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Weakly Supervised Few-Shot Segmentation
Via Meta-Learning

Pedro H. T. Gama, Hugo Oliveira, José Marcato Junior, Jefersson A. dos Santos

Abstract—Semantic segmentation is a classic computer vision
task with multiple applications, which includes medical and
remote sensing image analysis. Despite recent advances with
deep-based approaches, labeling samples (pixels) for training
models is laborious and, in some cases, unfeasible. In this
paper, we present two novel meta learning methods, named
WeaSeL and ProtoSeg, for the few-shot semantic segmentation
task with sparse annotations. We conducted extensive evaluation
of the proposed methods in different applications (12 datasets)
in medical imaging and agricultural remote sensing, which are
very distinct fields of knowledge and usually subject to data
scarcity. The results demonstrated the potential of our method,
achieving suitable results for segmenting both coffee/orange crops
and anatomical parts of the human body in comparison with full
dense annotation.

Index Terms—Semantic Segmentation; Few-Shot; Meta Learn-
ing; Weakly Supervised; Agriculture; Remote Sensing; Medical
Imaging Analysis.

I. INTRODUCTION

Image segmentation is a classical computer vision problem
where, given an image, a model is required to assign a class to
every pixel, defining fine boundaries to the objects of interest
that compose the image. It has applications in many scenarios,
including medical image analysis [25, 35], remote sensing
[15, 20], and others. State-of-the-art approaches to segmenta-
tion mostly use Deep Neural Networks (DNNs) methods, es-
pecially variations of Convolutional Neural Networks (CNNs).
These approaches became popular after the work [17] and the
advances of Graphical Processing Units (GPUs) that allowed
the training of large complex models. The main limitation
of current state-of-the-art deep models is the reliance on a
large annotated training set, hampering the use of such models
in more specific real-world scenarios out of the mainstream
visual learning tasks. It is common for DNNs to present
underfitting or overfitting [11] problems when trained with a
limited amount of data samples.

Common semantic segmentation methods rely on labels for
all pixels in an image. From now on, this annotation strategy
will be referred to as full/dense annotation, being characterized
by the highly laborious process required for producing such
ground truths. The expensive process for producing dense
annotations is further aggravated in certain scenarios such
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as medical imaging or remote sensing, where usually only
specialists are able to produce labels correctly. Thus sparse
annotations becomes an interesting solution, as they consist in
only presenting a label for a small set of pixels of the image.
This type of annotation reduces the time required to produce
the labels for an image but, it can be challenging to train
a model with such limitations on the amount of information
available. Multiple methods [18, 33, 35] have successfully
used sparse labels for image segmentation.

Another strategy to reduce the cost of labeling datasets is
to reduce the total number of images in it, and consequently
the number of labeled images. Such scenarios with small
dataset sizes are commonly known as few-shot and have
recently gained the interest of the computer vision community.
The few-shot learning literature contains a vast amount of
works focused on image classification with notable examples
[9, 23, 29, 34], although some methods for semantic segmen-
tation have been proposed in recent years [7, 13, 24, 36, 38].

One methodology that has been successfully applied to few-
shot problems in recent years is the meta-learning framework
[9, 29, 34]. Normally understood as learning to learn, meta-
learning is an umbrella term for a collection of methods that
improve the generalization of a learning algorithm through
multiple multi-task learning episodes. A recent survey [12]
formalizes the meta-learning framework and proposes different
forms to categorize methods that use this approach. One can
summarize meta-learning methods as an algorithm that learns
a set of parameters ω called meta-knowledge, trained using a
distribution of tasks, such that ω generalizes well for the tasks
in said distribution. The way a model achieves the training of
the meta-knowledge is used to group meta-learning methods
into categories.

In this work, we extensively evaluated our previously pro-
posed method WeaSeL [10] in a vast array of scenarios.
Additionally, we introduced a fully novel semantic segmen-
tation method (ProtoSeg), to problems with few-shot sparse
annotated images. These two approaches are based on the
meta-learning algorithms of Model-Agnostic Meta-Learning
(MAML) [9], and Prototypical Networks (ProtoNets) [29],
respectively.

The main contributions of this work are: (1) A novel meta-
learning method for the problem of semantic segmentation
with few-shot sparse annotated images; (2) An extensive eval-
uation of our previous and new proposals in a large collection
of tasks from Medical and Remote Sensing scenarios; (3)
A comparative analysis of five styles of sparse annotations
named: Points, Grid, Contours, Skeletons, and Regions; and
(4) Two novel publicly available crop segmentation datasets
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with semantic labels for coffee and orange orchard crop
regions. The coffee crop dataset has been previously published
in previous works [8, 22], but only for the task of patch
classification. This work will be the first time this dataset is
made fully publicly available with its semantic segmentation
labels.

II. RELATED WORK

A. Weakly Supervised/Sparse Label Semantic Segmentation

Approaches to the problem of semantic segmentation with
sparse labels can be mostly divided into two main groups: 1)
methods that use the sparse labels without any kind of aug-
mentation [4, 6, 28, 40]; and 2) strategies that try to reconstruct
dense annotations from the sparse labels [3, 5, 18, 39].

In the first group, Çiçek et al. [6] and Bokhorst et al. [4]
use a weighted loss, Silvestri and Antiga [28] imply the use
of padding in the sparse labels, and Zhu et al. [40] use a
quality model to ensure a good segmentation based of the
sparse annotation.

Lin et al. [18] are one of the first to use sparse labels for
semantic segmentation. They use a label propagation scheme
in conjunction with a FCN for segmentation. This propagation
uses the scribble annotation provided and the prediction of the
FCN network. They train their model by alternating which part
is trained at each iteration.

Tajbakhsh et al. [31] present a thorough review of deep
learning solutions to medical image segmentation problems.
They include a section for segmentation with noisy/sparse
labels, in which the methods belong to one of the two groups
described previously. All the methods reviewed by Tajbakhsh
et al. [31] use a selective loss. That is, a type of loss function
that has different weights to unlabeled pixels/voxels and thus
can ignore such pixels when the total cost is computed.

