX [36] is also generated by the Unity engine [59}146] and further translated
to the real-world style by SPGAN [3]].

Evaluation protocol In our experiments, only ground-truth IDs of the source-domain datasets are
provided for training. Experiments are conducted in line with the official evaluation protocol for each
database. We adopt the widely used top-1/5/10 and mean Average Precision (mAP) as evaluation
metrics. Moreover, following [11}163169]], the mean-Net is adopted for inference for both the baseline
and our UCF method.

4.2 TImplementation Details

We implement our framework in PyTorch [38]]. We adopt ResNet-50 [19] as the backbone of the
feature extractor and initialize the model with the parameters pre-trained on ImageNet [4]. After
Layer4 of the ResNet-50 model, we add one Generalized-Mean (GeM) pooling [39] layer, one
1-D batch normalization [21]] layer, and one L2-normalization layer. The L2-normalization layer
produces 2048-dimensional feature vectors. Following [29]], we perform data augmentation via
random erasing, cropping, and flipping. For both source-domain pre-training and target-domain
fine-tuning, we consistently construct a mini-batch with 64 person images of 16 identities. The person
and vehicle images are resized to 256 x 128 and 224 x 224 pixels, respectively. To achieve faster
convergence, we adopt embeddings of cluster centroids to initialize the weights of the classifiers.
The momentum coefficients in Eq. [0]and Eq. [5]are set to 0.2 and 0.999, respectively. For DBSCAN,
following [65} 13} 23], the hyper-parameter d is set to 0.6 and the minimal number of neighbors in a
core point is set to 4. Following [13}73]], the temperature 7 in Eq. [7]is set as 0.05. The threshold « in
hierarchical clustering is set to 0.0. The uncertainty threshold S is set to 0.8. The ADAM method is
adopted for optimization. The initial learning rate is set to 0.00035 and is decreased by multiplying
by 0.1 on the 50-th epoch. The training lasts until the 80-th epoch.

4.3 Comparison with State-of-the-Art Methods

We compare the performance of UCF with state-of-the-art methods on multiple domain adaptation
tasks, including real—real and more challenging synthetic—real tasks. The performance of these
methods is tabulated in Table [2] Table [3] and Table ] respectively. “Oracle” stands for the Re-
ID performance in the fully supervised setting. It is clear that UCF significantly outperforms all
state-of-the-art methods on both person and vehicle datasets with a plain ResNet-50 backbone.

Results on real—real UDA person Re-ID tasks We compare the performance of UCF with state-
of-the-art methods on six UDA settings in Table [2] It is clear that UCF consistently outperforms
existing approaches by large margins on all these benchmarks. In particular, UCF outperforms
MMT [L1]] by 12.4%, 6.4%, 11.9%, 11.4%, 9.9%, and 8.2% in terms of mAP on these six tasks.
It is worth noting that both UCF and MMT adopt mean-Net during the training stage. Moreover,
UCEF surpasses SpCL [[13] by as much as 8.0% and 12.4% in terms of mAP and top-1 accuracy



