
PREPRINT 1

Learning to Minimize the Remainder in
Supervised Learning

Yan Luo ID Student Member, IEEE,, Yongkang Wong ID Member, IEEE, Mohan S. Kankanhalli ID Fellow, IEEE,

and Qi Zhao ID Member, IEEE

Abstract—The learning process of deep learning methods
usually updates the model’s parameters in multiple iterations.
Each iteration can be viewed as the first-order approximation
of Taylor’s series expansion. The remainder, which consists of
higher-order terms, is usually ignored in the learning process for
simplicity. This learning scheme empowers various multimedia-
based applications, such as image retrieval, recommendation
system, and video search. Generally, multimedia data (e.g.
images) are semantics-rich and high-dimensional, hence the
remainders of approximations are possibly non-zero. In this
work, we consider that the remainder is informative and study
how it affects the learning process. To this end, we propose a
new learning approach, namely gradient adjustment learning
(GAL), to leverage the knowledge learned from the past training
iterations to adjust vanilla gradients, such that the remainders are
minimized and the approximations are improved. The proposed
GAL is model- and optimizer-agnostic, and is easy to adapt
to the standard learning framework. It is evaluated on three
tasks, i.e. image classification, object detection, and regression,
with state-of-the-art models and optimizers. The experiments
show that the proposed GAL consistently enhances the evaluated
models, whereas the ablation studies validate various aspects of
the proposed GAL. The code is available at https://github.com/
luoyan407/gradient_adjustment.git.

Index Terms—Supervised learning, deep learning, remainder,
gradient adjustment.

I. INTRODUCTION

Multimedia applications are the systems that aim to deal
with a variety of types of media [1], [2], [3], [4], [5], such
as image, text, etc. Specifically, image classification [6], [7],
[8] and object detection [9], [10] are common components
for processing image data. One of the major challenges is
that the image data are semantics-rich and high-dimensional
at a large scale [11], [12]. Therefore, how to efficiently
learn the mapping between images and ground-truth labels
is crucial. Specifically, a learning process consists of multiple
iterations where the parameters of a model are updated by

Manuscript received August 15, 2021; revised January 11, 2022; accepted
February 20, 2022. This research was funded in part by the NSF under
Grants 1908711 and 1849107, and in part supported by the National Research
Foundation, Singapore under its Strategic Capability Research Centres Fund-
ing Initiative. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore. The associate editor coordinating
the review of this manuscript and approving it for publication was xxx xxx.
Corresponding author: Q. Zhao (email: qzhao@cs.umn.edu).

Y. Luo and Q. Zhao are with the Department of Computer Sci-
ence and Engineering, University of Minnesota (email: luoxx648@umn.edu
and qzhao@cs.umn.edu). Y. Wong and M. Kankanhalli are with
the School of Computing, National University of Singapore (email:
yongkang.wong@nus.edu.sg and mohan@comp.nus.edu.sg).

Training
sample

Loss

Training process

Figure 1: Illustration of the problem of minimizing the
remainder 𝑟 (𝑧𝑡) (highlighted in red), which is usually ignored.
Here, Δ𝑧𝑡 = 𝜂

𝜕ℓ𝜎
𝜕𝑧

for simplicity during the standard learning
process. As 𝑟 (𝑧𝑡) is possibly not zero in real-world learning
tasks, this work studies how to learn to minimize 𝑟 (𝑧𝑡) by
adjusting Δ𝑧𝑡 and its influence during the learning process.
Following the convention, ℓ𝜎 (·, ·) = ℓ(𝜎(·), ·) represents an
activation function followed by a loss function. ℓ𝜎 (𝑧𝑡 , 𝑦𝑡) is
further simplified to ℓ𝜎 (𝑧𝑡).

minimizing the scalar parameterized objective function. Given
some training samples and a loss function, each of the training
iteration performs a first-order approximation, that is, the
Taylor’s series expansion omitting higher-order terms [13].
Fig. 1 illustrates the approximation. Briefly, given a sample
𝑥𝑡 , 𝑦𝑡 , the loss ℓ𝜎 (𝑧𝑡) is iteratively minimized by subtracting
the term ∇𝑧𝑡 ℓ>𝜎 (𝑧𝑡)Δ𝑧𝑡 while discarding the remainder 𝑟 (𝑧𝑡).
Gradient descent is a simple yet effective solution that uses
the gradients to expand the approximation.

However, the remainder that is left in each training iteration
is possibly non-zero. The reasons are three-fold in terms of the
problem nature, learning framework, and model generalizabil-
ity. Firstly, the diversity of task-dependent semantics and high
dimensionality of image data form the learning problems that
are difficult to find an approximation with zero remainder.
Secondly, the stochastic process is proven to be helpful for
preventing the learning process from overfitting [14], [15] and
is widely-used in computer vision tasks [11], [12]. Inevitably,
the approximation in the stochastic process could be affected
by the underlying noise distribution [16]. Lastly, although deep
learning techniques [6], [7], [8] have achieved remarkable
success, the generalizability of models still has room for
improvement in producing a better approximation that is with

ar
X

iv
:2

20
1.

09
19

3v
2

 [
cs

.C
V

]
 6

 M
ar

 2
02

2

https://orcid.org/0000-0001-5135-0316
https://orcid.org/0000-0002-1239-4428
https://orcid.org/0000-0002-4846-2015
https://orcid.org/0000-0003-3054-8934
https://github.com/luoyan407/gradient_adjustment.git
https://github.com/luoyan407/gradient_adjustment.git

PREPRINT 2

smaller remainder using a variety of labeled images.
In this work, we study the remainder in three tasks, namely,

image classification, object detection, and regression. The
remainder is informative and could be helpful for improving
the learning process. Thus, we aim to minimize the remainder
that is difficult to compute and study how it affects the
learning process. To this end, we propose a learning approach,
named gradient adjustment learning (GAL), to leverage the
knowledge learned from the past learning steps to adjust the
current gradients so the remainder can be minimized.

The advantages of formulating the minimization of the
remainder as a learning problem are two-fold. Firstly, instead
of limiting to the observed samples at each iteration, the
proposed GAL has a broader view on the correlation between
all seen samples till the current iteration and the resulting
remainders. Secondly, the remainder which contains all higher-
order terms is informative. So, it is a good indicator to gauge
if the adjusted gradient better fits the approximation than
the vanilla gradient. However, it is challenging to predict a
gradient adjustment vector as the prediction is a continuous
real value, instead of discrete labels. The expected precision
is remarkably higher than the one in the classification task, as
the values of gradients are sensitive yet decisive to the learning
process. To solve this problem, we devise the proposed GAL to
determine how much adjustment will take place, which is easy
to work with any network model, e.g. multi-layer perceptron
(MLP). Since the optimization process is a mini-ecosystem
and gradient works closely with the optimization methods,
we investigate the efficacy of the proposed GAL with several
state-of-the-art models and optimizers in image classification,
object detection, and regression tasks. The main contributions
are as follows.
• We propose a novel learning approach, named gradient

adjustment learning (GAL), which learns to adjust vanilla
gradients for minimizing the remainders of approxima-
tions in the learning process. We provide the theoret-
ical analysis of the generalization bound and the error
bound of the proposed learning approach. The proposed
approach is model- and optimizer-agnostic.

• We propose a safeguard mechanism with a conditional
update policy (i.e. by verifying the update using the
adjusted gradient) to guarantee that the adjusted gradient
would lead to an effective descent.

• We conduct comprehensive experiments and analyses on
CIFAR-10/100 [17], ImageNet [11], MS COCO [12],
Boston housing [18], diabetes [19], and California hous-
ing [20]. The experiments show that the proposed GAL
demonstrably improves the learning process.