B. Few-Shot Semantic Segmentation

As in the few-shot classification problem, information from
the support set has an important role in the semantic segmenta-
tion case. Multiple works try to insert this information directly
into the model’s processing flow.

Many works use a two-branch structure, where one branch
is responsible for extracting information from the support
samples, which is fused into the other branch that processes
the query images. Dong and Xing [7] use a two-branch
model, where one network produces prototypes of each class,
similarly to ProtoNets. The first branch uses the support set
and query image to produce prototypes, which are used for
image classification in this branch. The encoded query image
in the second branch is then fused with the prototypes to
produce the probabilities maps. Hu et al. [13] introduce a
highly interconnected two-branch attention-based model. The
attention modules receive query and support feature maps,
and are present in multiple layers of the model. Zhang et al.
[38] present another two-branch model. One branch, called
guidance, is used to extract feature vectors from both query
and support images. They compute class prototypes using
masked average pooling in the features from support images.
A similarity map between the query features and prototypes

Table I: Summary of related work.

Work Semantic Segmentation Few-Shot Sparse Annotations
Lin et al. [18] X X
Vernaza and Chandraker [33] X X
Wang et al. [35] X X
Zhang et al. [39] X X
Bai et al. [3] X X
Cai et al. [5] X X
Çiçek et al. [6] X X
Bokhorst et al. [4] X X
Silvestri and Antiga [28] X X
Zhu et al. [40] X X
Snell et al. [29] X
Finn et al. [9] X
Dong and Xing [7] X X
Hu et al. [13] X X
Zhang et al. [38] X X
Wang et al. [36] X X
Rakelly et al. [24] X X X
WeaSeL (Ours) X X X
ProtoSeg (Ours) X X X

is calculated and fused with the query features to compute the
final prediction.

Other approaches use a single network to face the few-shot
semantic segmentation problem. Wang et al. [36] propose a
direct adaptation of the Prototypical Networks. They use a
CNN to produce feature vectors of the images in the support
set and compute the prototypes for each class using masked
average pooling, as [38]. During the training they include an
alignment loss, where the prototypes are computed from the
query image, and the support set is the segmentation target.
Rakelly et al. [24] proposed the Guided Networks (Guided
Nets), the first algorithm for few-shot sparse segmentation.
Although it fuses information from the support set in query
features, this model uses a single feature extraction network.
This network is a pre-trained CNN backbone that extracts
features of the support set and the query image. The sup-
port features are averaged through a masked pooling using
the sparse annotations provided for the images and further
globally averaged across all the support images available. This
single averaged support feature multiplies the query features,
reweighting them. Then, these features are further processed
by a small convolutional segmentation head that gives the final
predictions.

In Table I, we present a summary of the related works and
how our proposed methods fit in the literature.

III. METHODOLOGY

A. Problem Definition

For our problem setup, we employ most of the definitions
from Gama et al. [10].

A dataset D is a set of pairs (x,y), where x ∈ RH×W×B is
an image with dimensions H×W and B bands/channels, and
y ∈ RH×W is the semantic label of the pixels in the image.
This dataset is partitioned in two sets: Dsup (support set) and
Dqry (query set), such that Dsup ∩Dqry = ∅. Given a dataset
D and target class T , we define a segmentation task S as a
tuple S = {Dsup,Dqry, T} (or, S = {D, T }, for simplicity).

A few-shot semantic segmentation task F is a specific type
of segmentation task. It is also a tuple F = {Dsup,Dqry, T },
but the samples of Dsup have their labels sparsely annotated,
and the labels in Dqry are absent or unknown. Moreover, the
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number of samples k = |Dsup| is a small number (e.g., 20 or
less); thus, we also call a few-shot task a k-shot task.

Finally, the problem of few-shot semantic segmentation
with sparse labels is defined as follows. Given a few-shot
task F and available segmentation tasks {S1,S2, . . . ,Sn}, we
want to segment the images from the DqryF using information
from tasks Si, and information from the DsupF . Also, there
is no information of the tasks F target objects, other than
the sparse annotations of DsupF samples. That is, no pair of
image/semantic label of F is present in any task Si in either
sup or qry partition.

B. Gradient-based Sparse Segmentation with WeaSeL

We reintroduce our previously proposed method in Gama
et al. [10]. The Weakly-supervised Segmentation Learning
(WeaSeL) is an adaptation of the supervised MAML algorithm
[9], as depicted in Figure 1.

Our meta-tasks Ti ∼ p(T ) are segmentation tasks (i.e the
set {S1,S2, . . . ,Sn}), as defined in Section III-A. We employ
the Cross-Entropy loss (LCE) commonly used in segmentation
tasks, defined for a single pixel as:

LCE = −
C∑

i

yi log fθ(x)i, (1)

where C is the number of classes, yi is the true probability of
a class i for the pixel, and fθ(x)i is the predicted probability
by the model fθ for the class i to the specific pixel. The loss
in equation 1 is averaged over all pixels to produce the final
loss for an image.

The meta-tasks have dense annotated samples. To train the
model in a scenario similar to the target few-shot task, we
simulate sparse annotations for the samples in the meta-tasks
support set. That is, for all Ti ∼ p(T ), the labels of samples in
Dsup are randomly converted to a sparse version of themselves
(this operation will be further discussed in Section IV-B). With
this, we expect that the model learns to predict dense labels
from sparse annotations and more easily adapts to few-shot
tasks.

Given that the labels are sparse in the inner loop of meta-
training, and during tuning in the few-shot task, we modify the
classical Cross-Entropy to a Selective Cross-Entropy (SCE)
loss as follows:

LSCE = − 1

N

∑

j

C∑

i

wiy
j
i log fθ(x)ji , (2)

where j is a pixel, N is the total number of labeled pixels,
and wi is a indicator, where wi = 0, if i is an unknown label
and wi = 1, otherwise. That is, LSCE ignores pixels with
unknown labels via the binary weight parameter, averaging
the loss for all pixels with annotations.

Algorithm 1 summarizes the meta-training procedure using
the segmentation meta-task distribution p(T ). In the inner
loop, the loss is computed using the simulated sparse annota-
tions of the support set of a task, and the outer loss using the
dense labels of the query set of a task Ti.

