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3D Face Reconstruction and Gaze Tracking in the

HMD for Virtual Interaction
Shu-Yu Chen, Yu-Kun Lai, Shihong Xia, Paul L. Rosin and Lin Gao∗

Abstract—With the rapid development of virtual reality (VR)
technology, VR headsets, a.k.a. Head-Mounted Displays (HMDs),
are widely available, allowing immersive 3D content to be viewed.
A natural need for truly immersive VR is to allow bidirectional
communication: the user should be able to interact with the
virtual world using facial expressions and eye gaze, in addition to
traditional means of interaction. The typical application scenario
includes VR virtual conferencing and virtual roaming, where
ideally users are able to see other users’ expressions and have
eye contact with them in the virtual world. In addition, eye
gaze also provides a natural means of interaction with virtual
objects. Despite significant achievements in recent years for
reconstruction of 3D faces from RGB or RGB-D images, it
remains a challenge to reliably capture and reconstruct 3D facial
expressions including eye gaze when the user is wearing an
HMD, because the majority of the face is occluded, especially
those areas around the eyes which are essential for recognizing
facial expressions and eye gaze. In this paper, we introduce a
novel real-time system that is able to capture and reconstruct
3D faces wearing HMDs, and robustly recover eye gaze. We
further propose a novel method to map eye gaze directions
to the 3D virtual world, which provides a novel and useful
interactive mode in VR. We compare our method with state-
of-the-art techniques both qualitatively and quantitatively, and
demonstrate the effectiveness of our system using live capture.

Index Terms—real-time facial performance capture, eye track-
ing, head-mounted display, user interaction, communication,
virtual reality

I. INTRODUCTION

W
ITH the rapid development of virtual reality (VR)

technology, both the academic and industry commu-

nities have contributed a lot to create a more mature and

popular VR technology. One of the contributions is the various

types of portable head-mounted displays (HMDs) which could

bring immersive 3D VR content to the users. To provide a

truly immersive experience, it is essential to allow users to

interact naturally with the virtual environment. Some works

about content creation and exploration in virtual reality are

introduced in the survey [1]. Moreover, arguably the most

reasonable form of interaction between human subjects is via
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facial expression and eye contact. As described in [2], [3],

emotions are often conveyed through the eyes which are an

indispensable part of facial expression. However, the feeling of

immersion on current multi-user HMD systems is problematic

due to the lack of real-world expression and eye gaze in the

virtual world. To realize the interaction, they either require

additional input devices (e.g. game consoles), which are non-

immersive and distracting, or ask the user to perform slow and

unnatural head movements. In contrast, eye gaze is a natural

way of showing interest in objects, which is both intuitive

and efficient. Therefore, capture and reconstruction of facial

expressions and estimation of eye gaze while wearing HDMs

are urgent problems to be solved in VR technology. Such

technology makes it possible for users to see each other’s

expression and have eye contact, making VR much more

realistic and immersive, and user interactions more natural.

Moreover, eye gaze tracking has additional benefits for VR,

for example, to reduce the scene rendering time by prioritizing

rendering of objects close to the user’s focus, and to provide a

means of interaction with objects, e.g., virtual selection using

eye gaze.

Expression animation is essential for a wide range of appli-

cations, such as movie production, 3D games, etc. Significant

effort has been put into 3D facial expression capture and recon-

struction. Most of the work reconstructs 3D facial expressions

by using a single RGB camera, including methods that recon-

struct 3D expressions offline [4] and real-time reconstruction

of 3D expressions [5], [6]. Such approaches, however, have

failed to work in the cases where the user is wearing VR

glasses, since essential facial features are occluded. Moreover,

such work only reconstructs facial expressions without track-

ing the line of sight, which is also important for interaction.

Among various communication mechanisms, facial expres-

sions and eye contact provide essential clues for emotion,

attentional focus and future intentions [7]. They are often

subtle, but effectively perceived by human viewers. Capturing

high quality facial expressions and eye gaze is necessary to

improve the realism of 3D animation.

More recent attention has focused on the reconstruction of

facial expression and eye gaze. Wang et al. [8] developed the

first system that is able to simultaneously perform 3D facial

expression reconstruction and eye gaze tracking, using a single

RGB camera as input. However, their method only deals with

the case where the face is clearly visible without occlusion,

and so does not work when HMDs are worn. The methods

proposed by Li et al. [9] and Olszewski et al. [10] are able

to reconstruct 3D facial expressions while wearing HMDs.

However, tracking the eye gaze and building a personalized
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facial model is beyond the scope of these works. Moreover,

the former equips the HMD with an external depth camera, and

uses indirect pressure sensors to estimate the facial expression

coefficients of the regions hidden by the HMD. However,

the impact of these pressure sensors on the estimated facial

expression is understudied since the strain signal may be

different for each user, and the strain gauge requires a stable

contact to the face. The latter utilizes the separate visible parts

(e.g. around the mouth area) of the face along with audio,

and heavily relies on machine learning to infer 3D facial

expressions rather than actually sensing them.

Unlike such works, we propose to directly capture occluded

facial features within HMDs by using 3 infrared (IR) cameras

where two cameras are used for capturing the eyes and the

remaining camera captures the unoccluded face (see Fig. 1).

Infrared LED lamps are used to illuminate the eyes and the

face, projecting invisible light so as to not affect the user

experience. An illustration of our hardware setup is shown

in Fig. 1(c). To reconstruct 3D facial expressions, we fuse the

output of the IR cameras, detect feature points for each IR

image and use them to drive 3D facial models. We further

propose a new eye gaze tracking method based on sampling

and correlation of 3D directions with captured 2D IR images

of the eyes, which improves accuracy and robustness. Facial

expressions are reconstructed based on captured images of

facial features, and the 3D facial expressions and eye gaze are

simultaneously reconstructed in real time. The outside camera

is fixed to the HMDs, along with cell phone sensors to track

head rotations. Thus, our system is capable of handling the

variation of facial orientation, which means the user can move

their head freely and has a more immersive VR experience.

Our system also works out the eye gaze focal point in the

virtual world, which allows quick and intuitive interaction

such as object selection. Fig. 17 shows a typical scenario

demonstrating our system in action. Users wearing HMDs

participate naturally in a conversation where they are able to

see each other’s facial expression and have eye contact, even

if they are geographically apart. The main contributions of our

paper are as follows:

• We propose a novel real-time system to capture and

reconstruct both 3D facial expressions and eye gaze while

wearing HMDs. Our system captures subtle expression

and eye movement, and allows free head movement.