Table 2. Comparison with state-of-the-art UDA re-ID methods on real — real tasks

Methods Reference DukeMTMC-RelD— Market-1501 Market-1501—DukeMTMC-RelD
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10
PUL [8] TOMM 2018 20.5 455 60.7 66.7 16.4 30.0 43.4 48.5
TIJ-AIDL [50] CVPR 2018 26.5 58.2 74.8 81.1 23.0 443 59.6 65.0
SPGAN+LMP [3] CVPR 2018 26.7 57.7 75.8 824 26.2 46.4 62.3 68.0
HHL [72] ECCV 2018 31.4 62.2 78.8 84.0 27.2 46.9 61.0 66.7
ECN [73] CVPR 2019 43.0 75.1 87.6 91.6 40.4 63.3 75.8 80.4
PDA-Net [25] ICCV 2019 47.6 752 86.3 90.2 45.1 63.2 77.0 82.5
PCB-PAST [65] ICCV 2019 54.6 78.4 - - 543 72.4 - -
SSG [10] ICCV 2019 58.3 80.0 90.0 92.4 534 73.0 80.6 83.2
MMCL [49] CVPR 2020 60.4 84.4 92.8 95.0 514 72.4 82.9 85.0
ECN-GPP [74] TPAMI 2020 63.8 84.1 92.8 95.4 54.4 74.0 83.7 87.4
JVTC+ [23] ECCV 2020 672 86.8 95.2 97.1 66.5 80.4 89.9 922
AD-Cluster [62] CVPR 2020 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5
MMT [L1] ICLR 2020 71.2 87.7 94.9 96.9 65.1 78.0 88.8 92.5
CAIL [28] ECCV 2020 71.5 88.1 94.4 96.2 65.2 79.5 838.3 91.4
NRMT [68] ECCV 2020 71.7 87.8 94.6 96.5 62.2 71.8 86.9 89.5
MEB-Net [63] ECCV 2020 76.0 89.9 96.0 97.5 66.1 79.6 88.3 92.2
SpCL [12] NeurIPS 2020 76.7 90.3 96.2 97.7 68.8 829 90.1 92.5
Dual-Refinement [3]] TIP 2021 78.0 90.9 96.4 97.7 67.7 82.1 90.1 92.5
UNRN [69] AAAI 2021 78.1 91.9 96.1 97.8 69.1 82.0 90.7 935
GLT [70) CVPR 2021 79.5 92.2 96.5 97.8 69.2 82.0 90.2 92.8
Ours 83.6 93.7 97.7 98.5 715 83.7 91.4 93.5
Oracle 82.7 94.1 97.9 98.8 71.3 84.5 92.2 94.2
Methods Reference Market-1501 -MSMT17 DukeMTMC-ReID—MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10
ECN [73] CVPR 2019 8.5 253 36.3 42.1 10.2 30.2 41.5 46.8
SSG [10] ICCV 2019 132 31.6 - 49.6 13.3 322 - 51.2
ECN-GPP [74] TPAMI 2020 15.2 40.4 53.1 58.7 16.0 42.5 55.9 61.5
MMCL [49] CVPR 2020 15.1 40.8 51.8 56.7 16.2 43.6 543 58.9
NRMT [68] ECCV 2020 19.8 43.7 56.5 622 20.6 452 57.8 63.3
CAIL [28] ECCV 2020 20.4 43.7 56.1 61.9 24.3 51.7 64.0 68.9
MMT [L1] ICLR 2020 22.9 49.2 63.1 68.8 233 50.1 63.9 69.8
JVTC+ [23] ECCV 2020 25.1 48.6 65.3 68.2 27.5 529 70.5 759
SpCL [12] NeurIPS 2020 26.8 53.7 65.0 69.8 26.5 53.1 65.8 70.5
Dual-Refinement [3] TIP 2021 25.1 53.3 66.1 71.5 26.9 55.0 68.4 73.2
UNRN [69] AAAT 2021 253 524 64.7 69.7 26.2 54.9 67.3 70.6
GLT [70] CVPR 2021 26.5 56.6 67.5 72.0 217 59.5 70.1 74.2
Ours 34.8 66.1 76.6 80.6 34.7 66.5 77.0 80.9
Oracle 45.1 74.5 84.8 88.0 45.1 74.5 84.8 88.0
Methods Reference MSMT17 — Market-1501 MSMT17 — DukeMTMC-relD
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10
CASCL [54] ICCV 2019 355 65.4 80.6 86.2 37.8 593 732 77.8
MAR [60] CVPR 2019 40.0 67.7 81.9 873 48.0 67.1 79.8 84.2
PAUL [58] CVPR 2019 40.1 68.5 824 874 532 72.0 82.7 86.0
DG-Net++ [[75] ECCV 2020 64.6 83.1 91.5 94.3 58.2 752 73.6 86.9
D-MMD [35] ECCV 2020 50.8 72.8 88.1 923 51.6 68.8 82.6 87.1
MMT [L1] ICLR 2020 75.6 89.3 95.8 97.5 63.3 77.4 88.4 91.7
SpCL [12] NeurIPS 2020 775 89.7 96.1 97.6 69.3 829 910 93.0
Ours 85.5 94.6 97.9 98.8 71.5 84.1 91.6 93.6
Oracle 82.7 94.1 97.9 98.8 71.3 84.5 92.2 94.2
Table 3. Comparison with state-of-the-art UDA re-ID methods on synthetic — real tasks
Methods Reference PersonX —MSMT17 PersonX —Market1501 PersonX —DukeMTMC-reID
mAP  top-1 top-5 top-10 mAP  top-1 top-5  top-10 mAP  top-1 top-5 top-10
MMT [L1] ICLR 2020 17.7 39.1 52.6 58.5 71.0 86.5 94.8 97.0 60.1 74.3 86.5 90.5
SpCL[I3] | NewlPS2020 | 227 477 600 655 | 738 880 953 969 | 672 818 902 926
Ours 28.3 58.2 69.7 74.3 80.5 92.1 97.1 98.2 70.7 84.8 91.7 9.1
Oracle 45.1 74.5 84.8 88.0 82.7 94.1 97.9 98.8 70.9 84.5 92.2 94.2
Table 4. Performance comparisons with state-of-the-art UDA vehicle Re-ID methods
Methods Reference VehicleID— VeRi-776 VehicleX— VeRi-776
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10
MMT [L1] ICLR 2020 353 74.6 82.6 87.0 35.6 76.0 83.1 87.4
SpCL [13] | NeurIPS 2020 38.9 80.4 86.8 89.6 389 813 873 90.0
Ours 40.5 85.2 88.7 90.9 40.6 84.4 88.4 91.5
Oracle 71.9 93.6 96.9 98.3 71.9 93.6 96.9 98.3