After the meta-training phase, we adapt the model to the
few-shot task, performing a simple fine-tuning with samples

Positive/Foreground
Negative/Background

Unknown

(a) Visualization of the meta-training process. The global parameter
θ is optimized for different tasks obtaining the parameters θi through
optimization using the sparse labels from the tasks support sets. The
θ∗i is an optimal parameter that could be obtained if the model were
trained with the query set samples and dense annotations, which are
only used to compute the task outer loss. This hypothetical difference
∆ between parameters is expected to be minimized during the meta-
training, leading to a fast/better learner to the few-shot task.

Positive/Foreground
Negative/Background

Unknown

?
(b) Illustration of the fine-tuning step. The meta-optimized θ is
supervised trained with the sparse annotated samples of the few-shot
support set. The labels of the query are unknown, i.e., not seen by
the model.

Figure 1: Illustration of the WeaSeL method with toy examples
in the meta-training/meta-test phase (a), and in the few-shot
tuning phase (b).

from the support set of the few-shot task F . That is, we use
pairs (x,y) ∈ DsupF to train the model in a supervised manner
using a Selective Cross-Entropy loss.

C. Prototypical Seeds for Sparse Segmentation Via ProtoSeg

The proposed method for semantic segmentation based on
the Prototypical Networks [29] is a straightforward adaptation
of the original method. It uses the same premise of construct-
ing a prototype vector to each class, with the distinction that
prototypes are computed using the labeled pixels instead of
whole image instances.

Given a support set S = {(x1, y1), (x2, y2), . . . , (xN , yN )},
where xi ∈ RH×W×B is an image with height H , width
W and B channels, and yi ∈ RH×W is a label image
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Algorithm 1 Training algorithm for WeaSeL .

Require: p(T ): distributions over tasks
Require: α, β: step size hyperparameters

Randomly initialize θ
while not done do

Sample batch of tasks Ti ∼ p(T )
for all Ti do

Sample batch of datapoints Si = {(x,y)} from DsupTi
Compute ∇θLCE(fθ) using Si and LSCE
Update parameters: θi = θ − α∇θLSCE(fθ)
Sample batch of datapoints Qi = {(x,y)} from DqryTi

end for
Update θ ← θ − β∇θ

∑
Ti LCE(fθi) using Qi and LCE

end while

Extract Features from Samples

Masking Features

Global sample average

Figure 2: Illustration of our Average Pooling. After masking
the features our process create the global sample average by
considering all pixels in the set.

with the semantic class of each pixel in xi. Since yi can
be sparse, the possible values of an pixel j in yi are in the
set {0, 1, 2, . . . ,K}, where K is the total of classes and 0
represents the unknown class.

In our adaptation of ProtoNets, we define the n-dimensional
prototype vector ck, of a class k as:

ck =
1

Nk

∑

(xi,yi)∈S

∑

j

[fΦ(xi)� 1k(yi)]
j , (3)

where fΦ : RH×W×B → RH×W×n is our embedding
function parametrized with Φ (a CNN), � is point-wise
multiplication, and 1k(yi) ∈ {0, 1}H×W is a mask matrix
where each value is defined as

1jk(yi) =

{
1, if yji = k

0, otherwise

And Nk =
∑
yi

∑
j 1jk(yi) is the total number of pixels of

the class k, across all the support set S. This means that
our prototype vector ck is the mean vector of all pixels of
a class existent in the support set. This is similar to a masked
average pooling, but considering all pixels globally, opposed
to averaging for each sample and then averaging these pooled
vectors. (See Figure 2).

The inference is the same of the original Prototypical
Networks, but applied to a pixel in the image. Formally, the
probability of a pixel j of a query image q ∈ RH×W×B
belonging to a class k is computed as follows:

pΦ(yj = k|q) =
exp(−d(fΦ(q)j , ck))∑
i exp(−d(fΦ(q)j , ci))

, (4)

where d is the squared euclidean distance: d(u,v) = ||u−v||2.
Similar to the case of the WeaSeL method, given the

presence of unknown labeled pixels in training, we modify
our loss function to ignore such pixels. We define our new
loss function J(Φ) as follows:

J(Φ) = − 1

|Q|
∑

(x,y)∈Q

∑

j∈x

K∑

k=1

log pΦ(yj = k|xj), (5)

where Q is the set of images used to compute the loss, j is
a pixel coordinate and k represents a class. Note that k starts
from 1, thus not considering the unknown class k = 0. We
use pΦ as defined in equation 4.

Given equations 3 and 4, the model fΦ is trained using a
episodic training strategy. This strategy resembles the training
algorithm of WeaSeL and is presented in algorithm 2. It uses
the same distribution over tasks p(T ) as the first method, with
the automatically generated sparse annotations of the meta-
tasks in training. At each iteration, a batch of tasks is sampled,
and for each task Ti, a support set Si is constructed and used
for training.

Algorithm 2 Training algorithm for ProtoSeg .

Require: p(T ): distributions over tasks
randomly initialize Φ
while not done do

Sample batch of tasks Ti ∼ p(T )
for all Ti do

Sample a support set Si = {(x1, y1), . . . , (xN , yN )}
from DsupTi
Compute ck using Si, for all k using equation 3
Sample query batch Qi = {(x1,y1), . . . , (xb,yb)}
from DqryTi
Compute the loss J(Φ) as defined in equation 5, using
Qi.
Update Φ using gradient descent and ∇J

end for
end while

IV. EXPERIMENTAL SETUP

In this section, we present the configurations used for our
experiments. In Section IV-A, we briefly present the datasets
used. The evaluated sparse labels annotation styles are listed
in Section IV-B. Next, in Section IV-C, we introduce the FCN
architecture used, and in Section IV-D the baselines, protocol,
and metrics are presented.

All the code for the experiments were written in the Python3
language. For the models, we use the Pytorch1 framework and
the Torchmeta2 module. In relation to the machine, all the
experiments were performed on Ubuntu SO, 64-bit Intel i9
7920X machine with 64GB of RAM memory, and a GeForce
RTX 2080 TI/Titan XP GPU (only one GPU was used during
the experiments).