II. RELATED WORK

Optimization Methods. Stochastic optimization methods of-
ten use gradients to update the model parameters [21], [22],
[23], [24], [15], [25]. In deep learning, stochastic gradient
descent (SGD) [15] is an influential and practical optimization
method. It takes the anti-gradient as the parameters’ update
for the descent, based on the first-order approximation [13].
Along the same line, several first- and second-order methods

are devised to guarantee convergence to local minima under
certain conditions [26], [27], [28]. Nevertheless, these methods
are computationally expensive and not feasible for learning
settings with large-scale data. In contrast, adaptive methods,
such as Adam [22], RMSProp [21], and Adabound [24], show
remarkable efficacy in a broad range of problems [21], [22],
[24]. Zhang et al. propose an optimization method that wraps
an arbitrary optimization method as a component to improve
the learning stability [29]. [30], [31], [32] learn an optimizer to
adaptively compute the step length for updating the models on
synthetic or small-scale datasets. These methods are contingent
on vanilla gradients to update a model. In this work, we
conduct a study to show how adjusted gradients influence the
learning process.
Gradient-based Methods. Given the training data and cor-
responding ground-truth, a gradient is computed by encod-
ing the task-dependent semantics. Gradient is crucial in the
back-propagation, which enables the learning process to up-
date models’ weights such that the loss is minimized [33].
Gradient-based methods have been proven in modern deep
learning models [6], [7], [8], [34], [35], [36], which serve as
backbones to facilitate a broad range of multimedia applica-
tions [1], [2], [4], [5], [37], [38], [39], [40], [41], [42], [43].

Except for updating models’ weights, gradients are versa-
tile in regulating or regularizing the learning process, e.g.,
gradient alignment [44], [45], searching for adversarial per-
turbation [46], sharpness minimization [47], making decision
for choosing hyperparameters [48], etc. Specifically, Lopez-
Paz and Ranzato propose a gradient episodic memory method
that alleviates catastrophic forgetting in continual learning by
maintaining the gradient for the update to fit with memory
constraints [49]. The gradient is aligned to improve the
agreement between the knowledge learned from the completed
training steps and the new information being used for updating
the model [50]. In transfer learning, gradients computed by
multiple source domains are combined to minimize the loss on
the target domain [44]. The proposed GAL is model-agnostic
and thus can benefit these applications.
Remainder of Approximations. Approximation theory is the
branch of mathematics which studies the process of approx-
imating general functions [51], [52]. For the exact mapping
problem with deterministic functions, there are a considerable
number of works that study and evaluate the remainder in low-
dimensional variable spaces [53], [54], [55], [56]. However,
there is no exact mapping between the input and output
in computer vision tasks, where the input image is in a
high-dimensional space [11], [12]. This makes it difficult to
exactly compute the remainder. As a result, the remainders of
approximations are ignored for the sake of simplicity in the
learning process [6], [7], [8]. This work is the first to study
the effect of minimizing the remainder as a learning problem
on large-scale data.

III. PROBLEM FORMALIZATION

Without loss of generality, we consider the standard clas-
sification problem where the formulation can be adapted to
other learning problems with minor modifications. Given a

PREPRINT 3

Fox Fox

Standard learning paradigm Proposed gradient adjustment
learning (GAL)

Figure 2: Illustration of standard and proposed learning paradigm. Note that the proposed learning paradigm is model- and
optimizer-agnostic. If ℎ(𝑧; 𝜃) always outputs 0, the proposed learning paradigm is reduced to the standard learning paradigm.

training set 𝐷 = {(𝑥𝑖 , 𝑦𝑖) |1 ≤ 𝑖 ≤ 𝑁}, where 𝑥𝑖 ∈ X is the
data and 𝑦𝑖 ∈ {0, 1}𝑑 is the corresponding ground-truth, i.e. 𝑑
dimensional binary labels, a learnable model 𝑚 : X 𝜔−→ R𝑑

with parameters 𝜔 is optimized to minimize the loss ℓ.
According to the empirical risk minimization principle [57],
it can be written as

minimize
𝜔

1
|𝐷 |

∑︁
(𝑥𝑡 ,𝑦𝑡) ∈𝐷

ℓ
(
𝜎(𝑚(𝑥𝑡 ;𝜔)), 𝑦𝑡

)
(1)

where |𝐷 | is the cardinality of 𝐷 and 𝜎 : R𝑑 𝜔−→ [0, 1]𝑑 is an
activation function, e.g. softmax layer.

The problem of design and training of 𝑚(·;𝜔) has been
extensively studied [6], [7], [8], and it is not the focus of this
work. Instead, we focus on the loss w.r.t. the discriminative
features 𝑧, which is the output of 𝑚(·;𝜔). Let ℓ𝜎 (𝑧) denote
ℓ(𝜎(𝑧), 𝑦) for simplicity. By doing Taylor series expansion,

ℓ𝜎 (𝑧𝑡 − Δ𝑧𝑡) = ℓ𝜎 (𝑧𝑡) − ∇𝑧𝑡 ℓ>𝜎 (𝑧𝑡)Δ𝑧𝑡 + 𝑟 (𝑧𝑡) (2)

where the loss remainder 𝑟 (𝑧𝑡) = 𝑜(Δ𝑧𝑡) is the higher order
term w.r.t. Δ𝑧𝑡 . The second term, ∇𝑧𝑡 ℓ>𝜎 (𝑧𝑡)Δ𝑧𝑡 , is the direc-
tional derivative at 𝑧𝑡 in the direction Δ𝑧𝑡 . Mathematically,
it is difficult to compute higher order derivatives therein for
𝑜(Δ𝑧𝑡). Therefore, maximizing the margin between ℓ𝜎 (𝑧𝑡) and
ℓ𝜎 (𝑧𝑡−Δ𝑧𝑡), which is equivalent to convergence enhancement,
is challenging. Moreover, (𝑧𝑡 , 𝑦𝑡) follows some stochastic
process and would vary with the iterations. Different (𝑧𝑡 , 𝑦𝑡)
pair may contribute unevenly to the learning process.

Fig. 2 (left) shows a standard learning approach where 𝑟 (𝑧𝑡)
is omitted. We denote Φ(·;Θ) as an optimizer with a set of
hyperparameters Θ such as learning rate, momentum, weight
decay, etc. The key step in this optimization process is that
loss function ℓ takes the prediction 𝑦̂ = 𝜎(𝑧) and the ground-
truth 𝑦 as input to compute the gradient 𝜕ℓ𝜎

𝜕𝑧
= ∇𝑧ℓ𝜎 (𝑦̂, 𝑦).

According to the chain rule, the gradient 𝜕ℓ𝜎
𝜕𝜔

is computed by
𝜕ℓ𝜎
𝜕𝑧

𝜕𝑧
𝜕𝜔

. Next, Δ𝜔 = Φ(𝜕ℓ𝜎
𝜕𝜔

;Θ) is computed to update 𝜔.
In the standard learning approach, the gradient 𝜕ℓ𝜎

𝜕𝑧
is

mathematically computed and can be considered as a local
choice over observed inputs (𝑥, 𝑦) at each iteration. Making a
local choice at each step can be viewed as a greedy strategy
and may find less-than-optimal solutions [58]. In contrast, this
work adjusts the gradient by an adjustment module which
aims to minimize the remainder (as shown in Fig. 2 (right)).
Correspondingly, the adjustment can be viewed as an addition
of two vectors, where one is the vanilla gradient and the other

is the vector generated by the adjustment module. A geometric
interpretation is shown in Fig. 3.

IV. GRADIENT ADJUSTMENT LEARNING

In this section, we first describe the gradient adjustment
mechanism in a supervised learning framework. Then, the
training process of the proposed gradient adjustment module
is detailed. Finally, we discuss its theoretical properties.

A. Gradient Adjustment in Learning Process

Here, we introduce the integration of the proposed GAL
into the standard learning approach. We first define a gradient
adjustment module ℎ(·; 𝜃) (see Fig. 2), which aims to model
the correlation between the adjustment at point 𝑧 and the
corresponding loss remainder 𝑟, i.e.

𝑣 = ℎ(𝑧; 𝜃), 𝑣 ∈ R𝑑 (3)

Different from a classifier that predicts a confidence score
between 0 and 1, the proposed GAL learns to predict a gradient
adjustment vector which tends to be small, sophisticated, and
subtle. To curb its volatility, which could overwhelm the
gradient and ruin the learning process, we apply a normal-
ization with 𝑙2 norm to adaptively scale it to coincide with the
gradient, i.e.