• We develop a new eye gaze tracking technology which

identifies eye gaze direction by sampling in the 3D space

and maximizing correlation with captured IR images, and

eye gaze is used to interact with the VR scenes in an

intuitive and flexible manner.

II. RELATED WORK

In the past couple of years, with the emergence of HMDs

and the development of the virtual game industry, we have seen

significant advances in VR technology and applications. More

recent attention has focused on how to improve the immersion

and interactivity of the HMDs. We will first begin by reviewing

state-of-the-art methods of facial performance capture and eye

gaze tracking. It will then go on to the research that specifically

addresses these functionalities with HMDs.

IR Camera(Left) IR Camera(Right)

IR Camera(Outside)

(a)

(b)

(c)

Fig. 1. Our hardware setup: HMDs fitted with three infrared (IR) cameras.
(a) the cameras shown in the red and green boxes capture the left and right
eye images respectively, (b) the camera shown in the magenta box is used
to capture unoccluded facial motion. (c) the camera configuration and the
location of the infrared LED lamps.

A. Facial Reconstruction and Gaze Tracking without HMDs

3D facial expression reconstruction is an active topic due to

its wide use in the movie and game industry. Most research

investigating facial reconstruction has utilized either RGB or

RGB-D cameras. Some methods [11], [12], [13], [14], [15]

use multiple RGB cameras to capture 3D facial expressions.

Although effective, these methods are complex to set up. To

address this, methods using a single camera are developed.

Zhang et al. [16] propose a semantic volumetric representation

and use it to detect 3D landmarks from an image. Song et

al. [17] propose a coupled radial basis function network (C-

RBF) to recover the mapping between 2D and 3D faces.

Cao et al. [18] build a database containing 150 subjects each

with 47 facial expressions, and propose a multi-linear fitting

method to reconstruct 3D faces from 2D feature points. Cao et

al. [5] further propose a method which adds wrinkle details to

the reconstructed facial expressions by building relationships

between images and wrinkles. This method reconstructs the

geometric details of the expression in real time and makes

the results more realistic. Kong et al. [19] design a headpose

estimation method requiring not only color images but also

additional depth information. Image segmentation is also used

in facial tracking, such as Hsieh et al. [20] with an RGB-D

sensor and Saito et al. [21] with RGB input. Recently, neural

networks are also used to reconstruct faces. Tu et al. [22]

take a Convolutional Neural Network (CNN) as a regressor

to get the 3D Morphable Model (3DMM) parameters from

an image, and they also propose a novel self-critical learning-

based mechanism to improve the 3D face model. Based on

3DMM, Wen et al. [23] propose a method to predict the mouth

movement from audio input and then use it to synthesize video

to improve the realism of the generated results. Chai et al. [24]

propose a dual-stream framework to decompose the face into

geometry and texture streams, and find the corresponding

relationship between the 3DMM albedo map and the original

face in the texture stream. Unlike using a collected database,

Fan et al. [25] propose dual neural networks using 3D point

clouds to represent face geometry and utilize Markov random

fields to refine it. Chaudhuri et al. [26] design an end-to-
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end framework to disentangle the facial geometry and albedo

maps, but they need 3D scans to train the model. To address it,

Yao et al. [27] propose an framework which could reconstruct

the 3D faces with wrinkle from images and also animate the

3D face with realistic wrinkle. The above methods reconstruct

the 3D facial expressions without eye gaze, which affects the

realism of captured facial animation.

In our daily face-to-face interactions, we pay attention not

only to each other’s facial expressions, but also to their eye

motions. Consequently, the research on eye movement is an

active topic in recent years. Wang et al. [28], Hansen et al. [29]

and Kar et al. [30] summarize the related work of gaze model

and estimation. Wood et al. [31] first get the boundary points

for the iris region, and then use random sample consensus

(RANSAC) to fit ellipses to those boundaries. They map the

fitted ellipse into a 3D model to get 3D position and orientation

of the eyes. Their method achieves a rate at 12 fps which is

still unsuitable for high quality real time performance.

Calibration-free methods are more convenient in gaze

tracking, e.g. Tripathi et al. [32] utilize Gaussian Process

Regression models to achieve eye gaze tracking, Chen et

al. [33] estimate gaze based on gaze probability computed

from either a saliency map for a static image-viewing task

or a Gaussian distribution for viewing continuous movies of

a dynamic environment. Sugano and Bulling [34] capture

20 users’ gaze data, analyze the offset errors, and present

an automatic calibration method for eye tracking. Wood et

al. [35] use high-quality head scans to build a 3D morphable

model of the eye region that incorporates a separate eyeball

component modeled from anatomical measurements and high-

resolution iris photos. Gaze estimation is performed by local

optimization using analysis-by-synthesis, which takes several

seconds per image that is too slow to use for a real-time

system. Sugano et al. [36] use a learning-by-synthesis method

to attain calibration-free gaze estimation and build a multi-

view gaze database for learning. Morimoto et al. [37] design

one of the most successful eye gaze capture approaches. Due to

its high level of simplicity and effectiveness, many commercial

eye trackers adopt this technique. More methods are proposed,

through tracking the iris contour [38] or the pupil contour [39].

For the human face, there is asymmetry in the eye area.

By analyzing this, Cheng et al. [40] designed a face-based

asymmetric regression-evaluation method to estimate eye gaze.

Lu et al. [41] propose an appearance-based regression

method, which focuses on the representation of “uncalibrated

gaze pattern” and asigns it to gaze positions. Pfeuffer et

al. [42], [43] develop a calibration method which can perform

calibration without the user’s awareness. Instead of focusing

on tracking, they propose a strategy for data selection which is

used in the calibration step. This method is based on the user’s

attention to a moving object, and if the user is distracted this

will affect the accuracy. And for each use, the calibration data

is different, which may cause interference in the comparison

of methods.

Cao et al. [44] use a regression-based method to detect facial

2D landmarks including eyes, nose and chin from an image,

but the landmarks are not in 3D space. To address this, Wang et

al. [8] develop the first real-time 3D eye gaze capture method

with a web-camera. They employ a multi-linear method and

use a maximum a posterior (MAP) probabilistic framework

to reconstruct facial models with 3D eye gaze. However, this

method fails to track eye gaze if there is blinking or facial

occlusion, and therefore does not work in VR applications.

Several methods [45], [8], [46] are proposed to estimate eye

gaze, however these methods are not designed for HMDs and

cannot be directly applied to the HMD settings.