1https://pytorch.org
2https://github.com/tristandeleu/pytorch-meta
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(a) JSRT (b) Montgomery (c) Shenzhen (d) NIH-labeled (e) OpenIST

(f) LIDC-IDRI-DRR (g) MIAS (h) Inbreast (i) Panoramic Dental (j) IVisionLab Dental

Lungs Heart ClaviclesLegend: Ribs Breasts Pectoral Muscle Mandibles Teeth

Figure 3: Examples of biomedical imaging datasets included in our medical meta-dataset.

A. Datasets

We design experiments to evaluate the proposed methods in
medical and remote sensing applications for semantic segmen-
tation. These areas have some similarities that contrast them
from others. Their images are rather distinct from common
RGB images taken with surveillance or cellphone cameras,
for instance. This hinders the knowledge transfer from other
generic domains or the use of pre-trained models on large
datasets such as ImageNet. Another common aspect of these
two areas is the limitation of availability of images due to
multiple factors. Medical image datasets have to face privacy
and ethical concerns, also requiring a highly specialized radi-
ologist to provide precise annotations. In remote sensing the
annotation is extremely laborious and sometimes unfeasible
since it typically requires that a specialist collect information
from large geographical areas, maybe even requiring visits to
the site for producing ground truths for these data.

1) Medical Imaging Datasets: We use a total of ten medical
datasets in our experiments (Figure 3). Of these datasets,
six are Chest X-Ray datasets (CRX): JSRT [26] with labels
for lungs, heart and clavicles; the Montgomery/Shenzhen sets
[14], an annotated subset of Chest X-Ray 8 [37] by Tang et al.
[32] referred to as NIH-labeled, OpenIST3 with labels for lung
segmentation, and the LIDC-IDRI-DRR dataset [21], with
generated ribs annotations. We include two Mammographic
X-Ray (MRX) image sets, namely INbreast [19] and MIAS
[30], with labels for breast region and pectoral muscle segmen-
tation. Also, two Dental X-Ray (DRX) datasets are included:
Panoramic X-Ray [1] with labels for the inferior mandible and
IVisionLab [27] annotated for teeth segmentation.

3https://github.com/pi-null-mezon/OpenIST

2) Remote Sensing Datasets: The Remote Sensing meta-
dataset is composed of rural scenes for crop segmentation
(Figure 4). More specifically, we use the Brazilian Coffee
dataset, composed of images of 4 municipalities – namely,
Arceburgo, Guaranésia, Guaxupé and Montesanto – with
pixel-level annotations for coffee crops regions, as well as
the Orange Orchards (Ubirajara county, Brazil) dataset, with
annotations for orange crop regions. Both datasets will be
made public available upon the acceptance of this work.

Further description of all datasets are presented in the
supplementary material.

(a) Arceburgo (b) Guaranésia (c) Guaxupé

(d) Montesanto (e) Orange Orchads

CoffeeLegend: Orange Tree

Figure 4: Examples from the Brazilian Coffee and Orange
Orchards Datasets.
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B. Types of sparse annotation

In the experiments we evaluate five types of sparse anno-
tation, namely: points, grid, contours, skeletons, and regions.
As mentioned, we simulate these annotations from the original
dense labels of an image. Visual examples of these annotations
are show in Figure 5. We can describe each type of annotation
and explain how the sparse annotations are generated as
follow:

I) Points: It simulates an annotator alternately picking
pixels from the foreground and background classes.
We use a parameter n and randomly choose n pixels
from the foreground and n from the background. The
remainder pixels are set as unknown.

II) Grid: The annotator receives a pre-selected collection
of pixels of the image, which are initially assumed to
be from the background class. The pixels considered
foreground should be annotated. These pre-selected pix-
els are disposed of in a grid pattern that was generated
by using a parameter s. First, a random pixel p0 is
selected within the following rectangular region: {upper
left corner: (0, 0) and bottom right corner: (s, s) }.
Afterward, a grid is created from this p0 position with
s spacing horizontally and vertically. Pixels outside the
grid are set as unknown.

III) Contours: The annotator denotes the inner and outer
boundaries of foreground objects. This style is useful
for cases where a single connected foreground object
is present. We simulate these annotations by using
morphological operations on the original binary dense
labels. We used an erosion operation followed by a
marching squares algorithm4 to find the inner contours.
To the outer contours, we use a dilation operation on
the original label mask and the same marching squares
algorithm. Additionally, we use a parameter d that
determines the density of the sparse annotation.

IV) Skeleton-Based Scribble: It resembles an annotator
drawing a scribble roughly at the center of the fore-
ground objects that more or less approximate the object
form. The same process is applied to the background.
These annotations are generated using the skeletonize
algorithm5 in the binary dense label masks, which
returns the skeletons of the foreground objects. The same
process is applied to the negative dense label masks to
obtain the skeleton of the background class. Dilation
is applied to add thickness to the skeletons. We use a
parameter d to control the density of the annotation. We
generate random binary blobs (using this6 function) that
occupy d percentage of the image space and use them
to mask the computed skeletons.

V) Regions: This type of annotation represents the process
of an annotator appointing classes to pure superpixels.
We define a pure superpixel as a usually small connected

4https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.
html#find-contours

5https://scikit-image.org/docs/0.8.0/api/skimage.morphology.html?
highlight=skeletonize#skeletonize

6https://scikit-image.org/docs/dev/api/skimage.data.html#skimage.data.
binary_blobs

set of pixels with the same class. The annotator is
provided with the superpixels of the image and then
appoints the class of a subset of pure foreground and
background superpixels. To generate these annotations,
first, we compute the superpixels of the images using the
SLIC algorithm [2] with empirically chosen parameters
for each dataset. Once superpixels were computed, we
randomly selected a d percentage of the superpixels for
the foreground and a d percentage of superpixels for the
background.

C. miniUNet architecture

The network model used in all experiments – Baselines,
WeaSeL, and ProtoSeg– is a simplified version of the UNet
architecture [25]. We will call it miniUNet since it is a smaller
version of the original network. More information about
the miniUNet architecture can be seen in the supplementary
material of this manuscript.