𝑣̃ = 𝛼

���𝜕ℓ𝜎
𝜕𝑧

���𝑣/|𝑣 | (4)

where 𝛼 ∈ [0, 1] is a scalar that constrains the relative strength
of adjustment referencing to the magnitude of 𝜕ℓ𝜎

𝜕𝑧
. 𝛼 = 0

implies no adjustment will be performed. The normalized
feature 𝑣̃ is added to the computed vanilla gradient and is
used as the input to the optimizer for model updating

𝑔 =
𝜕ℓ𝜎

𝜕𝑧
+ 𝑣̃ (5)

The gradient adjustment module ℎ(·; 𝜃) can be any type of
DNNs, such as MLP, CNN, or RNN. As the computed adjust-
ment is possibly negative in some dimensions, we remove the
final activation layer (e.g. softmax layer).

Lines 7–10 in Algorithm 1 are the conditional update policy
that compute update Δ𝜔 based on the relationship between
ℓ𝜎 (𝑧 − 𝜂𝑔) and ℓ𝜎 (𝑧). Here, 𝜂 is the tentative learning rate
and ℓ𝜎 (𝑧−𝜂𝑔) is the tentative loss (detailed in Section IV-B).
Checking ℓ𝜎 (𝑧 − 𝜂𝑔) ≤ ℓ𝜎 (𝑧) is able to detect if 𝑔 is not a
good fit to reduce the loss. In this case, we alternatively use

PREPRINT 4

Figure 3: Geometric interpretation of the proposed GAL. The
adjustment is performed by a vector addition operation.

Algorithm 1 Gradient Adjustment Learning

1: Input: 𝐷, 𝑚(·;𝜔), ℎ(·; 𝜃), Φ(·;Θ) (learning rate 𝜂 ∈ Θ),
magnitude ratio 𝛼 ∈ [0, 1], adaptive scalar 𝛽 so 𝜂 = 𝛽𝜂

2: for Each pair (𝑥, 𝑦) ∈ 𝐷 do
3: 𝑧 = 𝑚(𝑥;𝜔), 𝑦̂ = 𝜎(𝑧)
4: 𝜕ℓ𝜎

𝜕𝑧
= ∇𝑧ℓ𝜎 (𝑧)

5: Predict gradient adjustment 𝑣 = ℎ(𝑧; 𝜃)
6: Adjust gradient 𝑔 =

𝜕ℓ𝜎
𝜕𝑧
+ 𝑣̃, 𝑣̃ = 𝛼 | 𝜕ℓ𝜎

𝜕𝑧
|𝑣/|𝑣 |

7: if ℓ𝜎 (𝑧 − 𝜂𝑔) ≤ ℓ𝜎 (𝑧) then
8: Δ𝜔 = Φ(𝑔 𝜕𝑧

𝜕𝜔
;Θ)

9: else
10: Δ𝜔 = Φ(𝜕ℓ𝜎

𝜕𝑧
𝜕𝑧
𝜕𝜔

;Θ)
11: Update parameters 𝜔← 𝜔 − Δ𝜔
12: Minimize the remainder (the objective (6)):
13: Compute 𝜕𝑟

𝜕𝑣

14: Compute the update Δ𝜃 = Φ(𝜕𝑟
𝜕𝑣

𝜕𝑣
𝜕𝜃

;Θ)
15: Update the adjustment module’s parameters
16: 𝜃 ← 𝜃 − Δ𝜃

vanilla gradient for update. This can be regarded as a safeguard
mechanism to verify whether the adjusted gradient 𝑔 leads to
an effective descent.

B. Adjustment Module Training

As discussed in Section III, the remainder 𝑟 (𝑧𝑡) in Eq. (2)
is difficult to estimate in practice. However, the remainder can
be modeled with the other three terms in the equation. So, this
turns the estimation to a learning problem, i.e.

minimize
𝜃

|𝑟 (𝑧𝑡) |, (6)

𝑟 (𝑧𝑡) = ℓ𝜎 (𝑧𝑡 − 𝜂𝑔) − ℓ𝜎 (𝑧𝑡) + 𝜂∇ℓ𝜎 (𝑧𝑡)>𝑔, (7)

where ℓ𝜎 (𝑧𝑡 − 𝜂𝑔) is the tentative loss and 𝜂 = 𝛽𝜂 is the
tentative learning rate. Briefly, the tentative loss is used to
evaluate whether the adjusted gradient 𝑔 is better than 𝜕ℓ

𝜕𝑧
.

Although 𝑧𝑡−𝜂𝑔 is a decision condition, it still needs a learning
rate to fit into the gradient descent scheme. A straightforward
way of doing it is by using a hyperparameter 𝛽 as weight on
the learning rate 𝜂 for parameters update. In this way, 𝜂 is
adaptive to 𝜂. Note that |𝑟 (𝑧𝑡) | is minimized in objective (6)
rather than 𝑟 (𝑧𝑡). This is because the prediction is subtle and
it is possible to overfit or underfit the remainder.

From Eq. (3) and (4), it can be seen that 𝑔 is a function
of 𝜃. The objective (6) provides information for adjusting the
gradient in a direction that reduces the remainder of first-order
Taylor approximation.

C. Theoretical Properties

This section presents the learning guarantee and remainder
error bound for the GAL problem. For simplicity, we denote
ℎ(𝑧; 𝜃) as ℎ(𝑧). Let 𝑣∗ ∈ R𝑑 be the target adjustment so
𝑧 − 𝜂(∇ 𝑓 (𝑧) + 𝑣∗) = 𝑧∗. As the gradient adjustment vector
is usually small, we assume there exist 𝑎, 𝑏 ∈ R so that
𝑣, 𝑣∗ ∈ [𝑎, 𝑏]𝑑 ⊆ R𝑑 , and 𝑧 is drawn i.i.d. according to
the unknown distribution D and 𝑣∗ = ℎ∗ (𝑧) where ℎ∗ (·) is
the target labeling function. Moreover, we follow the problem
setting in [59] to restrict the loss function to be the ℓ𝑝 loss
(𝑝 ≥ 1) for generalization bound. GAL can be considered
as a variant of regression problem that finds the hypothesis
ℎ : R𝑚 → [𝑎, 𝑏]𝑑 in a set H with small generalization error
w.r.t. ℎ∗, i.e.

𝑅D (ℎ) = 𝐸𝑧∼D
[
ℓ𝑝 (ℎ(𝑧), ℎ∗ (𝑧))

]
.

In practice, as D is unknown, we use the empirical error for
approximation over samples in dataset 𝐷, i.e.

𝑅̂𝐷 (ℎ) =
1
|𝐷 |

|𝐷 |∑︁
𝑖=1

ℓ𝑝
(
ℎ(𝑧𝑖), 𝑣∗𝑖

)
,

Theorem IV.1 (Generalization Bound of GAL). Denote H as
a finite hypothesis set. Given 𝑣, 𝑣∗ ∈ [𝑎, 𝑏]𝑑 , for any 𝛿 > 0,
with probability at least 1 − 𝛿, the following inequality holds
for all ℎ ∈ H :

|𝑅D (ℎ) − 𝑅̂𝐷 (ℎ) | ≤
𝑝
√︁
𝑑 (𝑏 − 𝑎) 𝑝 ·

√︄
log |H | + log 2

𝛿

2|𝐷 |

Proof. The proof sketch is similar to the classification gen-
eralization bound provided in [59]. First, as ℓ𝑝 (𝑣, 𝑣∗) =

(∑𝑑
𝑖 |𝑣𝑖 − 𝑣∗

𝑖
|𝑝)

1
𝑝 ≤ (𝑑 (𝑏 − 𝑎) 𝑝)

1
𝑝 , we know ℓ𝑝 is bounded

by (𝑑 (𝑏 − 𝑎) 𝑝)
1
𝑝 . Then, by the union bound, given an error

𝜉, we have

𝑃𝑟 [sup
ℎ∈H
|𝑅(ℎ) − 𝑅̂(ℎ) | > 𝜉] ≤

∑︁
ℎ∈H

𝑃𝑟 [|𝑅(ℎ) − 𝑅̂(ℎ) | > 𝜉] .