B. Facial Reconstruction and Gaze Tracking with HMDs

Some pioneering works are proposed to reconstruct the 3D

face while the user wears an HMD. Li et al. [9] are the

first to solve the problem of expression capture when having

large occlusion with an HMD. They propose to estimate the

expression parameters of the occluded area using the electrical

signals obtained by the strain sensor and use an external depth

camera fixed on an HMD to capture facial geometry. They

integrate those two sources of information and apply them to

the virtual avatar to produce the expression animation. Luo et

al. [47] also use electrical signals, but they need to pre-capture

an image without the HMD to build personal blendshapes.

Olszewski et al. [10] use a fixed external RGB camera to

control a predefined avatar in real-time. Image acquisition

is divided into two parts, the RGB data is for the mouth

region and the eye image is captured by the integrated camera

inside the HMD. They use a convolutional neural network

to get the expression parameters from the image, so as to

realize the expression performance of avatar. This research

work is focused on controlling a digital avatar, rather than for

realistic 3D facial reconstruction and does not take eye-gaze

tracking into consideration which is necessary to provide a

vivid immersive experience. Wei et al. [48] and Lombardi et

al. [49] could animate 3D avatar heads through the built-in

camera. But they are not general methods, they need to build

3D head and then train the network for each user.

Zhao et al. [50] focus on facial image synthesis. They put

two near-infrared (NIR) cameras inside the HMD and one

RGB camera outside. Although they reconstruct facial geom-

etry they use the IR images and facial model for RGB image

retrieval to synthesize a complete facial image, and eye-gaze

is not taken into consideration. Rekimoto et al. [51] propose

a concept called “face-through HMD”, but they need to pre-

scan a detailed 3D model and pre-calibrate the correspondence

between model and the image of the eye area for each user.

They use IR-image colorization to change the eye region of

the model texture, rather than 3D facial reconstruction or eye

tracking. Lombardi et al. [52] split the facial area into three

parts and design a system to obtain facial geometry and texture

through the input of three images. Image-to-model mapping

is not directly trained; instead they pre-train a conditional

variational autoencoder (CVAE) to reconstruct the mesh and

texture. Then, they reconstruct the images using a VAE and

learn a transformation from the latent space in the VAE to

the latent space in the CVAE. Although this method could

drive a detailed 3D model, it is specific to a particular person.

Commercial eye gaze tracking systems such as Tobii [53]

and Pupil Lab [54] use IR cameras attached in the HMDs.
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Fig. 2. The pipeline of the proposed method. The input of this system is the images captured by the cameras shown in Fig. 1. The feature points on the face
and around the eye will be detected by the specified detector. Then the 3D face and eye gaze will be reconstructed according to the feature points and the
image (more details are described in Sec. IV and Sec. V-C). After the gaze state is acquired, eye movements can be used to interact with virtual objects. The
reconstructed 3D face can be used to drive the animation of a digital avatar.

(a) (b) (c)

Fig. 3. An example showing the three infrared images captured simultane-
ously from different views. Green dots are used to indicate feature points. (a)
the right eye, (b) the left eye, (c) the face.

However, they either do not publish implementation details or

need specific equipment. Thies et al. [55] and Song et al. [17]

propose a novel system to reconstruct 3D facial animation

and 3D eye gaze jointly. These two methods need to attach

the ArUco AR markers on the HMDs, and put the camera

in the front of the user to track the HMDs which limits the

range of the users’ movement. As mentioned in [17], ArUco

AR markers may cause some flicking and failure when the

user is moving. Compared with these works, our method can

reconstruct the 3D face and eye gaze in the HMDs with

unrestricted movement. A novel interactive method with the

virtual environment is also developed based on the 3D eye

gaze.

In this paper, we propose a system to estimate the 3D

eye gaze of users wearing HMDs. Our method is robust to

occlusion of faces and eye blinking. Moreover, we develop

an approach to allow gaze-based interaction/selection which

is able to cope with built-in lenses in HMDs, by using a short

calibration step.

III. SYSTEM OVERVIEW

To address the occlusion of the face by HMDs, and consid-

ering that VR content can be enjoyed when the environment

is dark, we use three infrared cameras, two inserted in the

HMDs for capturing eye images, and one for unoccluded facial

movement, as shown in Fig. 1. Five infrared LED lamps are

also fitted internally to each side of the device wall to provide

uniform illumination. Camera locations are carefully chosen

to avoid affecting the user’s views and are embedded in the

corners of the wall. Using this headset, the full face image

can be divided into three parts. We then use detection models

(Sec. IV-A) to get feature points that are used for multi-

linear face reconstruction (Sec. IV-B). After that, we focus

on eye gaze tracking based on eye images (Sec. V) to get the

integrated model. Two interactive applications with VR-scenes

are presented in Sec. VII.

In order to obtain the posture of the head, which is needed

for animation, we use the sensor of a cell phone fitted to

the HMD to get the orientation information. When wearing

the device, the relative spatial relation between the phone and

the head is fixed, and so the cell phone’s orientation sensor

provides the rotation information of the head. When the phone

is placed into the headset, the coordinate system {xp,yp,zp}
obtained by the phone sensor has a clear fixed correspondence

with the coordinate system {x f ,y f ,z f } of the face model.

Details can be found in the supplementary material. We use the

OmniVision OV7675 image sensors which produce 640×480

infrared images at 30 fps. The three cameras are synchronized

by activating each CCD’s VSYNC pin simultaneously. The

overall workflow of our method is summarized in Fig. 2.

IV. 3D FACE RECONSTRUCTION

A. Detection of Feature Points

Traditional methods for facial feature point detection typ-

ically detect 2D feature points from the full face area on an

image. Since we use three infrared cameras simultaneously

capturing the images of different areas of the face, we inde-

pendently detect feature points in the three images. Training

images are required to locate such feature points robustly.

Images in the existing facial databases are grayscale or color

images with manual annotation of landmarks. IR images have

different characteristics, and the IR images of the eyes are

also captured from quite an unusual view. Due to the use of

IR images and constraint of camera location, there are no such

labeled facial and eye image datasets available, so we captured

facial infrared images and labeled them manually. We captured

IR images for 30 subjects and altogether manually labeled

6000 images of eyes and 3000 images of occluded faces. An

example of the captured images along with the feature points

are shown in Fig. 3. As Figs. 3(a)(b) show, 14 feature points

are landmarked in each eye image, out of which 6 are on

the eyebrow, and 8 are around the eye. In Fig. 3(c), 39 feature

points are chosen on the face excluding the eyes and eyebrows.