In ProtoSeg, since we want to generate n-dimensional
feature vectors, the last layer of the network is ignored and
the output is gathered from the last decoder block. That is,
the embedding function fΦ is the miniUNet model excluding
the last 1×1 convolutional layer, with this, the prototypes are
32-dimensional.

D. Evaluation Protocol

1) Baselines: We use two baselines for comparison with
our approaches: 1) From Scratch and 2) Fine-Tuning. Given
our few-shot semantic segmentation problem parameters in the
form of the set of segmentation task {S1,S2, . . . ,Sn}, and a
few-shot task F , we define our baselines as follow:
From Scratch: Given our miniUNet network, we perform
a simple supervised train with the Few-shot task support
set (DsupF ). We use the same Cross-Entropy loss ignoring
unlabeled pixels as our cost function (Equation 2). The Adam
optimizer [16] was used, with the same parameter used in the
training of our methods.
Fine-tuning: We use the miniUNet architecture. We choose
one task Si from our tasks set, and perform a supervised train
with the DsupSi . Once finished the training on Si, we perform
the fine-tune (a supervised training) using the DsupF set. Again,
the same Cross-Entropy loss function (Equation 2) is used with
the same parametrized Adam optimizer.

We choose to not present the Guided Nets [24] as a baseline
in this work. The use of pre-trained CNN as features extractors
seen to be essential to the efficiency of the model, and did not
translate well to our evaluate scenarios (medical and remote
sensing). To the best of our efforts the model was not able to
converge to a usable model with our Meta-Datasets. Thus, it
did not seem fair to compare the Guided Nets to our approach.

2) Protocol and Metrics: In order to assess the perfor-
mance of our methods in a certain setting, we employ a
Leave-One-Task-Out methodology. That is, all but the pair
(dataset, class) chosen as the Few-shot task (F) are used
in the Meta-Dataset, reserving F for the tuning/testing phase.
This strategy serves to simultaneously hide the target task
from the meta-training while also allowing the experiments
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Foreground/Positive Labels Background/Negative LabelsLegend: Unknown Labels
Superpixel Boundaries

Image Dense Points Grid Contours Skeletons Regions

Figure 5: Illustration of the types of sparse annotations used. Annotations are illustrative and uspcaled to better visualization.

to evaluate the proposed algorithm and baselines in a myriad
of scenarios. Moreover, we divide our tasks into two groups to
perform the experiments: (I) Medical Tasks: all the medical
datasets and their classes are used for these tasks, totaling 13
tasks; (II) Remote Sensing Tasks: we used rural datasets for
these tasks. There are 5 tasks in total (4 from the Brazilian
Coffee and 1 from the Orange Orchards dataset).

For each method, we used a different number of epochs
in each of their training phases. In table II, we show these
numbers that differ mostly due to training time. The Remote
Sensing datasets are, in general, larger than the Medical
datasets, and this made the training process (that includes
validation) more time-consuming. We use the Adam opti-
mizer [16] with learning rate 0.001, weight decay 0.0005, and
momentum 0.9. Our batch size was set to 5. The number of
tasks sampled for the inner loop of WeaSeL and ProtoSeg
was set to 6 in Medical experiments and 4 in Remote Sensing
experiments due to memory constraints, in general, and the
total number of tasks in Remote Sensing experiments.

Table II: Number of epochs for training the methods in
different experiments.

Method Medical Experiments Remote Sensing Experiments

Total Epochs Pre/Meta-Training Tuning Pre/Meta-Training Tuning
WeaSeL 2000 80 200 40
ProtoSeg 2000 - 200 -
Fine-Tuning 200 80 100 80
From Scratch - 80 - 100

We use a 5-fold cross-validation protocol in the experiments.
Each dataset had a training and validation partition for each
fold. Once fix the experiment fold, the support sets for the
tasks are obtained from the training partition of the dataset,
while the query sets are the entire validation partition.

All images and labels are resized to 256 × 256 for remote
sensing images and 128 × 128 for medical images prior to
being fed to the models. This was due to our infrastructure
limitations and done to standardize the input size and minimize
the computational cost of the methods, especially the memory

footprint of WeaSeL method, due to the computation of second
derivatives, on high-dimensional outputs.

The metric within a fold is computed for all images in the
query set according to the dense labels, and is averaged in
relation to the images in that fold. The metric used is the Jac-
card score (or Intersection over Union – IoU) of the validation
images, a common metric for semantic segmentation.

V. RESULTS AND DISCUSSION

In this section, we present and discuss the results of
our experiments. Section V-A shows a comparison of the
results of the proposed methods and baselines using multiple
sparse annotations and their densely annotated counterparts.
Section V-A1 focuses on the medical imaging datasets, while
Section V-A2 describes the results obtained from remote
sensing data. At last, in Section V-B we evaluate different
sparse annotation styles regarding the number of user inputs
and segmentation performance.

A. Few-shot Semantic Segmentation: Sparse vs Dense labels

In this section, we present the results of our methods in
multiple few-shot tasks in the Medical and Remote Sensing
scenarios. We evaluated different number of shots and param-
eters for each type of sparse annotation. In Sections V-A1
and V-A2, we present the results grouped in plots organized
by sparse annotation type and number of shots. Dashed lines
in the graphs represent the scores of the methods trained with
dense annotations.

1) Medical Tasks: Analyzing the results in the CRX tasks,
two trends can be easily seen. First, an obvious insight that
holds for most methods and scenarios is that better scores
are obtained with more data. Larger support sets (higher k-
shots) and more sparsely annotated pixels result in better
performance for the algorithms. A second observed result
is that WeaSeL surpassed the performances of ProtoSeg and
baselines in tasks with a larger domain shift to other tasks in
the meta-dataset. This was observed mainly in the JSRT Lungs
(Figure 6) and the JSRT Heart (Figure 7) experiments, as the
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JSRT dataset is visually the most distinct of the CRX datasets.
Additionally, the Heart class is annotated only in this dataset,
resulting in a large domain shift in the semantic space for this
task in comparison to the other tasks used in the meta-training.