By Hoeffding’s bound, we have∑︁
ℎ∈H

𝑃𝑟 [|𝑅(ℎ) − 𝑅̂(ℎ) | > 𝜉] ≤ 2|H | exp

(
− 2|𝐷 |𝜉2

(𝑑 (𝑏 − 𝑎) 𝑝)
2
𝑝

)
.

Due to the probability definition, 2|H | exp(− 2 |𝐷 |𝜉 2

(𝑑 (𝑏−𝑎) 𝑝)
2
𝑝

) = 𝛿.

Considering 𝜉 is a function of other variables, we can rear-

range it as 𝜉 = (𝑑 (𝑏 − 𝑎) 𝑝)
1
𝑝

√︂
log |H |+log 2

𝛿

2 |𝐷 | . Since we know

𝑃𝑟 [|𝑅(𝑓) − 𝑅̂(𝑓) | > 𝜉] is with probability at most 𝛿, it can
be inferred that 𝑃𝑟 [|𝑅(𝑓) − 𝑅̂(𝑓) | <= 𝜉] is at least 1 − 𝛿. It
completes the proof.

Remark IV.2. Theorem IV.1 supports the general intuition
that more training data should produce better generalization,
which is aligned with conventional learning problems, e.g.
classification and regression [59]. Furthermore, distinct from
conventional learning problems, the range of gradient adjust-
ments and the dimension could affect the generalization bound.

PREPRINT 5

Gradient descent RMSProp Adam Lookahead Adabound

Figure 4: Illustrations of the effect of GAL (red path/curves) on convergence with various optimizers, in comparison with the
standard process (blue path/curves). The top row are convergence paths, while the bottom are the corresponding loss curves.
The problem is publicly available in [50].

Theorem IV.3 (Conventional Remainder Error Bound [60]).
Let 𝑓 ∈ 𝐶1,1

𝐿
(R𝑛) (i.e. 𝑓 is once continuously differentiable on

R𝑛 and its first-order partial derivative is Lipschitz continuous
with constant 𝐿). Then for any 𝑧+, 𝑧 ∈ R𝑛 we have

| 𝑓 (𝑧+) − 𝑓 (𝑧) − ∇> 𝑓 (𝑧) (𝑧+ − 𝑧) | ≤ 𝐿

2
‖𝑧+ − 𝑧‖2

Theorem IV.4 (Revisited Remainder Error Bound). Let 𝑓 ∈
𝐶

1,1
𝐿
(R𝑛). Given 𝜏 ∈ [0, 1] and any 𝑧+, 𝑧 ∈ R𝑛, we denote the

minimal angle between vectors ∇ 𝑓 (𝑧 + 𝜏(𝑧+ − 𝑧)) −∇ 𝑓 (𝑧) and
𝑧+− 𝑧 as 𝛾 and assume the two vectors are non-zero. Then we
have

| 𝑓 (𝑧+) − 𝑓 (𝑧) − ∇> 𝑓 (𝑧) (𝑧+ − 𝑧) | ≤ 𝐿

2
| cos 𝛾 | · ‖𝑧+ − 𝑧‖2

Proof. Similar to the proof of Theorem IV.3 [60], we use the
integral form of the remainder in Taylor’s expansion

| 𝑓 (𝑧+) − 𝑓 (𝑧) − ∇> 𝑓 (𝑧) (𝑧+ − 𝑧) |

= |
∫ 1

0
(∇ 𝑓 (𝑧 + 𝜏(𝑧+ − 𝑧)) − ∇ 𝑓 (𝑧))> (𝑧+ − 𝑧)𝑑𝜏 |

≤
∫ 1

0
| (∇ 𝑓 (𝑧 + 𝜏(𝑧+ − 𝑧)) − ∇ 𝑓 (𝑧))> (𝑧+ − 𝑧) |𝑑𝜏

=

∫ 1

0
| cos 𝛾 | · ‖∇ 𝑓 (𝑧 + 𝜏(𝑧+ − 𝑧)) − ∇ 𝑓 (𝑧)‖ · ‖𝑧+ − 𝑧‖|𝑑𝜏

≤ | cos 𝛾 |
∫ 1

0
‖∇ 𝑓 (𝑧 + 𝜏(𝑧+ − 𝑧)) − ∇ 𝑓 (𝑧)‖ · ‖𝑧+ − 𝑧‖𝑑𝜏

≤ 𝐿 · | cos 𝛾 | · ‖𝑧+ − 𝑧‖2
∫ 1

0
𝜏𝑑𝜏

=
𝐿

2
| cos 𝛾 | · ‖𝑧+ − 𝑧‖2

It completes the proof.

Remark IV.5. Theorem IV.4 shows a tighter error bound of the
remainder than the well-known bound in Theorem IV.3 [60].
It justifies why properly adjusting gradients direction leads
to an effective descent. This is a new insight, as compared
to Theorem IV.3. Moreover, it indicates the optimal condition

from a geometric perspective, that is, if 𝑧+− 𝑧 is perpendicular
to ∇ 𝑓 (𝑧 + 𝜏(𝑧+ − 𝑧)) − ∇ 𝑓 (𝑧), the remainder error bound is
zero. This is feasible as 𝑧+ − 𝑧 is liable to be small in terms
of magnitude and ∇ 𝑓 (𝑧 + 𝜏(𝑧+ − 𝑧)) − ∇ 𝑓 (𝑧) will not vary
dramatically with 𝜏 ∈ [0, 1]. In addition, the theorem provides
some guideline to design Eq. 4, which forces the adjustment
module to find a direction instead of a vector itself for stability.

D. Adaptivity to Optimization Methods

To illustrate the effectiveness of the proposed GAL on the
optimization process, we employ the 3D problem used in [50],
i.e. 𝑧 = 𝑓 (𝑥, 𝑦), where 𝑥, 𝑦, 𝑧 ∈ R, to visualize the convergence
path w.r.t. various optimizers. Fig. 4 show the convergence
paths (i.e. top row) and the corresponding curves of 𝑧 against
steps (i.e. bottom row). Specifically, the blue paths/curves are
produced by the standard process, while the red ones are
produced by the proposed GAL. Given the same starting point,
the convergence is affected by the problem and optimizers.
The proposed GAL observes the completed convergence steps
to learn to adjust the gradients. The resulting convergence
curves show that it finds shortcuts to reach the local minimum
efficiently. Furthermore, Fig. 4 verifies that the proposed GAL
is general in nature and can work with various optimizers.

V. EXPERIMENTS

We comprehensively evaluate the proposed GAL with var-
ious models and optimizers. Specifically, we conduct exper-
iment on the image classification task [24], [29], the object
detection task [61], and the regression task [18], [19], [20].

A. Datasets

Following the experimental protocol in [24], [29], we use
CIFAR-10/100 [17] and ImageNet [11] for evaluation on the
image classification task. Specifically, CIFAR-10 (CIFAR-100)
consists of 50,000 32×32 images with 10 (100) classes, while
ImageNet has 1000 visual concepts (i.e. classes) and provides
average 1000 real-world images on each class. For object
detection experiments, we follow the experimental protocol in
[61] to use COCO 2017 [12] for evaluation. MS COCO is a

PREPRINT 6

TABLE I: Image classification performance on CIFAR-10.
The average error and its standard deviation are over three
runs. Architecture (100-32-16) is used for GAL and the
number of parameters of GAL is 5K.

Model (optimizer) Error (%)

PreResNet-110 (Lookahead) [29] 4.73
DenseNet-121 (Adabound) [24] 5.00
EfficientNet B0 (-) [8] 1.90
EfficientNet B1 (SGD) [50] 1.91

EffcientNet B1 (SGD) reproduced 1.92±0.12
EffcientNet B1 (SGD) GAL 1.84±0.06

EffcientNet B1 (Lookahead) reproduced 2.01±0.02
EffcientNet B1 (Lookahead) GAL 1.91±0.02

EffcientNet B1 (Adabound) reproduced 3.15±0.03
EffcientNet B1 (Adabound) GAL 3.03±0.01

large-scale object detection benchmark dataset that consists of
82,783 training images and 40,504 validation images with 80
object categories. Moreover, three datasets, i.e. Boston housing
[18], diabetes [19], and California housing [20], are used for
the regression task. Specifically, Boston housing includes 506
entries and each entry has 14 features, diabetes consists of
442 samples that have 10 features, and California housing has
20640 samples and each sample has 8 features.