Our method thus has a total of 67 feature points.
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We employ the method [56] to extract feature points, due

to its efficiency, accuracy and reliability. Given the labeled

training data, the method takes a set of triplets involving an

input image, initial feature point positions, and an update

vector from the landmarked datasets and learns a set of

cascaded regression trees using gradient tree boosting, to

optimize a loss function of sum of squared errors. At runtime,

it determines the update vector for feature positions using

St+1 = St + rt(I,S
t), (1)

where S is a vector containing feature point positions, t is

the index of the cascaded regressor being used, St and St+1

are feature point positions before and after applying the t-th

regressor rt , which predicts the update vector of S based on

the current feature point positions St and the input image I.

In the training stage, we build three models for images

from the three IR cameras, which detect a set of feature

points from each view captured by the camera cam (cam

= 1, 2, 3). Denote by pcam
k the k-th feature point from the

image of a given camera cam, and ncam is the number of

feature points in the view of camera cam. To put feature

points extracted from individual images into a consistent

coordinate system, we calibrate the three cameras using a

multi-camera self-calibration method [57], which produces the

intrinsic and extrinsic parameters of the cameras. Denote by

Pcam the camera projection matrix associated with a given

camera cam, Pcam = Kcam[Rcam T cam], where Kcam is the

intrinsic parameter matrix of the camera and [Rcam T cam] is

the extrinsic parameters (rotation and translation) that describe

the transformation between the world coordinate system to the

camera coordinate system.

B. 3D Reconstruction using Multilinear Fitting

After detecting the feature points from the three images,

we reconstruct the 3D facial expression based on the detected

feature points, using a multilinear model [58]. The multilinear

model is trained using their large database containing 150

subjects, each with 47 expressions. It utilizes tensor decom-

position to obtain the core tensor Cr which separates variation

of identity with that of expression. A new 3D face can be

synthesized by specifying the identity parameters mid and the

expression parameters mexp:

M(mid ,mexp) =Cr×2mT
id×3mT

exp, (2)

where M is the obtained 3D model. We further select the

same set of landmarks corresponding to the feature points in

different camera views. Denote by Mcam
k the 3D point on the

reconstructed face model M corresponding to the feature point

pcam
k . For each camera, the number of detected landmarks is

denoted as ncam. The reconstructed 3D face model may differ

by a global rigid transformation (R,T ) where R is the rotation

matrix and T is the translation vector. We formulate the 3D

facial expression reconstruction problem as optimizing model

parameters (mid ,mexp) and a global rigid transformation (R,T )
such that the transformed 3D face model when projected to

individual camera views has landmarks as close as possible

to the detected feature points, i.e. minimizing the following

energy:

Epro jection(mid ,mexp,R,T )

=
3

∑
cam=1

ncam

∑
k=1

∥Pcam (RM(mid ,mexp)
cam
k +T )− pcam

k ∥2. (3)

This non-linear least squares problem can be solved effi-

ciently by Google-Ceres [59]. The problem is optimized by

iteratively alternating the following steps: 1) optimizing global

transformation R,T ; 2) optimizing identity parameters mid , and

3) optimizing expression parameters mexp. Since it is obvious

that the same subject is being captured for a sequence, in the

first few iterations both the identity parameters mid and the

expression parameters mexp are solved simultaneously. After

that, assuming the identity is correctly identified and kept

unchanged, we keep mid fixed, and only optimize mexp for the

remaining frames. This helps to further improve the efficiency

of our method, achieving real-time performance (see Sec. VI).

To facilitate eye gaze tracking, we also specify the eyeball

center for each model in the database, so when we reconstruct

the 3D face expression, the eyeball center can also be obtained

directly using the multilinear fitting. To achieve this, similar

to [8], we fix the eyeball radius r̂ to 12.5mm. In the training

stage, for each model we calculate the average position of the

eyelid vertices and offset the average position by r̂ in the z-

axis to obtain the initial eyeball center, which is then manually

improved.

The 3D reconstruction obtained using the optimization

above generally works well. However, it may produce slight

jittering which may not be visually attractive. To address this,

we further introduce a smoothness constraint for improved

temporal coherence. Since the identity weight is fixed after

the initial iterations, we only add constraints for the expression

weight:

Et
smooth = ∥mt

exp −mt−1
exp ∥

2, (4)

where mt
exp and mt−1

exp are the current and previous identity

weights. When optimizing mt
exp, we instead minimize the

overall energy:

E = Epro jection +λEt
smooth, (5)

where λ balances the importance of both terms, and we set

λ = 5 in our experiments.

V. EYE GAZE TRACKING AND FOCAL POINT LOCATION

In this section we will first introduce our eye gaze tracking

system in detail and then map our 3D eye gaze to image

coordinates to get the location of the focal point. Eye gaze

tracking aims to calculate the 3D eye gaze direction at each

time instance, given two infrared eye images. Denote by V the

eye gaze state, which is a triple:

V = (c,riris,d), (6)

where c = (cx,cy,cz) expresses the position of the eye ball

center, riris is the radius of the iris and pupil region, and the 3D

pupil center indicates the eye gaze direction and is represented

as d = (φ ,θ) using 3D spherical coordinates.
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Algorithm 1 Calculating the initial eye state

Require: the position of eyeball center c,

the camera for eye area cam,

the projection matrix Pe of cam,

the captured image Ie,

the feature point pe.

Ensure: the iris radius riris, the eye gaze direction d.

1: Locating 2D Iris Center as follows:

Connect pe to get the eye mask Maske

Use the pixel classifier on Ie to obtain the probability map

Mape

Cluster the pixel in Mape to get the center of iris ocen

2: Estimating 3D Iris Radius as follows:

Extract edges from Ie using the Canny operator

Filter to get the filtered edge pixels pe ∈ E

Map pe and ocen to 3D to calculate the iris radius riris

3: Calculating eye gaze direction as follows:

Calculate the consistency of samples in multisacle sam-

pling

Find the most consistent eye gaze direction d

4: return riris, d

Since the size and location of eyeballs are different for each

individual, we need to initialize those before eye gaze tracking.

The center of the eyeball c is estimated by reconstructing the

3D facial position (see Sec. IV-B). In the initialization stage

(described in Algorithm 1), we first locate the 2D iris center

(Sec. V-A), and then estimate the radius riris of the iris in the

3D space (Sec. V-B). At runtime, we use multi-scale sampling

and a robust correlation approach to work out the eye gaze

direction d (Sec. V-C).