For the remaining tasks, we observe that either the ProtoSeg
method or some fine-tuning baseline is the best performer.
Since some datasets are visually similar, fine-tuning for a
task from a model trained in a similar dataset is a known
viable solution that works well in these cases. Fine-tuning
from similar tasks (e.g., OpenIST, Montgomery, or Shenzhen
for lung segmentation) yields the best Jaccard scores in most
cases, as exemplified in Figure 8 for the OpenIST dataset.
Also, we observe that the ProtoSeg is consistently comparable
to these fine-tuned baselines. The same plots (as in Figure 8)
for Montgomery and Shenzhen tasks, omitted in this text due
to size constraints, can be found in the supplementary material.

MRX and DXR tasks present similar tendencies as the ones
observed in the CRX datasets. Again, fine-tuning from similar
tasks appears as a solid solution, with WeaSeL obtaining
comparable results to the baselines in most cases. In the MIAS
Breast task (Figure 9), fine-tuning from the INbreast Breast
proved to be the best method, mainly due to having the same
semantic space on the source and target domains, closely
followed by WeaSeL in most scenarios.

Two DXR datasets are included in the meta-dataset in
our experiments, assuring that in experiments with one DXR
dataset as target, the other one is always used for the pretrain-
ing. However, the Panoramic dataset is labeled for mandibles
while IVisionLab data are labeled for teeth, hence never shar-
ing the same label space. In this scenario, without a task with
similar semantic space to fine-tune from, the WeaSeL yields
the best performance in the segmentation tasks, achieving the
highest scores in the majority of experiments with both dense
and sparse annotations. This can be observed in Figure 10 for
the Panoramic Mandible task. Being the most distinct tasks,
even the from scratch baseline yields comparable results to
the more complex alternatives, in some cases even achieving
the best results. ProtoSeg underperforms by a large margin
in comparison to the other methods in Panoramic Mandible,
which can be explained by the low prevalence of DXR data
in the meta-dataset used for meta-training and by the large
semantic space domain shift even among DXR datasets.

2) Remote Sensing Tasks: In general, all remote sensing
tasks proved to be considerably harder than the medical ones.
Overall, no method achieved a Jaccard score above 0.8 in
any of the evaluated tasks, not even when using dense labels.
Figures 11 and 12 depict the results for the Montesanto Coffee
and Arceburgo Coffee tasks, from the Brazilian Coffee dataset,
while Figure 13 shows results for the Orange Orchard task.
One can easily observe that the WeaSeL method consistently
outperforms fine-tuning and from scratch baselines, especially
in configurations with few data (1-shot tasks). Although having
the same label space, the coffee segmentation presents an
intrinsic domain shift across the 4 different counties in the
dataset. This is due to distinct geographical features, coffee
crop cycles and/or plantation methods, explaining why simple
fine-tuning is not always the best solution for coffee crop
segmentation.

ProtoSeg had consistent results in most agricultural tasks.
For the Coffee tasks, it generally obtained Jaccard scores
around 0.6, while the performance in the Orange task revolved
around 0.4. In a tendency similar to the Medical experiments,
ProtoSeg seems to benefit from very related/similar tasks,
particularly regarding the semantic space. When choosing
Orange Orchard as the target task, only the Coffee tasks
were available to be used in training, explaining its lower
performance in comparison to the Coffee datasets.

B. Sparse Label Efficiency Comparison

In this section, we present results for three types of sparse
annotations: Points, Grid, and Regions. Contour and Skeleton
annotations are not evaluated due to our methods to generate
them. We define the number of user inputs for a type of
annotation as the number of interactions an annotator would
have to perform to annotate the image sparsely using said type.

For a single image, the number of inputs for a n-point
Points annotation is 2n: the n positive and n negative pixels
selected. For the Grid annotation, the number of inputs is the
total positive labeled pixels in the grid since they are initially
assumed to be negative, and the user picks the positive ones.
As for the Regions annotation, the number of inputs is defined
as the total regions selected, independent of being positive or
negative. After the number of inputs for a single image is
computed, the values are summed for all images in the support
set of the k-shot task. Then, the number of inputs of the k-shot
are averaged across the five folds.

Figures 14 and 15 present results label efficiency plots for
JSRT Lungs and Montesanto Coffee, respectively. We observe
that, as seen in Section V-A, the WeaSeL method overall
performs better with more data, that increases with the number
of user inputs. We also clearly see how the ProtoSeg method
is almost indifferent to the sparsity and quantity of annotations
by having a low deviation score in the presented tasks. For the
JSRT Lungs task (Figure 14), and Medical tasks, in general,
we see that the Grid annotation usually achieve a higher
score for the same number of user inputs as the other types
of annotation. On the other hand, the Region annotation is
commonly the best annotation type for the Remote Sensing
tasks, having higher scores with the same number of inputs.
The Points annotation is, at most times, the worse performer.
This was expected since with the same number of inputs, this
type of annotation will have fewer labeled pixels in total than
the other types.

By comparing these results and the ones of the previous
section (Section V-A) we can draw some discussions. The
Grid annotation is a solid annotation type that can lead to good
results and usually is one of the best types for Medical cases.
However, this is the most user-consuming type, requiring a
larger number of user inputs. The Regions annotation is also
a solid option for annotations. When the superpixel segmen-
tation produces clean regions easier to be labeled, this type
can make annotation simpler and quicker and produce precise
models, especially for Remote Sensing tasks. The Points
annotation requires less from the user. It does not produce
the most optimal models but can lead to comparable results
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Figure 6: Jaccard score of experiments with JSRT Lungs task.
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Figure 7: Jaccard score of experiments with JSRT Heart task.

requiring far fewer inputs. Also, this annotation guarantees a
balanced number of pixels samples for each class in training,
making optimization of the models easier. The other two types
of annotations, Contours and Skeletons, appear as valid options
as well. The way we designed the process of generating these
annotations made it difficult to translate to a countable user
input, which is why these types are not compared in this
section. However, the results presented in Section V-A show
that Contours and Skeletons annotations are suitable styles,
specially Contours in the Medical tasks and Skeletons in
Remote Sensing tasks.