B. Models & Training Scheme

In the image classification task, we adopt the state-of-the-art
EfficientNet [8] on CIFAR, and ResNet [6] and EfficientNet on
ImageNet. Originally, EfficientNet is trained on Cloud TPU for
350 epochs with batch size of 20481 [8]. Due to the limitation
of computation resources, we follow the training scheme in
[50] to train EfficientNet models on CIFAR. Similarly, we
employ a publicly available implementation2 to train ResNet
and EfficientNet on ImageNet with 8 NVIDIA V100 GPUs
with batch size of 320. We train the models for 90 epochs
[6], [29] to provide comparable results. In the object detection
task, DEtection TRansformer (DETR) is originally trained
with 16 NVIDIA V100 GPUs for 500 epochs [61]. Due to
the limitation of computation resources, we follow DETR’s
suggestion3 to train the model with 4 NVIDIA 2080 Ti GPUs
for 150 epochs. We use the same hyperparameters as in [61].
Regarding the optimization methods, the model is trained
on CIFAR with SGD, Lookahead [29], and Adabound [24].
Following [29], Lookahead is wrapped around SGD in the
experiments. The models are trained with RMSProp [21] on
ImageNet. DETR is trained with AdamW [62] on MS COCO.
The regression experiments run on CPUs with Adam [22].

For the proposed GAL, we employ the MLP, which is
simpler than CNN and RNN, throughout this work. GAL
takes the feature 𝑧 ∈ R𝑑 as input and yields the same
dimension output for gradient adjustment. For simplicity, we
denote a (N+1)-layer MLP as (#1−#2− · · · −#𝑁). For example,

1https://rb.gy/rz0tus
2https://github.com/rwightman/pytorch-image-models
3https://github.com/facebookresearch/detr

TABLE II: Image classification performance on CIFAR-
100. The average error and its standard deviation are over
three runs. Architecture (256-64-32) is used for GAL and the
number of parameters of GAL is 47K.

Model (optimizer) Error (%)

PreResNet-110 (Lookahead) [29] 21.63
DenseNet-121 (Adabound) [24] -
EfficientNet B0 (-) [8] 11.90
EfficientNet B1 (SGD) [50] 11.81

EffcientNet B1 (SGD) reproduced 11.81±0.10
EffcientNet B1 (SGD) GAL 11.37±0.10

EffcientNet B1 (Lookahead) reproduced 11.70±0.01
EffcientNet B1 (Lookahead) GAL 11.44±0.02

EffcientNet B1 (Adabound) reproduced 14.44±0.06
EffcientNet B1 (Adabound) GAL 14.12±0.06

(100-32-16) indicates that the architecture consists of four
linear transformations that have affine matrices in R10 × R100,
R100×R32, R32×R16, and R16×R10. We use architectures (100-
32-16) on CIFAR-10, (256-64-32) on CIFAR-100, and (512-
128/256) on ImageNet. Regarding (𝛼, 𝛽), we use (0.001, 1),
(0.01, 1), and (0.01, 10) with SGD, Lookahead, and Adabound,
respectively, on CIFAR-10; (0.01, 1), (0.001, 5), and (0.01,
10) with SGD, Lookahead, and Adabound, respectively, on
CIFAR-100; and (0.001, 0.001) on ImageNet, respectively. For
the object detection tasks, we minimize the remainder w.r.t.
predicted bounding box features, i.e. four floats indicating a
box. Correspondingly, we use (64-16), 0.01 and 1 as the arch,
𝛼 and 𝛽, respectively. For the regression task, the architectures
of the regression models are (100-50), (64-32), and (256-
64) on Boston housing, diabetes, and California housing,
respectively. The architectures of the proposed gradient ad-
justment modules are (16-4), (128-4), and (128-2) on Boston
housing, diabetes, and California housing, respectively. We fix
𝛼 = 0.001 and 𝛽 = 0.001 on all three datasets.

C. Performance

Experimental results on CIFAR-10/100, ImageNet, and MS
COCO are reported in I, II, Table III, and IV, respectively. As
shown in Table I and II, the proposed GAL is able to work
with various optimization methods, i.e. SGD, Lookahead, and
Adabound, to improve the performance. Also, Table III shows
that it is able to work with different models and provides
a performance gain. The consistent improvement in object
detection can be observed in Table IV on MS COCO. Overall,
the proposed GAL improves the convergence of the training
process to achieve better accuracies than the standard process
with various models on both tasks, which is aligned with the
implication of Theorem IV.4. To further evaluate the proposed
method, we apply it to the regression task. Specifically, the
proposed method is applied on three regression datasets, i.e.
Boston housing [18], diabetes [19], and California housing
[20]. Three widely-used metrics, i.e. mean absolute error
(MAE), mean squared error (MSE), and coefficient of de-
termination (𝑅2), are used to evaluate the performance. 𝑅2

measures the accuracy and efficiency of a model on the data

PREPRINT 7

TABLE III: Image classification performance on ImageNet. The average accuracy and its standard deviation are over three
runs. Arch (512-128) and (512-256) are used for GAL with ResNet and EfficientNet, respectively. We use 90 epochs in model
training for a fair comparison [6], [29].

Model (optimizer) # of parameters Top-1 Top-5

ResNet-50 (SGD) [6] 23M 76.15 92.87
ResNet-50 (Lookahead) [29] 23M 75.49 92.53
EfficientNet-B2 (RMSProp) 350 epochs [8] 9.2M 80.30 95.00

ResNet-50 (RMSProp) reproduced 23.5M 76.43±0.02 93.05±0.04
ResNet-50 (RMSProp) GAL 23.5M + 0.70M 76.53±0.03 93.13±0.05

EfficientNet-B2 (RMSProp) reproduced 9.2M 77.93±0.09 93.92±0.03
EfficientNet-B2 (RMSProp) GAL 9.2M + 0.90M 78.10±0.06 93.94±0.06

TABLE IV: Object detection performance on MS COCO validation with Faster R-CNN. We follow DETR’s suggestion to use
150 epochs in model training [61]3. This setting takes approximate 9 days for training DETR-ResNet-50 on a 4-GPU server.

Model Epochs # of parameters AP AP50 AP75 APS APM APL

DETR-ResNet-50 [61] 500 41M 42.00 62.40 44.20 20.50 45.80 61.10
DETR-ResNet-101 500 60M 43.50 63.80 46.40 21.90 48.00 61.80

DETR-ResNet-50 reproduced 150 41M 39.13 60.03 40.94 18.30 42.51 58.62
DETR-ResNet-50 GAL 150 41M+1344 39.61 60.55 41.62 18.42 42.52 59.02
DETR-ResNet-101 reproduced 150 60M 40.98 61.91 43.59 19.32 45.09 60.25
DETR-ResNet-101 GAL 150 60M+1344 41.38 62.24 43.87 20.13 45.10 60.86

TABLE V: Regression performance on the Boston housing [18], diabetes [19], and California housing [20] dataset. ↑ (resp.
↓) indicates that a larger (resp. smaller) score suggests better performance. The experiments are run 5 times with different
random seeds. We also include the analysis of two-sample t-test on the performance of the baseline and the performance of
the proposed method to measure the improvement. 𝑡𝑠𝑡𝑎𝑡 and 𝑝 are t-statistics and p value of the t-test, respectively.