A. Locating 2D Iris Center

We use a method similar to [8] to locate the 2D iris center

in the initialization stage. As shown in Fig. 4(a), the region

of interest in the eye image is determined by the bounding

box of the detected feature points (highlighted in Fig. 4(b)).

We connect detected feature points to form a closed polygon

which encloses the mask for the eye region (see Fig. 4(c)). For

all the pixels in the eye region, we employ the pupil iris pixel

classifier [8] to estimate the probability of a pixel belonging to

the iris and pupil region (see Fig. 4(d)). The region is extracted

using mean-shift clustering and the 2D center ocen is shown

as the green dot (see Fig. 4(e)).

B. Estimating 3D Iris Radius

In the initialization stage, the radius riris of the iris also

needs to be estimated, as it is subject dependent. To achieve

this, we extract the edge map from the eye image. We

employ the Canny edge detector to extract edges from images.

However, simply using the Canny method produces many

irrelevant edges. From Fig. 5(a), it can be observed that in the

infrared eye image, the edges between iris and pupil are clearly

present, which can easily mislead iris radius estimation. Two

circles of edges exist (shown in Fig. 5(b)): one is the edge

of the iris and the other is the edge of the pupil. However

(a) (b) (c)

0

0.5

1

(d) (e)

Fig. 4. Steps to estimate the center of the iris. (a) the image captured by one
IR camera; (b) the detected feature points are highlighted in green; (c) the
eye mask that is defined by connecting the feature points; (d) the probability
map calculated by the pixel classifier that detects the iris and pupil; (e) the
iris and pupil regions where the green dot corresponds to the center of the
iris.

(a) (b) (c)

Fig. 5. Steps to extract an iris edge map. (a) the original image captured by
an IR camera, (b) the edge pixels extracted using the Canny operator, (c) the
edge map after removing outliers both outside and inside the iris boundary.

the pupil size changes as the light and focus change, making

it difficult to track, whereas the size of the iris is fixed. To

address this, we use the following two criteria to filter out

irrelevant edges and only preserve edges corresponding to

the iris boundary. First, we calculate the Euclidean distance

between edge pixels pe and the center of the iris ocen, and

only keep those edge pixels that satisfy:

t1H ≤ ||pe −ocen||2 ≤ t2H, (7)

where H is the height of the eye region, t1 and t2 are

thresholds, set to 0.1 and 0.6 respectively in our experiments.

Second, we further require edge pixels to be consistently

oriented. Denote by ∇e the gradient direction at edge pixel

pe, then it needs to satisfy:

(pe −ocen) ·∇e ≥ 0, (8)

which means the angle between the gradient direction and the

vector connecting the edge pixel to the center of the iris is

no more than 90◦. The filtered edges are shown in Fig. 5(c),

(a) (b) (c) (d)

Fig. 6. Projected eye images with high correlation to the captured IR images.
(a)(c) the captured IR images, (b)(d) corresponding projected images with the
eye region rendered in white and the iris region rendered in dark gray.
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Fig. 7. Illustration of two-stage sampling for efficient eye gaze direction
estimation. Firstly, at the coarse stage, the solution space of the eye rotation
will be uniformly sampled with the 10×10 grid indicated at ’Sample Stage 1’.
Then for the fine stage, the solution with the largest score will be re-sampled
by a 3×3 sub-grid to refine the accuracy of the solution.

(1) (2) (3) (4)

Fig. 8. Four different patterns of calibration paths (The fourth pattern is the
random location). Taking the 4× 4 grid as an example, the arrows indicate
the display order of the vertices from previous one to next.

and the majority of irrelevant edge pixels have clearly been

removed.

Once we obtain a set of filtered edge pixels pe ∈ E , we map

them as well as the 2D iris center ocen to 3D using the intrinsic

parameters Kcam of the camera. The iris radius is calculated as

the average distance between the edge pixels to the iris center

in 3D space:

riris =
1

|E | ∑
pe∈E

∥Pc,r̂

(

(Kcam)−1
p̃e

)

−Pc,r̂

(

(Kcam)−1
õcen

)

∥,

(9)

where p̃e and õcen are the homogeneous coordinates of pe and

ocen, respectively. Given the eyeball with center c and radius r̂,

the intersection point of the eyeball and the line that connects

the eyeball center and the viewpoint x can be calculated by

the function Pc,r̂(x) as follows:

Pc,r̂(x) = c+ r̂
x− c

∥x− c∥
. (10)

C. Eye Gaze Tracking

In the previous section, to obtain the 3D iris radius, we use

Eq. 10 to calculate the 3D location of the iris center in the eye

ball and use it to get the initial 3D eye gaze direction. Since

eye movement is mostly continuous, to work out the current

eye gaze direction dt , we uniformly sample directions d ∈ D

around the previous direction dt−1. For each sampled direction

d, we project the 3D eyeball including the iris region (rendered

using the calculated center position c and iris radius riris) to

the camera’s image space, and intersect the image with the eye

region. Fig. 6 shows the projected images (the right image of

each image pair), where the eye region is rendered in white,

and the iris region is rendered in dark gray. Denote by Id the

pixels of the rendered image in the eye region with eye gaze

direction d, and Ie the captured eye image, both considered
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Pattern 1 2 3 4

Error (%) 4.4435 2.6048 4.4979 7.4044

(c)

Methods Multiquadrics Bilinear Bicubic Gaussian

Error (%) 2.6048 2.7932 3.0812 2.9683

(d)
Fig. 9. Different relative error distributions calculated by Eq. 14. (a) The error
distribution of focal point location using four patterns in Fig. 8(a), (b) the error
distribution of four approximation functions with the same pattern(Pattern 2).
(c) The average relative error for different patterns. (d) The average relative
error for different approximation functions.

as long vectors. Then we calculate their consistency ρ using

the Pearson correlation coefficient due to its robustness and

efficiency

ρ(Id , Ie) =
cov(Id , Ie)

σId σIe

=
E[(Id −µIe)(Ie −µId )]

σId σIe

, (11)

where µ and σ are the mean and standard deviation, cov is the

covariance, and E(·) is the expectation. The eye gaze direction

dt is chosen as the direction that maximizes ρ:

dt = argmax
d∈D

ρ(Id , Ie). (12)

The projected image with the highest correlation ρ is selected

as the tracking state. Some examples are shown in Fig. 6

where (a)(c) are the captured IR images of eyes and (b)(d)

are projected images of the matched eye state.