VI. CONCLUSION AND FUTURE WORKS

In this work, we proposed one method (ProtoSeg) to the
problem of weakly supervised few-shot semantic segmenta-
tion, also conducting extensive experiments on similar previ-
ously proposed method (WeaSeL [10]). Despite being common
in shallow interactive segmentation methods, few-shot seg-
mentation from sparse labels is still not fully integrated with

the advances in computer vision brought by Deep Learning.
We evaluated our two meta-learning methods in a large number
of experiments to verify their generalization capabilities in
multiple image modalities, number of shots, annotation types
and label densities. We chose to focus the experiments in two
areas that can benefit from few-shot sparse labeled semantic
segmentation: medical imaging and remote sensing.

WeaSeL [10], obtained promising results, mainly in scenar-
ios with a large domain shift between the target and source
tasks. The proposed ProtoSeg method yielded reliable seg-
mentation predictions in the cases wherein there are multiple
closely related source datasets, as good results from ProtoSeg
appear to be correlated to the availability of similar tasks
during training. The five annotation types evaluated in our
experiments — Points, Grid, Contours, Skeletons, and Regions
— have their own pros and cons. The Grid annotation proved
to be highly reliable and produce some of the best results,
even though it often requires more user intervention. Region
annotations can be a more efficient option, but its usefulness is
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Figure 8: Jaccard score of experiments with OpenIST Lungs task.
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Figure 9: Jaccard score of experiments with MIAS Breast task.

highly affected by the performance of the superpixel segmenta-
tion algorithm. Points annotations are the less user demanding,
but it also yields the greater gaps for dense annotation scores.
Contours and Skeletons appear as valid options for medical
imaging and remote sensing tasks, respectively. However more
experiments must be conducted to confirm their efficiency in
comparison to the other label modalities.

For future works, we intend to investigate adding spacial
reasoning into the segmentation predictions in order to ac-
count for the location and feature representations of a given
pixel in comparison to annotated pixels. Additionally, further
experiments in other medical imaging (e.g. other 2D x-ray
exams, volumetric images, etc) and remote sensing (e.g. urban
segmentation tasks) will be conducted using both ProtoSeg
and WeaSeL. At last, our team shall investigate the need for
real annotations at all during the meta-training phase. Instead,
we plan to replace the sparse masks for organs and crops by
automatically generated weakly supervised masks of regions
obtained by shallow unsupervised segmentation algorithms.
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Figure 10: Jaccard score of experiments with Panoramic Mandible task.
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Figure 12: Jaccard score of experiments with Arceburgo Coffee task.
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Figure 13: Jaccard score of experiments with Orange Orchard task.
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1 miniUnet Architecture

The network is comprised of three encoder blocks, a center block, three decoder blocks and a 1×1
convolution layer that works as a pixel-classification layer. The network’s blocks configuration
can be seen in Table 4, where C is the number of input channels obtained from the image
domain (e.g. C = 3 for RGB images or C = 1 for radiology images) and the input/output
features represent the number of feature dimensions that the input/output volume has (e.g.
Encoder Block 1 receives an image of size h×w ×C and outputs a volume of size h

2 × w
2 × 32).

Similar to the classical UNet architecture [? ], skip connections are present in this model. This
means that each decoder block receives as input the concatenation of the last block output
and the corresponding encoder output. For instance, Decoder Block 1 receives as input the
concatenation of the output volume of Decoder Block 2 and the output volume of Encoder Block
1.

Unlike the original architecture, we pad the images with zeros prior to the convolutions
in order to preserve the spacial dimensions if the input. Hence, in the miniUnet architecture
only pooling and transposed convolution operations affect the spatial dimensions of the volume
during a forward pass in the network. A visualization of the miniUnet architecture can be seen
in Figure 17.

Table 4: Descriptions of the miniUNet blocks.

Block Name Encoder Blocks (1, 2, 3) Center Block

Layers

Conv 3× 3
Bath Norm.

ReLU
Conv 3× 3
Bath Norm.

ReLU
MaxPool 2× 2

Dropout
Conv 3× 3

Bath Normalization
ReLU

Conv 3× 3
Bath Normalization

ReLU
Transposed Conv 2× 2

Input Feat./ Output Feat. C/32, 32/64, 64/128 128/128

Block Name Decoder Blocks (3, 2) Decoder Block (1)

Layers

Dropout
Conv 3× 3

Bath Normalization
ReLU

Conv 3× 3
Bath Normalization

ReLU
Transposed Conv 2× 2

Dropout
Conv 3× 3

Bath Normalization
ReLU

Conv 3× 3
Bath Normalization

ReLU

Input Feat./ Output Feat. 256/64, 128/32 32/32
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Figure 17: Illustration of the miniUNet architecture. The upper numbers represent the feature
dimension of the volumes, while on the side is the spatial dimensions.

2 Dataset Details

2.1 Medical Datasets

1.A) JSRT Database [? ] is a collection 247 of chest radiographs initially proposed for lung
nodules identification. Masks for lungs, clavicles and hearts structures were obtained from [? ].
From each anatomical structure, a task is derived. All the images have a resolution of 2048×2048
and 12 bit pixel resolution, and are gray scale. Examples are show in Figure 3(a).

1.B) Montgomery Dataset [? ] is a set of chests X-rays collected from patients in
Montgomery County, Maryland, USA. There are 138 frontal X-rays, from which 58 are from
cases of Tuberculosis - the initial use case of the dataset. Alongside with information of the
patient, for each X-ray, there are binary masks for segmentation of each lung. All the X-rays are
12 bit gray scale images, and either have size 4020× 4892 or 4892× 4020. Examples are shown
in Figure 3(b).

1.C) Shenzhen Dataset [? ] were publicized along with the Montogomery dataset. This
set is comprised of chests X-rays collected from patients in Shenzhen, China. There are a total
of 662 frontal X-rays, from which 336 are from cases of Tuberculosis. There is also binary masks
for segmentation of each lung. The size of the X-rays vary, but average a 3000× 3000 resolution,
and are gray scale. Examples are shown in Figure 3(c).