Table 5. Ablation studies on each key component of UCF

Methods Market1501 -=MSMT17 PersonX —+MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10
Source Pretrain 8.4 22.6 329 38.1 2.7 8.8 14.8 18.3
Cross-entropy loss 28.5 57.5 69.6 743 235 51.4 64.3 69.5
Contrastive loss 26.8 55.0 66.5 71.5 22.4 48.8 60.3 64.9
Strong baseline 31.6 61.7 72.3 76.4 26.2 55.0 67.0 71.6
Baseline w/ HC 33.8 63.4 74.5 78.9 27.6 57.1 68.8 733
Baseline w/ UCIS 333 64.6 75.0 79.0 27.6 57.4 68.6 733
Ours(full) 34.8 66.1 76.6 80.6 28.3 58.2 69.7 74.3

Table 6. Performance comparison between our class-level contrastive loss and instance-level contrastive loss

Methods Market1501 -=MSMT17 PersonX —MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10
Instance-level contrastive loss 243 52.5 64.1 69.1 19.1 45.3 56.2 61.4
Class-level contrastive loss (ours) 26.8 55.0 66.5 71.5 22.4 48.8 60.3 64.9

in the Market1501 -MSMT17 task, respectively. Finally, UCF significantly outperforms one very
recent method named GLT [70] by 8.3% and 7.0% in terms of the mAP accuracy, for Market-
1501 -MSMT17 and DukeMTMC-ReID—+MSMT17 tasks, respectively. The above experimental
results clearly demonstrates the effectiveness of UCFE.

UCEF also significantly bridges the gap between the unsupervised and fully-supervised settings. For
example, UCF achieves 94.6% top-1 accuracy and 85.5% mAP on the MSMT17—Market1501 task,
meaning that it surpasses the the performance of “Oracle” on the Market-1501 database by 0.5% in
top-1 accuracy and 2.8% in mAP, respectively. In addition to the reliable pseudo labels generated
by UCEF, another possible reason is that MSMT17 is larger than Market1501; therefore, supervised
pre-training on MSMT17 provides better model initialization before domain adaptation.

Results on synthetic—real UDA person Re-ID tasks Compared with the real —real UDA re-ID
tasks, the synthetic—real UDA tasks are usually more challenging due to the dramatic domain gap.
As shown in Table |3} UCF outperforms state-of-the-art methods by large margins. For example, UCF
beats the SpCL [12] method by 4.1% in terms of top-1 accuracy and 6.7% in terms of mAP on the
PersonX—Market-1501 task. It is also worth noting that the performance of UCF in synthetic—real
tasks still exceeds that of SpCL in real—real tasks. Specifically, UCF achieves 92.1% top-1 ac-
curacy and 80.5% mAP on the PersonX—Market1501 task, which outperform SpCL [[12] on the
MSMT17—Market-1501 task by 2.4% in terms of top-1 accuracy and 3.0% in terms of mAP.