Multiscale sampling. To further improve efficiency, we use

a hierarchical sampling strategy for the eye gaze direction

sampling. As illustrated in Fig. 7, the first layer is sampled

sparsely and in the second layer dense samples are made

around the first layer samples which have high correlation

values. In our system, in coarse sample stage 1, the solution

space is uniformly divided into a 10×10 grid. The center of

each grid cell is rendered as an eye image and we use Eq. 11 to

calculate its consistency. Then in fine sample stage 2, a fixed

number of cells (we choose to use 5 cells) with the largest

values will each be divided into a 3× 3 sub-grid. Similar to

stage 1, we calculate the scores and find the solution with the

highest score. With this acceleration, it takes 4∼8ms to detect

eye gaze direction for a single frame.

Failure detection and recovery. Sometimes eye gaze can-

not be detected, typically because the eye is closed or blinks.

We use a simple strategy to detect such failure cases. The eye

gaze direction is rejected if ρ(Idt
, Ie)≤ 0. A lower threshold is

set here as the aim is to find failure cases such as closed eyes.

To recover from such a failure state, in the follow-up frames,

we increase the sampling area at the coarse level. This ensures

eye gaze tracking recovers quickly from the failure situation.

Compared with state-of-the-art method [8], our eye gaze

tracking method is simpler, and more robust. This is because
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(a) (b) (c) (d)

Fig. 10. 3D facial expression reconstruction and eye gaze tracking. (a) the
picture captured by an RGB camera, (b) the three captured IR images, (c) the
reconstructed 3D face and eye gaze, (d) an avatar driven by the captured 3D
face.

we build a facial model for each user, use region based

correlation and avoid using edge maps which are sensitive to

noise. Wang et al. [8] also use the previous frames to heavily

constrain the location of the next frame in a probabilistic

framework. This approach will help to improve robustness,

but causes visible delays when eye gaze moves rapidly and

slows down recovery from tracking failure.

D. Focal Point Location

In addition to supporting eye contact with other users, eye

gaze also provides a natural way of interacting with virtual

objects. Existing VR systems use this idea, but restrict the

“control point” to be the center of the view, and is therefore

(a) (b) (c)

Fig. 11. Comparison with [8] for eye gaze tracking with complete face images
as input. The same facial points are used in those two methods. (a) input
images, (b) our results, (c) [8].

(a) (b) (c)

0mm

12mm

Fig. 12. Comparison of the 3D reconstruction and scan model. (a) is the model
scanned by Artec EVA. (b) is the reconstruction result with our equipment.
(c) visualizes reconstruction errors in the facial area. Mean and standard
deviations of the geometry fitting errors are 1.7mm / 1.5mm.

solely controlled by head movement rather than true eye gaze.

Benefitting from the 3D eye tracking, we develop a technique

to map 3D eye gaze to pixel location in the image, which can

easily be mapped to the 3D position in the virtual world with

the projection matrix for virtual scene rendering. Assuming

the display in the HMDs is planar and without any additional

lens in the line of sight, mapping from 3D gaze direction to the

pixel location can be achieved by a projection transformation.

However, this is not typically the case: many HMD products

have a built-in lens for improved display quality and eyesight

correction (e.g. for short sightedness), and the cell phone

screen is often covered by protection glass which causes

distortions. To cope with such diverse situations, we introduce

a simple and effective calibration process adapted from stereo
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(h)

Fig. 13. Quantitative comparison with existing methods Wang et. al. [8] and Face++ tracker [60]. We take 8 videos for test and use Eq. 14 to calculate
the relative error. The blue line: our method, the red line: Wang et. al. [8], the green line: Face++ tracker [60]. The statistics of these results are shown in
Table I.

calibration which typically takes several seconds and is only

needed for improved focal point location. The task of focal

point location is to map a 3D eye gaze direction d = (φ ,θ)
to a 2D pixel location l = (x,y). For a simpler description, we

focus on mapping the eye gaze of one eye when describing the

method. In practice, we apply the same method to both eyes

and use a simple strategy to fuse the responses from both eyes

since they are normally consistent.

We now describe the calibration process. First, we render

a small 3D ball which moves along a path to cover the 2D

viewing space to get the 2D location of the ball center. Then

the user is asked to look at the ball and follow it. At each

time step, we obtain the pair of eye gaze direction dt(φt ,θt)
and the 2D location lt(xt ,yt).

We then treat focal point location as fitting a non-linear

function F that maps dt to lt with minimum error E(F):

E(F) = ∑
t

∥lt −F(dt)∥
2. (13)

We performed user studies involving 10 participants to deter-

mine the suitable path along which the ball should move as

well as the form of the approximating function F . The first user

study aims to determine the suitable path of movement. We

tried three typical patterns (Figs. 8(1∼3)) as well as random

movement (as the 4th pattern Fig. 8(4)). To validate subjective

preference, users were asked to score each pattern with a value

in the range of 0 and 10 to show their comfort level where 0

is worst and 10 is best. Giving fine-grained scores in isolation

can be difficult for the users. However, it is not a problem in

our scenario, because users are essentially ranking 4 different

patterns, and scoring gives them flexibility to specify relative

differences between patterns. The average scores for those four

patterns are 6.1, 8.8, 6.3, 4.0. It shows that Pattern 2 is clearly

superior over the other patterns in terms of comfort.

To measure the accuracy of each method, we further work

out the location error distribution of each pattern. After cali-

bration, users are asked to look at randomly located 3D balls.

The relative error is then defined as el = ∥l − l̃∥/L where l

and l̃ are the ground truth and estimated locations, and L is

the number of pixels in the longer side of the axis. We fix

the approximation function to piecewise linear interpolation to

compare different patterns. Ten different people participated in

the testing in order to evaluate the accuracy of the proposed

eye-gaze calibration method. For each person, the testing

was carried out three times. Each time, once the person was

wearing the HMDs, 25 uniformly sampled calibration points

were displayed on the screen using the pattern 2 calibration

path for the person to track and calibrate, and the 16 randomly

sampled points were displayed one by one for the evaluation.

Figure 9(a) shows the curve with the proportion (percentage)

of test 3D balls (y-axis) whose error is within a given threshold

(x-axis, relative error in percentage). The table in Figure 9(c)

shows the average relative errors. Pattern 2 performs best

whereas Pattern 4 (random locations) performs worst, and

therefore pattern 2 is chosen in our system.