1.D) NIH-labeled dataset [? ] is a subset of the original NIH-labeled dataset [? ]. The
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original dataset is comprised of 108, 948 frontalview X-ray images of 32, 717 unique patients, and
labeled with NLP for 14 different diseases. The subset used in this experiments will be named
simply NIH-labeled or XLSor-NIH. This dataset proposed in [? ] is comprised of 100 chest
X-rays from the original NIH with manually annotated lung masks for these X-rays. All images
have a spatial resolution of 512× 512 and are gray scale. Examples can be seen in Figure 3(d).

1.E) OpenIST Chest X-Rays dataset1 is a set of X-rays collected from the following
original domain: http://www.chestx-ray.com/index.php/education/normal-cxr-module-train-your-eye#

!1. These images were used to train medical students in recognizing a normal X-ray. There are
in total 225 chest X-ray images, with binary masks for the lungs. The images are gray scale with
8-bit resolution and their sizes are not fixed. Examples in Figure 3(e).

1.F) LIDC-IDRI-DRR dataset [? ] is a dataset derived from LIDC [? ]. This dataset
is composed of flattened 2D Digitaly Reconstructed Radiographs (DRR) computed from chest
CT-scans, as well as generated labels for the ribs. All the 835 images in the dataset are gray
scale, and have size 512× 512. Examples of the scans and labels are show in Figure 3(f).

1.G) MIAS database [? ] is a collection of data from the Mammographic Image Analysis
Society (MIAS), a research group in the UK with interest in mammograms. This dataset is
composed of 322 digitized mammograms, grayscaled and with a resolution of 1024× 1024. The
original dataset only provides labels of location and size of nodules in the images, but we had
access to label masks that segment the pectoral muscles and the breast in each image. Example
of samples are shown in Figure 3(g).

1.H) INbreast database [? ] is a collection of 410 images collected from womans in the
Breast Center located in the Centro Hospitalar de S. Joao [CHSJ], Porto, Portugal. From these
410 images, only 200 are from Mediolateral Oblique (MLO) view (a side view of the breasts), and
have labeled pectoral muscles for them. We also obtained labels for the breasts. All images are
gray level with 14 bit resolution and their sizes are either 3328× 4084 or 2560× 3328, depending
on the patient. Examples can be seen in Figure 3(h).

1.I) Panoramic Dental X-rays [? ] dataset is a set of panoramic dental X-rays of 116
patients, taken at Noor Medical Imaging Center, Qom, Iran. The images were mannually segment
by three specialists from which label masks for the mandibles were generated. All the images
are gray scale and have a size of approximately 2900× 1250 pixels. Examples of sample images
and labels are presented in Figure 3(i).

1.J) IVisionLab Dental Images Dataset [? ] (or, simply, IVisionLab Dataset) is com-
posed of a series of panoramic X-ray dental images. There is a total of 1500 images with annotated
teeth labels, with a variety of cases of dental problems and/or formations defects. All the images
are gray scale with dimensions of 2440× 1292 pixels. Examples are shown in Figure 3(j).

2.2 Remote Sensing Datasets

2.A) Brazilian Coffee [? ? ] is a dataset comprised of 4 large satellite images from 4
municipalities of the state of Minas Gerais, Brazil - one satellite image for each county. These
Counties being: Arceburgo, Guaranésia, Guaxupé and Montesanto. In the satellite images only
three bands were considered, namely the Red, Green, and Near Infrared bands. Along these
images, a binary ground truth label image is provided, with positive value representing a coffee
crop and negative value representing the background. For evaluation purpose, each of the images
where cropped in non-overlapping patches of size 256× 256, and only crops with a percentage of
25% or more of pixels of coffee where maintained for training and validation of the models. Given
that each county has distinct geographical features, which lead to coffee plantation distinctions,

1https://github.com/pi-null-mezon/OpenIST
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we consider each municipality a different task. Examples of patches of this dataset and their
respective ground truths can be seen in Figure 4(a)-(d).

2.B) Orange Orchards dataset is comprised of satellite images from an Orange Orchard
located at the municipality of Ubirajara, São Paulo, Brazil. In the satellite images four bands
are presented, Red, Green, Blue, and Near InfraRed, but only three of the bands were used: all
but the Blue band. In addition to the images, annotation masks of the orange plantations were
provided, making two classes, namely, Oranges and Background. Each of the satellite images
where cropped in non-overlapping patches of size 384× 384, and only crops with a percentage of
10% or more of pixels of plantation where maintained for training and validation of the models.
Since this dataset is focused in a single region and have only one interest class, we use it as a
single task in our experiments. Examples of patches of this dataset and their respective ground
truths can be seen in Figure 4(e).

3 Additional Results

In this section, we present extra results for the Section V-A, that were omitted for brevity.

3.1 Extra Medical Tasks

This section include the results of four omitted tasks of the Medical Experiments. These tasks
are: JSRT Clavicles (Figure 18), Montgomery Lungs (Figure 19),Shenzhen Lungs (Figure 20),
NIH-labeled Lungs (Figure 21)MIAS Pectoral Muscle (Figure 23), INbreast Breast (Figure 22),
and IVisionLab Teeth (Figure 24).
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Figure 18: Jaccard score of experiments with JSRT Clavicles task.

3.2 Extra Remote Sensing Tasks

This section include the results of two omitted tasks of the Remote Sensing Experiments. The
two tasks from the Brazilian Coffee dataset: Guaxupé Coffee (Figure 25), and Guaranésia Coffee
(Figure 26).
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Figure 19: Jaccard score of experiments with Montgomery Lungs task.
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Figure 20: Jaccard score of experiments with Shenzhen Lungs task.
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Figure 21: Jaccard score of experiments with NIH-labeled Lungs task.
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Figure 22: Jaccard score of experiments with INbreast Breast task.
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Figure 23: Jaccard score of experiments with MIAS Pectoral Muscle task.
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Figure 24: Jaccard score of experiments with IVisionLab Teeth task.
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Figure 25: Jaccard score of experiments with Guaxupe Coffee task.
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Figure 26: Jaccard score of experiments with Guaranesia Coffee task.