Although these results are promising, there is still a clear gap between UCF and “Oracle” on large-
scale datasets such as MSMT17. This motivates us to develop more robust clustering and pseudo
label generation methods in the future.

Results on vehicle Re-ID datasets As Table ] shows, the performance of UCF surpasses that of
SpCL by 4.8% in top-1 accuracy and 1.6% in mAP on the VehicleID— VeRi-776 task. Moreover,
UCEF outperforms SpCL by 3.1% in top-1 accuracy and 1.7% in mAP on the VehicleX— VeRi-776
task. These experimental results further demonstrate the effectiveness of UCF for object Re-ID.

4.4 Ablation Studies

We systematically investigate the effectiveness of each key component of UCF: namely, the strong
baseline, hierarchical clustering (HC), and uncertainty-aware collaborative instance selection (UCIS),
respectively. Experiments are conducted on real—real and more challenging synthetic—real adapta-
tion tasks, specifically Market1501 +MSMT17 and PersonX—+MSMT17. The results are summarized
in Table[5] “Source Pretrain” represents the Re-ID model trained in the source domain and tested
directly in the target domain.

Effectiveness of the strong baseline We build our baseline with the cross-entropy loss and our new
contrastive loss, both of which are described in Section@ We first evaluate the performance when
only classification loss or contrastive loss is used. As shown in Table|5] the two settings achieve
28.5% and 26.8% mAP respectively for the Market]1 501 —+MSMT17 task. In addition, as shown in
Table[6] our new contrastive loss outperforms the conventional instance-level contrastive loss by 2.5%



Table 7. Performance comparison between UCF and SpCL [13] with our strong baseline

Market1 501 —MSMT17 PersonX—MSMT17

Methods mAP top-1 top-5 top-10 mAP top-1 top-5 top-10
Strong baseline 31.6 61.7 72.3 76.4 26.2 55.0 67.0 71.6
Strong baseline+SpCL [12] 333 63.5 74.0 78.6 27.3 56.8 68.0 73.4
Ours(full) 34.8 66.1 76.6 80.6 28.3 58.2 69.7 74.3
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Figure 4. Comparisons on the Normalized Mutual In-
formation (NMI) scores of clusters during the training
process on the Market1 501 -MSMT17 task.

Figure 5. Performance comparison between UCF and
SpCL [13] with different values of hyper-parameter d.

and 3.3% mAP on the two UDA tasks, respectively. When the two loss functions are used together,
we obtain a strong baseline. For example, compared with “Source Pretrain” in Table[3] our baseline
promotes the top-1 accuracy by 39.1% and 46.2%, as well as mAP by 23.2% and 23.5%, on the two
UDA tasks, respectively. These results prove that our baseline is simple but effective.

Effectiveness of the hierarchical clustering Compared with our baseline, the hierarchical clustering
method consistently yields performance gains. For example, “Baseline w/ HC” outperforms the
baseline in terms of top-1 accuracy by 1.7% and 2.1%, as well as mAP by 2.2% and 1.4%, on
Market1501 —+MSMT17 and PersonX—MSMT17 tasks, respectively. This is because the hierarchical
clustering improves the quality of pseudo-labels, meaning that the deep model can learn more
discriminative features.

Effectiveness of the uncertainty-aware collaborative instance selection When the baseline is
equipped with the UCIS module, the performance of both UDA tasks is promoted. In particular,
UCIS improves the top-1 accuracy of the baseline by 2.9% and 2.4%, as well as mAP by 1.7% and
1.4%, on the two tasks, respectively. The above results demonstrate the necessity of reducing the
impact of noisy labels, as well as the effectiveness of our method.

Effectiveness of the UCF framework Finally, with both the HC and UCIS modules, our full model
achieves better performance than using either of the modules alone. The above comparisons justify
the effectiveness of each key component in our framework.