For determining the suitable approximation function F ,

we evaluated 4 typical approximation functions: piecewise

bilinear and bicubic interpolation based on the grid structure

of the calibration points, as well as multiquadric Radial Basis

Functions (RBFs) [61] and Gaussian RBFs. We performed

similar user testing, and the curve of error distribution is

shown in Fig. 9(b). Comparing the average relative errors listed

in Fig. 9(d), multiquadric RBFs are most accurate and are

selected for our system.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate our system in detail in terms

of qualitative and quantitative evaluations, and compare our
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TABLE I
STATISTICS FOR EXAMPLES IN FIG. 11. WE SHOW THE NUMBER OF

FRAMES n f AND AREA-UNDER-CURVE (AUC) VALUES FOR ALL THE

METHODS. THE HIGHEST SCORES ARE IN BOLD.

Ex. n f Face++ [Wang et al.] Our method

(a) 911 0.907 0.926 0.940

(b) 398 0.927 0.943 0.950

(c) 438 0.966 0.971 0.976

(d) 730 0.870 0.911 0.932

(e) 845 0.903 0.948 0.963

(f) 600 0.970 0.975 0.978

(g) 626 0.876 0.944 0.954
(h) 528 0.924 0.973 0.976

method with the state-of-the-art method. More results, espe-

cially live demos, are provided in the accompanying video.

This system runs on a computer with an Intel i7-6700 CPU

and 24GB memory. The time cost of every frame is around

32.3ms, and achieves real-time performance with 30 FPS.

A. Qualitative Evaluation

As shown in Fig. 10, we evaluate our method in real-

time performance. In addition, we project the iris area of the

3D eyeball onto captured images (Fig. 10(a)), as shown in

Fig. 10(b), and also demonstrate the reconstructed 3D face

(Fig. 10(c)) and driven avatar (Fig. 10(d)). Note that due to

space restriction in the interior of HMDs, the infrared images

for the eyes are taken from views at a non-frontal angle (see

also the hardware setup in Fig. 1). Our method effectively

recovers plausible 3D facial expressions and eye gaze for these

examples with diverse expression and eye movement. We also

evaluate our method in real scenes with applications such as

interacting with virtual objects and virtual conferencing. The

results are shown in Fig. 17 and Fig. 19 and more details are

presented in the accompanying video.

Our eye-gaze tracking method is not only applicable to

HMDs, but also can be used for RGB input. We compare

with the state-of-the-art method [8] where complete images

are used as input for both methods. The comparison results

are shown in Fig. 11. Fig. 11(a) gives the original images,

Fig. 11(b) is the result of our method and (c) is the result

of [8]. The results have shown that our eye gaze tracking

method is more accurate and robust, due to the use of region

correlation rather than edge maps. Moreover, the edge maps

are unreliable when the eye is nearly closed, as the edge and

eye shape can confuse the system. Our method is robust in all

of these situations, and effectively tracks fast eye movement.

B. Quantitative Evaluation

For 3D facial expression reconstruction, it is difficult to per-

form quantitative evaluation as the ground truth is unavailable.

To address it, we collect the same facial expressions with

and without HMDs. The groundtruth of the facial geometry

is captured without HMDs by a 3D scanner: Artec EVA. The

comparison results are shown in Fig. 12.

We compare our method with the state-of-the-art method [8]

for eye gaze tracking. Similar to the qualitative evaluation, full

face images are used to allow [8] to work. Since it is difficult

Fig. 14. Quantitative comparison with Wang et al. [8]. We take the test video
in EVE dataset and use Eq. 14 to calculate the relative error. The blue line is
our method and the orange one is Wang et al. [8].

to obtain the ground truth eye gaze direction in the 3D space,

to visually show the comparison, we project the tracked 3D

iris centers to 2D images, and compare them with manually

labeled ground truth locations.

Denote by c̃l and c̃r the ground truth left and right iris

centers, and by cl and cr the tracked iris centers of the left

and right eyes. The relative feature displacement ẽ is defined

as:

ẽ =
max(∥c̃l − cl∥,∥c̃r − cr∥)

∥cl − cr∥
. (14)

We take 8 videos, and compare our method with the state-

of-the-art methods (Wang et al. [8] and Face++ tracker [60]).

We record the percentage of cases with relative feature dis-

placement e below a certain value, which forms a curve for

each method and show the results in Fig. 13. Our eye-gaze

tracking results are consistently better than Face++ and [8]

for all the test videos. The statistics of these results are shown

in Table I, including the number of frames for each video and

the Area-Under-Curve (AUC) values as a summary. At the

same time, we also compare with Wang et al. [8] on the EVE

dataset [62]. In EVE dataset, face images are taken from an

upward perspective and the eye tracking data is obtained by the

commercial equipment Tobii Pro Spectrum. As stated in this

database, synchronization between camera and eye-tracking

data is only reliable on “basler” videos, so we compare on

test data corresponding to these videos. We also use Eq. 14 to

calculate the relative feature displacement. The curves for the

percentage of cases with relative feature displacement e blow

a certain value are shown in Fig. 14. Our method performs

better than Wang et al. [8].

We also carry out comparison with a traditional pupil

tracking method [63] which determines 3D eye-gaze state

through fitting the 2D pupil contour. As it is hard to get

the ground-truth of 3D eye gaze, we compare the eye gaze

accuracy based on the estimated location in pixel of the

image space. We create a grid of 5×5 points for calibration

(black circles in Fig. 15) and a grid of 4 × 4 points for

estimation (gray points in Fig. 15). In this experiment, the



ACCEPTED BY IEEE TRANSACTIONS ON MULTIMEDIA 11

200 350 500 650 800
350

500

650

800

x

y

(a)

200 350 500 650 800
350

500

650

800

x

y

200 350 500 650 800
350

500

650

800

x

y

200 350 500 650 800
350

500

650

800

x

y

(b)

Mean Value Standard Deviation

Method [63] 21.2520 12.1390

Our method 13.1098 7.3411

(c)

Fig. 15. The accuracy comparison of the traditional optimization method
[63]. The calibration and test results in the comparison are shown in (a) and
(b). (a) is the traditional optimization method [63]. (b) is our method. The
black circles represent the calibration points, and the gray points are the test
points. The remaining points represent the predicted positions, and the red to
blue transition indicates the error from small to large. (c) statistics of of mean
and standard deviation of errors in the estimated distance.

scene was displayed on an Android phone with a 5.1-inch

screen of 1920×1080 resolution. Fig. 15 shows the estimation

of focal point location denoted by different colors according

to the Euclidean distance. Fig. 15(a) is the result of traditional

optimization method [63] and (b) is our result. The mean and

standard deviation of the Euclidean distance errors (in pixels)

are presented in the table in Fig.15(c). We also compare with

WebGazer [64], which is designed to predict the focal point on

the screen when capturing the whole face in an RGB camera.