Dataset Method Mean Absolute Error
(MAE)↓

Mean Squared Error
(MSE)↓

Coefficient of Determination
(𝑅2) ↑

Boston housing
Baseline 3.9535±0.4307 23.0956±4.1695 0.7668±0.0420
Proposed 2.8079±0.2720 12.8808±2.0446 0.8699±0.0206

(𝑡𝑠𝑡𝑎𝑡 , 𝑝) (5.02, 1.02e-03) (4.91, 1.17e-03) (-4.92, 1.16e-03)

Diabetes
Baseline 44.3832±0.7752 3226.0238±38.8293 0.3821±0.0074
Proposed 41.6186±0.2989 2961.5520±29.4521 0.4327±0.0056

(𝑡𝑠𝑡𝑎𝑡 , 𝑝) (7.43, 7.34e-05) (12.13, 1.97e-06) (-12.14, 1.95e-06)

California housing
Baseline 1.0910±0.1297 2.1168±0.3629 -0.6084±0.2757
Proposed 0.7780±0.0262 1.1635±0.0655 0.1158±0.0498

(𝑡𝑠𝑡𝑎𝑡 , 𝑝) (5.28, 7.43e-04) (5.77, 4.15e-04) (-5.78, 4.14e-04)

and is a popular metric for regression. A larger 𝑅2 score
indicates better performance in the regression task, while
smaller MAE or MSE scores indicate better performance.
Experimental results are reported in Table V. The proposed
method improves the performance on all three metrics. To
further understand the statistical significance of efficacy of
the proposed method, we perform a two-sample t-test on the
results of the baseline and the ones of the proposed method.
According to the 𝑝 values, the results yielded by the proposed
method are statistically significantly from the ones yielded by
the baseline with a significance level lower than 0.05.

VI. ANALYSIS

A. Generalization Ability and Approximation Remainder

To check the generalization ability of the models trained
with GAL, we plot the loss curves on all validation (or test)
set in Fig. 5. The losses of the models learned with adjusted
gradients are lower than that of the models using vanilla
gradients. This implies that the adjusted gradients are better
than the vanilla gradients in terms of the generalizability.

Fig. 6 shows the corresponding remainder computed by
Eq. (7) and the cosine similarities between vanilla gradients
and adjustment vectors on ImageNet. Positive similarities
implies that the direction of adjustment vectors has overall
smaller angle with vanilla gradient (i.e. smaller than 90◦).
Overall, the proposed adjusted gradients converge to the local

PREPRINT 8

EfficientNet-B1 on CIFAR-10 EfficientNet-B1 on CIFAR-100 EfficientNet-B2 on ImageNet DETR-ResNet-50 on MS COCO

Figure 5: Validation/test loss curves on various datasets.

Figure 6: Remainder curve (left) and cosine similarity curve
(right) on ImageNet with EfficientNet-B2.

minimum more efficiently than the vanilla gradients on all
datasets. Note that there is a warm-up in ImageNet training
which cause a series of fluctuations at the early epochs, but it
stabalizes after 20th epoch.

B. Effects of Random Noise

Table VI shows the effect of random noise in the training of
EfficientNet on CIFAR-100. The random noise are generated
by a uniform or normal distribution to replace the proposed
adjustment by Eq. (3). Note that 𝛼

��� 𝜕ℓ𝜕𝑧 ���𝑣/|𝑣 | is part of the
proposed learning approach (see Eq. (4)). The results shows
that normalizing the adjustment vector to an appropriate range
is definitely required. This is because the gradient is subtle
and sophisticated and a large adjustment vector could lead to
a divergence in training. Moreover, properly injecting some
random noise using the proposed approach (see Eq. (4) and
(5)) improves the performance. Yet, the noise is still less
effective than the adjustment vector generated by GAL.

C. Training Time

To understand the computation overhead, we report the
training time of using the baseline and the proposed method in
Table VII. In the ImageNet experiment, the learning process
without the proposed GAL takes 0.3907 seconds per image
to train the model, and takes 0.4027 seconds per image with
the proposed GAL. The extra time (i.e. 12 milliseconds) w.r.t.
the proposed method is used for the forward and backward
process. Similarly, the proposed method take extra 15 (11)
milliseconds for training on CIFAR-10 (CIFAR-100). Note
that the experiments on CIFAR-10 and CIFAR-100 are run
on a workstation equipped with 4 NVIDIA 2080 Ti GPUs,
while the experiments on ImageNet are run on a workstation
equipped with 8 NVIDIA V100 GPUs.

TABLE VI: Effects of random noise generated by a uniform
or normal distribution on the training of EfficientNet with SGD
on CIFAR-100. The error rate of the standard learning process
is 11.81% while that of GAL is 11.37%.

𝑣 𝑣̃ error (%)

U(−1, 1) 𝛼

��� 𝜕ℓ𝜕𝑧 ���𝑣/ |𝑣 | (Eq. (4)) 11.62
U(−1, 1) 𝛼 𝑣/ |𝑣 | 97.20

N(0, 1) 𝛼

��� 𝜕ℓ𝜕𝑧 ���𝑣/ |𝑣 | (Eq. (4)) 11.65
N(0, 1) 𝛼 𝑣/ |𝑣 | 98.36

TABLE VII: Training time of using the proposed method on
each image, in comparison to the one of using the baseline.
Note that the proposed gradient adjustment only takes place
at the training phase. In other words, the test time w.r.t. the
model trained with the proposed method should be identical
to the one w.r.t. the model trained with the baseline method.

Dataset Method Time (s)

ImageNet Baseline 0.3907
Proposed 0.4027

CIFAR-10 Baseline 0.5292
Proposed 0.5444

CIFAR-100 Baseline 0.5355
Proposed 0.5465

D. Effects of Hyperparameters

We analyse the effects of 𝛼, 𝛽 and various GAL ar-
chitectures with SGD and Lookahead on CIFAR-100. The
performance is shown in Fig. 7. The proposed GAL uses
hyperparameters 𝛼 = 0.01, 𝛽 = 1, and architecture = (256-
64-32) with SGD, and 𝛼 = 0.001, 𝛽 = 5, and architecture =
(256-64-32) with Lookahead. We vary one hyperparameter at
a time while the other hyperparameters are kept unchanged in
each plot. As shown in the figure, the range [0.0001, 0.01] of
𝛼 consistently leads to lower classification errors. In contrast,
classification errors are sensitive to 𝛽, which is optimizer-
dependent. 𝛽 = 1 leads to the best performance with SGD,
while 𝛽 = 5 leads to the best performance with Lookahead.
Regarding the effects of architectures, We use architectures
(256), (256-64), (256-64-32), and (256-64-32-16) with in
Fig. 7 (right). The four architectures have 51.2K, 48.3K,
47.2K, and 46.1K parameters, respectively. Overall, (256-64-
32) gives rise to lower classification errors than the other

PREPRINT 9

Figure 7: Effects of 𝛼 (left), 𝛽 (middle), and architecture (right) on CIFAR-100. When varying with 𝛼, 𝛽 = 1 (resp. 𝛽 = 5)
with SGD (resp. Lookahead). When varying with 𝛽, 𝛼 = 0.01 (resp. 𝛼 = 0.001) with SGD (resp. Lookahead). When using
different architectures, (i.e. (256), (256-64), (256-64-32), and (256-64-32-16)), 𝛼 = 0.01 and 𝛽 = 1 (resp. 𝛼 = 0.001 and 𝛽 = 5)
with SGD (resp. Lookahead).

(a) Update policy (b) # of improved samples

Figure 8: Ablation study of the proposed GAL with SGD on
CIFAR-100. (a) Effects of update policy refers to Algorithm 1
line 7-10. line x means we use line x to generate the update,
while line 7 (<) means that we modify the if statement in the
line 7 as ℓ𝜎 (𝑧 − 𝜂𝑔) < ℓ𝜎 (𝑧). (b) Effects of adjusted gradient
𝑔 and vanilla gradient 𝜕ℓ

𝜕𝑧
with tentative loss.

architectures with SGD and Lookahead, while corresponding
computational overhead is relatively low.