Furthermore, we test the performance of SpCL [12] based on our strong baseline. We equip SpCL
with a hybrid memory to save target-domain cluster centroids and target-domain un-clustered instance
features. Experimental results are summarized in Table[7} It is shown that UCF still outperforms
SpCL by 2.6% and 1.5% in terms of top-1 accuracy and mAP on Market1501 -=MSMT17 task,
respectively. The above experimental results justify the effectiveness of UCFE.

Analysis of the quality of pseudo labels In Fig. ] we illustrate the improvement in the quality of
pseudo labels. Following SpCL [[13]], we illustrate the Normalized Mutual Information (NMI) [34]
scores of clusters during training on the Market1501—-MSMT17 task. NMI [34] is an index that
measures the accuracy of the clustering results. It can accordingly be observed that, compared with
the baseline, the quality of the pseudo-labels is significantly improved when the proposed techniques
are applied.
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4.5 Parameter Analysis

We tune the hyper-parameters on the Market-1501 -MSMT17 task, then directly apply the chosen
hyper-parameters to all the other tasks.

Maximum neighbor distance d for DBSCAN. DBSCAN is one of the most popular clustering
algorithms in the UDA Re-ID literature. For DBSCAN, the maximum neighborhood distance d is an
important hyperparameter. As demonstrated in Fig. [5} we find that the value of d may considerably
affect the performance of state-of-the-art methods. In particular, a larger value of d may result in a
dramatic performance drop; this is because the pseudo-labels will contain more noise as the value of
d increases. In comparison, the performance of UCF is significantly more robust. This is because
UCEF successfully improves the clustering quality and removes samples with unreliable pseudo-labels.

Cluster reliability threshold « for hierarchical clustering « is a threshold on S(Z). According
to the definition of S(Zy), a negative value of S(Z;) means that intra-class distance surpasses inter-
class distance. This usually indicates unreliable clustering from an object Re-ID perspective. As
demonstrated in Fig. [] our framework achieves the optimal performance when « is set to 0.0 on the
MSMT17—Market-1501 task, which is consistent with our above analysis. When « is larger than 0.0,
the top-1 accuracy and mAP gradually decrease. This is because some reliable clusters will be forced
to be decomposed, resulting in more noisy pseudo-labels and therefore performance degradation.

Uncertainty threshold £ for collaborative instance selection As described in Section[3] we require
an uncertainty threshold f to select samples with reliable pseudo-labels. In Fig. [/| we investigate
the effect of different values of 3. As can be seen from Fig. [/ the performance of UCF is generally
robust to the value of 5 while the best performance is achieved when /3 is set to 0.8. The performance
of UCF reduces when S is set to a smaller value, such as 0.6; this may be because samples with noisy
pseudo-labels cannot be identified when the threshold is low.

4.6 Qualitative Comparisons

In Fig. [8} we utilize t-SNE [32] to visualize the clustering results by “Baseline”, “Baseline w/ HC”,
“Baseline w/ UCIS”, and the “UCF” model for the Market-1501 -MSMT17 task, respectively. We
have the following observations.

First, as illustrated in Fig. Eka), due to the limited discriminative power of the Re-ID model in the
target domain, many visually similar images may be grouped into the same cluster. The size of such
clusters is often large. Second, as illustrated in Fig. [§(b), when the proposed hierarchical clustering
(HC) method is utilized, the unreliable clusters in Fig. [§(a) are decomposed into multiple smaller
ones. Third, as shown in Fig. c), the uncertainty-aware collaborative instance selection (UCIS)
method identifies instances with unreliable pseudo labels, which are represented using the gray color
in the figure. Finally, combining UCIS and HC can achieve the best clustering results, which proves
that the two modules are complementary. The above visualization results are consistent with the
results in the experimentation section.
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5 Conclusion

In this work, we propose an uncertainty-aware clustering framework (UCF) to tackle the problem
of noisy pseudo labels in clustering-based UDA object Re-ID tasks. UCF handles the label noise
problem on two levels. First, a novel hierarchical clustering scheme is proposed to promote the
clustering quality; second, an uncertainty-aware collaborative instance selection method is introduced
to select images with reliable labels for model training. These two techniques significantly relieve
the noise in pseudo-labels and consequently improve the quality of deep feature learning. Our UCF
method significantly outperforms state-of-the-art object Re-ID methods on many domain adaptation
tasks.
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