As it is difficult to apply in our device, for comparison, we

extend the gaze tracking method to the whole face. In this

experiment, we compare with WebGazer [64] on a screen

with a resolution of 1280 × 720 and place the camera in

front. In the calibration stage of WebGazer, although they use

9 calibration points, for each point, the user has to look at

and record 5 times. So a total of 9× 5 = 45 samples have

to be recorded during the calibration phase. In our method,

we calibrate on 5 × 5 points, once for each point. In the

experiment shown on Fig. 16 (a) (b) (c), We run WebGazer

and calibrate our method on two calibrations, then perform the

error calculation on the unified test point (4×4 gray points).

(a) is the results of WebGazer [64], (b) is our method calibrated

on 5 × 5 points and (c) is our method calibrated on 3 × 3

points (recording 5 times as WebGazer for each point), as

shown by black circles. The comparison with WebGazer [64]

and the mean and standard deviation of the Euclidean distance

errors (in pixels) are presented in Fig. 16 (d). The calibration

method we use has a larger coverage area, and it can be

seen from the results that the accuracy rate is higher than

WebGazer [64]. Even with the same calibration samples, our

method works worse than our setting, but still better than

WebGazer, demonstrating the advantage of our method.

VII. APPLICATIONS

Our real-time reconstruction system can benefit many VR

applications. Here, we apply this system to two major appli-
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Mean Value Standard Deviation

WebGazer [64] 30.3799 16.8450

Ours in (3×3 ) 29.8597 15.6411

Our in (5×5 ) 28.8672 15.7477

(d)

Fig. 16. The accuracy comparison of our method and WebGazer [64]. The
calibration and test results in the comparison are shown in (a), (b) and (c).
(a) is the traditional optimization method [64]. (b) is our method in 3× 3
calibration and (c) is in 5 × 5. The black circles represent the calibration
points, and the gray points are the test points. The remaining points represent
the predicted positions, and we use the red to blue transition to indicate the
error from small to large. (d) statistics of the mean and standard deviation of
errors in the estimated distance.

cations to demonstrate its effectiveness: a VR meeting and

interaction with the virtual environment by eye gaze tracking.

For the VR conference meeting, it is important for the

speaker to catch the reaction of the listener. In this application,

both users can be equipped with our equipment and could

be in different locations as shown in Fig. 17. When the

speaker finds the listener getting puzzled by watching his

or her reconstructed face and eye gaze, the speaker can

change his or her speech pace based on the reaction of the

listener’s reconstructed face and eye gaze so as to make the

listener better understand the intended meaning. A user study

is proposed to evaluate the effectiveness of our system for

the VR conference meeting. This user study is similar to

the form of listening test in an English exam in which the

speaker presents the instructions according to the reaction of

the listener, while the listener is required to only listen to these

instructions without talking with the speaker. Four sections of

instructions are prepared for the test. For each listener, two of

the sections will be selected randomly to be presented using

our system, the other two sections will be presented by the

traditional HMDs with only voice information. Each statement

of the instructions takes about 2 minutes. After attending to the

instructions from the speaker, each listener will be asked five

questions, with each correct answer scoring one point. The

contents of the instructions and questions are shown in the

appendix. One speaker and five listeners participated in this

user study. As shown in Fig. 18, with the help of our system,

the listener achieved much better scores. We also calculate the
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Fig. 17. A picture showing our system in action. Two users wearing HMDs
are able to have immersive VR conversations even if they are at geographically
distant locations. Their 3D face and eye gaze are captured and reconstructed
in real time, and are then used to drive the animation of a 3D avatar shown
on the VR display of the other subject in the conversation.
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ANOVA Sec. I Sec. II Sec. III Sec. IV

MSR 12.8 5.04167 1.5 6.01136

MSE 0.2611 0.44508 0.25 0.23636

F 49.0213 11.33 6 25.43

p-value 0.0000015 0.0028 0.02273 0.00006

(c)

Fig. 18. The average score of each section of questions described in the
Appendix. (a) is with traditional HMDs and (b) is with the help of our system.
It is obvious that the users achieve higher scores on all the sections compared
with wearing traditional HMDs. (c) is the value of ANOVA.

value of Analysis of Variance (ANOVA) to compare our VR

system with the tradition HMDs with only voice information,

see Fig. 18(c). All the p-values are below 0.05, indicating

that the differences between the two methods are statistically

significant. This demonstrates that this system is much more

helpful than traditional HMDs for exchanging information

during VR conference meetings.

Another application is the interactivity with the virtual

environments by the tracked eye gaze. Users wearing the HMD

could move the focus point to select and pick up objects

in the virtual environments by moving their eyes, as shown

in Fig. 19. This example demonstrates an education scenario

where users are able to find information about planets in the

solar system. When the user looks at one of the planets, it

is automatically chosen and highlighted in translucent red

rendering. Additional information is then displayed in the

bottom right corner. This provides a very natural and efficient

way of interacting with the virtual environment.

VIII. LIMITATION

The scope of our system is limited in terms of the following

issue. First, we use a camera exterior to the HMD that may

make the equipment hard to place. Second, our method is

based on a multi-linear model which cannot express high-

Fig. 19. Focal point location and its use for interaction with the VR scene.
We show the images for the left and right eyes in a demo where users are
able to obtain detailed information shown in the bottom right corner of the
display using eye gaze. The focal point is shown as the solid red dot and the
selected ball is rendered in translucent red.

quality facial details. One reason is that feature point detection

is relatively sparse and cannot depict facial movement in detail.

Another reason may be that the model in the database has a

smoother surface and lacks details. Third, as the phone sensor

was used to capture the head movement, the stability of sensor

affects the display, and may cause some jitter in video.

IX. CONCLUSIONS

In this paper, we introduce a novel method that can robustly

reconstruct 3D facial expressions and eye gaze in the HMDs in

real time. This proposed system is easily assembled by off the

shelf products including HMD headsets, infrared LED lights

and cameras. Our device also captures the entire eyes and

eyebrows, and uses all the information for accurate 3D face

reconstruction. As shown in the experimental results sections,

this algorithm performs well for new users who are not in

the training dataset. With this new developed system, some

potential applications in virtual reality would be benefited.

Such as using eye gaze direction for improving the efficiency

of scene rendering, as well as more general human-human

interaction and human computer interaction in the VR settings

e.g. by exploiting affective computing. We will investigate

these in the future.
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