E. Effects of Various Update Policies

As introduced in Algorithm 1, line 7-10, if the tentative
loss ℓ𝜎 (𝑧− 𝜂𝑔) is less than or equal to the loss ℓ𝜎 (𝑧), we use
𝑔 to update the gradients w.r.t. the weights according to the
chain rule. We denote this case as line 7 (≤). In the standard
process, 𝜕ℓ

𝜕𝑧
is always used to update the gradients w.r.t. the

weights and we denote this case as line 10. We discuss two
other possible update policies, i.e. always using 𝑔 and using 𝑔

if ℓ𝜎 (𝑧 − 𝜂𝑔) is less than the loss. We denote these two cases
as line 8 and line 7 (<), respectively. As shown in Fig. 8a,
policy line 8 outperforms line 10 but is not optimal as line
7 (≤). This is because as the training process is close to the
local minimum, the loss remainder is much smaller and line
10 would be more efficient than line 8. Moreover, line 7 (≤)
is slightly better than line 7 (<).

F. Adjusted Gradient vs. Vanilla Gradient

As the proposed GAL aims to yield adjusted gradient 𝑔, it
would be good to know whether 𝑔 leads to better descent than
𝜕ℓ
𝜕𝑧

, i.e. lower loss. To do so, we use tentative loss to test 𝑔

TABLE VIII: Effects of MLPs and CNNs with SGD on
CIFAR-100. In the case of CNNs, 1-d features (100) would
be re-organized to 2-d features (i.e. 10×10), and then multiple
convolutional layers with 3×3 kernels would be performed
on the 2-d features. For example, CNN (256-64) indicates
a convolutional layer with 256 3×3 kernels is followed by
a convolutional layer with 64 3×3 kernels. Both MLPs and
CNNs have a final fully-connected layer, but CNNs have an
additional adaptive spatial pooling layer prior to the final layer,
which reduces width and height dimensions to 1.

Model Arch Parameters Error (%)

MLP

(256) 51.2K 11.68
(256-64) 48.3K 11.61

(256-64-32) 47.2K 11.26
(256-64-32-16) 46.1K 11.84

CNN

(256) 28.1K 12.15
(256-64) 156.4K 12.13

(256-64-32) 171.7K 11.88
(256-64-32-16) 174.7K 11.75

and 𝜕ℓ
𝜕𝑧

. Fig. 8b shows how many times 𝑔 outperforms 𝜕ℓ
𝜕𝑧

on
samples. The results implies that GAL indeed helps adjust the
vanilla gradients with tentative loss on considerable amount
of samples in the early stage.

G. MLPs vs. CNNs

We explore the effects of using CNNs, instead of MLPs, as
the proposed gradient adjustment modules on the classification
task. The results of the analysis are reported in Table VIII.
It can be seen that CNNs have much larger numbers of
parameters than MLPs (except the single layer variant), but
achieve lower performance than MLPs. MLPs is a desired
choice and their architectures are well aligned with the fact
that the discriminative features from modern deep learning
models are usually one-dimensional.

VII. CONCLUSION

We propose a new learning approach which formulates
the remainder as a learning-based problem and leverages the
knowledge learned from the past approximations to enhance
the learning. To this end, we propose a gradient adjustment

PREPRINT 10

learning (GAL) method that employs a model to learn to
predict the adjustments on gradients in an end-to-end fashion,
which is easy and simple to adapt to the standard training
process. Correspondingly, we provide theoretical understand-
ing and experimental results with state-of-the-art models and
optimizers in image classification, object detection, and regres-
sion tasks. The findings on the experimental results are aligned
with the theoretical understanding on the error bound. One
intriguing extension of this work is to explore the model design
to capture the subtle characteristics of gradient adjustment
vectors for the adjustment prediction.

REFERENCES

[1] S. Xia, M. Shao, J. Luo, and Y. Fu, “Understanding kin relationships in
a photo,” IEEE Trans. Multim., vol. 14, no. 4, pp. 1046–1056, 2012.

[2] C. Ding and D. Tao, “Robust face recognition via multimodal deep face
representation,” IEEE Trans. Multim., vol. 17, no. 11, pp. 2049–2058,
2015.

[3] Y. Zhan and R. Zhang, “No-reference image sharpness assessment based
on maximum gradient and variability of gradients,” IEEE Trans. Multim.,
vol. 20, no. 7, pp. 1796–1808, 2018.

[4] S. I. Cho and S. Kang, “Gradient prior-aided CNN denoiser with
separable convolution-based optimization of feature dimension,” IEEE
Trans. Multim., vol. 21, no. 2, pp. 484–493, 2019.

[5] B. Xu, J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Interact as
you intend: Intention-driven human-object interaction detection,” IEEE
Trans. Multim., vol. 22, no. 6, pp. 1423–1432, 2020.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1097–1105.

[8] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri
and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 6105–6114.

[9] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in IEEE
International Conference on Computer Vision, 2017, pp. 2961–2969.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems, 2015, pp. 91–99.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in European conference on computer vision, ser. Lecture Notes
in Computer Science, vol. 8693, 2014, pp. 740–755.

[13] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge University Press, 2004.

[14] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311,
2018.

[15] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, pp. 400–407, 1951.

[16] Z. Zhu, J. Wu, B. Yu, L. Wu, and J. Ma, “The anisotropic noise in
stochastic gradient descent: Its behavior of escaping from sharp minima
and regularization effects.” in International Conference on Machine
Learning, 2019, pp. 7654–7663.

[17] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, University of Toronto, 2009.

[18] D. Harrison Jr and D. L. Rubinfeld, “Hedonic housing prices and
the demand for clean air,” Journal of environmental economics and
management, vol. 5, no. 1, pp. 81–102, 1978.

[19] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[20] R. K. Pace and R. Barry, “Sparse spatial autoregressions,” Statistics &

Probability Letters, vol. 33, no. 3, pp. 291–297, 1997.
[21] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine

learning. lecture 6a. overview of mini-batch gradient descent.”
[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in International Conference on Learning Representations, 2015.

[23] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On
the variance of the adaptive learning rate and beyond,” in International
Conference on Learning Representations, 2020.

[24] L. Luo, Y. Xiong, and Y. Liu, “Adaptive gradient methods with dy-
namic bound of learning rate,” in International Conference on Learning
Representations, 2019.

[25] J. Zhuang, T. Tang, Y. Ding, S. C. Tatikonda, N. Dvornek, X. Pa-
pademetris, and J. Duncan, “AdaBelief Optimizer: Adapting Stepsizes
by the Belief in Observed Gradients,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[26] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Accelerated
methods for nonconvex optimization,” SIAM Journal on Optimization,
vol. 28, no. 2, pp. 1751–1772, 2018.

[27] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to
escape saddle points efficiently,” in International Conference on Machine
Learning, 2017, pp. 1724–1732.

[28] S. Reddi, M. Zaheer, S. Sra, B. Poczos, F. Bach, R. Salakhutdinov,
and A. Smola, “A generic approach for escaping saddle points,” in
International Conference on Artificial Intelligence and Statistics, 2018,
pp. 1233–1242.

[29] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, “Lookahead optimizer:
k steps forward, 1 step back,” in Advances in Neural Information
Processing Systems, 2019, pp. 9593–9604.

[30] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” in Advances in Neural Information
Processing Systems, 2016, pp. 3981–3989.

[31] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap,
M. Botvinick, and N. Freitas, “Learning to learn without gradient descent
by gradient descent,” in International Conference on Machine Learning,
2017, pp. 748–756.

[32] J. Ji, X. Chen, Q. Wang, L. Yu, and P. Li, “Learning to learn gradient
aggregation by gradient descent.” in International Joint Conferences on
Artificial Intelligence, 2019, pp. 2614–2620.

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[34] M. Tan and Q. V. Le, “EfficientNetV2: Smaller models and faster train-
ing,” in International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139.
PMLR, 2021, pp. 10 096–10 106.

[35] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in International Conference on
Learning Representations, 2021.

[36] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-
terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and
A. Dosovitskiy, “Mlp-mixer: An all-mlp architecture for vision,” CoRR,
vol. abs/2105.01601, 2021.

[37] Y. Cong, J. Yuan, and J. Luo, “Towards scalable summarization of
consumer videos via sparse dictionary selection,” IEEE Trans. Multim.,
vol. 14, no. 1, pp. 66–75, 2012.

[38] K. Yadati, H. Katti, and M. S. Kankanhalli, “CAVVA: computational
affective video-in-video advertising,” IEEE Trans. Multim., vol. 16,
no. 1, pp. 15–23, 2014.

[39] S. Bu, Z. Liu, J. Han, J. Wu, and R. Ji, “Learning high-level feature
by deep belief networks for 3-d model retrieval and recognition,” IEEE
Trans. Multim., vol. 16, no. 8, pp. 2154–2167, 2014.

[40] L. Zhang, Y. Gao, Y. Xia, K. Lu, J. Shen, and R. Ji, “Representative
discovery of structure cues for weakly-supervised image segmentation,”
IEEE Trans. Multim., vol. 16, no. 2, pp. 470–479, 2014.

[41] K. Cho, A. C. Courville, and Y. Bengio, “Describing multimedia content
using attention-based encoder-decoder networks,” IEEE Trans. Multim.,
vol. 17, no. 11, pp. 1875–1886, 2015.

[42] C. Zhang, J. Cheng, and Q. Tian, “Unsupervised and semi-supervised
image classification with weak semantic consistency,” IEEE Trans.
Multim., vol. 21, no. 10, pp. 2482–2491, 2019.

[43] J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Visual social
relationship recognition,” Int. J. Comput. Vis., vol. 128, no. 6, pp. 1750–
1764, 2020.

[44] J. Li, Z. Xu, Y. Wong, Q. Zhao, and M. Kankanhalli, “GradMix: Multi-
source transfer across domains and tasks,” in IEEE Winter Conference
on Applications of Computer Vision, 2020, pp. 3019–3027.

[45] Y. Luo, Y. Wong, M. S. Kankanhalli, and Q. Zhao, “n-reference transfer
learning for saliency prediction,” in European Conference Computer

PREPRINT 11

Vision, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof,
T. Brox, and J. Frahm, Eds., vol. 12353. Springer, 2020, pp. 502–519.

[46] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations, Y. Bengio and Y. LeCun, Eds., 2015.

[47] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware
minimization for efficiently improving generalization,” in International
Conference on Learning Representations, 2021.

[48] F. Pedregosa, “Hyperparameter optimization with approximate gradient,”
in International Conference on Machine Learning, ser. JMLR Workshop
and Conference Proceedings, M. Balcan and K. Q. Weinberger, Eds.,
vol. 48. JMLR.org, 2016, pp. 737–746.

[49] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual
learning,” in Advances in Neural Information Processing Systems, 2017,
pp. 6467–6476.

[50] Y. Luo, Y. Wong, M. Kankanhalli, and Q. Zhao, “Direction concentration
learning: Enhancing congruency in machine learning,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[51] N. I. Achieser, Theory of approximation. Courier Corporation, 2013.
[52] A. F. Timan, Theory of approximation of functions of a real variable.

Elsevier, 2014.
[53] M. Berz and G. Hoffstätter, “Computation and application of taylor poly-

nomials with interval remainder bounds,” Reliable Computing, vol. 4,
no. 1, pp. 83–97, 1998.

[54] W. E. Milne, “The remainder in linear methods of approximation,”
Journal of Research of the National Bureau of Standards, vol. 43, no. 5,
pp. 501–511, November 1949.

[55] D. D. Stancu, “Evaluation of the remainder term in approximation for-
mulas by Bernstein polynomials,” Mathematics of Computation, vol. 17,
no. 83, pp. 270–278, 1963.

[56] ——, “The remainder of certain linear approximation formulas in two
variables,” Journal of the Society for Industrial and Applied Mathemat-
ics, Series B: Numerical Analysis, vol. 1, no. 1, pp. 137–163, 1964.

[57] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans-
actions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.

[58] P. E. Black, “Greedy algorithm,” Dictionary of Algorithms and Data
Structures, vol. 2, p. 62, 2005.

[59] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. The MIT Press, 2012.

[60] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Springer Science & Business Media, 2013.

[61] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Eu-
ropean Conference on Computer Vision, ser. Lecture Notes in Computer
Science, vol. 12346, 2020, pp. 213–229.

[62] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2019.

Yan Luo is currently pursuing a Ph.D. degree with
the Department of Computer Science and Engineer-
ing at the University of Minnesota (UMN), Twin
Cities. Prior to UMN, he joined the Sensor-enhanced
Social Media (SeSaMe) Centre, Interactive and Dig-
ital Media Institute at the National University of
Singapore (NUS), as a Research Assistant. Also, he
joined the Visual Information Processing Laboratory
at the NUS as a Ph.D. Student. He received a B.Sc.
degree in computer science from Xi’an University of
Science and Technology. He worked in the industry

for several years on a distributed system. His research interests include
computer vision, computational visual cognition, and deep learning. He is
a student member of the IEEE since 2022.

Yongkang Wong is a senior research fellow at
the School of Computing, National University of
Singapore. He is also the Assistant Director of the
NUS Centre for Research in Privacy Technologies
(N-CRiPT). He obtained his BEng from the Uni-
versity of Adelaide and PhD from the University of
Queensland. He has worked as a graduate researcher
at NICTA’s Queensland laboratory, Brisbane, OLD,
Australia, from 2008 to 2012. His current research
interests are in the areas of Image/Video Processing,
Machine Learning, Action Recognition, and Human

Centric Analysis. He is a member of the IEEE since 2009.

Mohan S. Kankanhalli is Provost’s Chair Professor
of Computer Science at the National University of
Singapore (NUS). He is the Dean of NUS School
of Computing and he also directs N-CRiPT (NUS
Centre for Research in Privacy Technologies) which
conducts research on privacy on structured as well as
unstructured (multimedia, sensors, IoT) data. Mohan
obtained his BTech from IIT Kharagpur and MS
& PhD from the Rensselaer Polytechnic Institute.
Mohan’s research interests are in Multimedia Com-
puting, Computer Vision, Information Security &

Privacy and Image/Video Processing. He has made many contributions in the
area of multimedia & vision – image and video understanding, data fusion,
visual saliency as well as in multimedia security – content authentication and
privacy, multi-camera surveillance. Mohan is a Fellow of IEEE.

Qi Zhao is an associate professor in the Department
of Computer Science and Engineering at the Univer-
sity of Minnesota, Twin Cities. Her main research
interests include computer vision, machine learning,
cognitive neuroscience, and healthcare. She received
her Ph.D. in computer engineering from the Univer-
sity of California, Santa Cruz in 2009. She was a
postdoctoral researcher in the Computation & Neural
Systems at the California Institute of Technology
from 2009 to 2011. Before joining the University
of Minnesota, Qi was an assistant professor in the

Department of Electrical and Computer Engineering and the Department of
Ophthalmology at the National University of Singapore. She has published
more than 100 journal and conference papers, and edited a book with Springer,
titled Computational and Cognitive Neuroscience of Vision, that provides a
systematic and comprehensive overview of vision from various perspectives.
She serves as an associate editor of IEEE TNNLS and IEEE TMM, as a
program chair WACV’22, and as an organizer and/or area chair for CVPR
and other major venues in computer vision and AI regularly. She is a member
of the IEEE since 2004.

	I Introduction
	II Related Work
	III Problem Formalization
	IV Gradient Adjustment Learning
	IV-A Gradient Adjustment in Learning Process
	IV-B Adjustment Module Training
	IV-C Theoretical Properties
	IV-D Adaptivity to Optimization Methods

	V Experiments
	V-A Datasets
	V-B Models & Training Scheme
	V-C Performance

	VI Analysis
	VI-A Generalization Ability and Approximation Remainder
	VI-B Effects of Random Noise
	VI-C Training Time
	VI-D Effects of Hyperparameters
	VI-E Effects of Various Update Policies
	VI-F Adjusted Gradient vs. Vanilla Gradient
	VI-G MLPs vs. CNNs

	VII Conclusion
	References
	Biographies
	Yan Luo
	Yongkang Wong
	Mohan S. Kankanhalli
	Qi Zhao

