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Abstract Recently, most dehazed image quality assessment 
(DQA) methods have focused on estimating remaining haze and
omitting distortion impact from the side effect of dehazing 
algorithms, which leads to their limited performance. Addressing 
this problem, we propose a method for learning both visibility and 
distortion-aware features no-reference (NR) dehazed image 
quality assessment (VDA-DQA). Visibility-aware features are 
exploited to characterize clarity optimization after dehazing, 
including the brightness-, contrast-, and sharpness-aware features
extracted by the complex contourlet transform (CCT). Then, 
distortion-aware features are employed to measure the distortion 
artifacts of images, including the normalized histogram of the local 
binary pattern (LBP) from the reconstructed dehazed image and 
the statistics of the CCT subbands corresponding to the chroma 
and saturation map. Finally, all the above features are mapped 
into quality scores by support vector regression (SVR). Extensive 
experimental results on six public DQA datasets verify the 
superiority of the proposed VDA-DQA method in terms of
consistency with subjective visual perception and outperform
state-of-the-art methods. The source code of VDA-DQA is 
available at https://github.com/li181119/VDA-DQA.

Index Terms Dehazed image quality assessment, Visibility-
aware features, Distortion-aware features, Complex contourlet 
transform, Support vector regression.

I. INTRODUCTION

urrently, images captured in outdoor scenes are 
degraded by bad weather, such as fog, haze, or mist. 
Degraded images usually suffer from low contrast, 
faint color, and shifted luminance. Under these 

circumstances, image dehazing methods become highly 
important for high-level computer vision tasks. Owing to 
continuous research, many efficient dehazing algorithms have 
been proposed to handle the degradation problem.

With the development of image dehazing, it is crucial to 
evaluate the performance of dehazing algorithms. Different 
from classical image distortion, classical image quality 
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assessment (IQA) methods are unsuitable for capturing haze 
removal. Many studies suggest that common IQA methods such 
as BRISQUE [1] and SSEQ [2] perform poorly in DQA tasks.
It is important to develop an effective DQA method to promote
dehazing algorithm progress. Generally, the DQA method 
includes two categories: subjective and objective evaluation 
methods. Subjective DQA methods based on human visual 
perception possess high prediction accuracy, but the 
disadvantage of being time and labor-consuming limits their
use. Real-time objective DQA methods that automatically 
evaluate the dehazed image quality are urgently demanded.

Generally, objective DQA methods can be divided into two 
categories: full-reference (FR) and no-reference (NR) DQA 
methods. The difference between FR-DQA and NR-DQA is 
whether the source hazy image belongs to a synthetic hazy 
image. FR-DQA methods make full use of the haze-free images 
to compare with dehazed images and measure the difference 
between them. Min et al. [3] designed a synthetic haze database 
including regular and aerial image parts and then integrated the 
similarity measures of structure recovery, color rendition, and 
over-enhancement to obtain a quality score. Zhao et al. [4] 
proposed two novel evaluation criteria, the visibility index (VI) 
and the realness index (RI), to measure the dehazing effect. Liu 
et al. [5] utilized a fog-relevant feature-based similarity index 
(FRFSIM), which focuses on fog density and artifact distortion 
detection, to conduct quality assessment. Despite the good 
performance of FR-DQA methods, haze-free images do not 
exist for real hazy scenes, which hinders the usage of FR-DQA
methods.

Without haze-free images, NR-DQA methods can directly 
predict the quality of dehazed images, as shown in Fig. 1. Choi, 
You and Bovik [6] proposed a referenceless model FADE for 
fog density prediction of hazy images, extracting the natural 
scene statistics features and a series of fog-aware statistical 
features of hazy images. Jiang et al. [7] extracted a series of fog-
relevant features to construct a polynomial regression model for 
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the optical depth with a surrogate-based model. Then, the 
optical depth was used to derive the transmission map for fog 
density estimation and hazy image restoration. Pan et al. [8] 
defined a haze distribution map based on the dark channel prior 
and range channel prior and then deduced a haze density 
estimator of remote-sensing images HDMHA. Zhang et al. [9] 
designed an end-to-end deep-learning method, HazDesNet, to 
evaluate the density score of hazy images, converting the input 
hazy image into the pixel-level haze density map and taking the 
average of the refined density map as the haze density. Mahajan 
et al. [10] presented an end-to-end optimized CNN method 
DLHPQE for haze density prediction, which refined the 
pretrained DenseNet201 model in the constructed hazy image 
dataset for feature learning. The above methods conduct the 
DQA task based on the haze density estimation, which is not 
sufficient for the design of the DQA method.

Different from the above works, many researchers have 
focused on capturing the distortion from the side effect of image 
dehazing algorithms. In [11], Hautière et al. introduced three 
indicators, i.e., e, , and , for contrast restoration of dehazed 
images, where e reflects the edge restoration ability of the 
dehazing method, computes the quality of contrast restoration 
of a dehazing method, and calculates the number of saturated 
pixels in the dehazed image. Fang et al. [12] developed a 
dehazed image quality evaluation metric according to the 
combination of the contrast ascension measure and the 
structural similarity measure between hazy images and dehazed 
images. Min et al. [13] extracted haze-removing, structure-
preserving, and over-enhancement features from the dehazed 
images to design an NR-DQA method DHQI. It is worth noting 
that the works in [12] and [13] calculate the similarity measure 
between hazy images and dehazed images for capturing 
uncertain structure distortion. Shen et al. [14] comprehensively 
analyzed the information loss, contrast, and luminance 
distortion of dehazed images, extracting a series of fog-aware 
features for quality prediction. Wu et al. [15] utilized the 
pretrained VGG-16 network with the transfer learning method 
to predict the quality of dehazed images and deblur images. 
Although these works show certain competitiveness, visibility 
improvement and content preservation measurements were not 
considered comprehensively.

For example, in Fig. 2, five dehazed images of the DHQ 
database [13] are ranked in descending order in terms of 
subjective quality from (a) to (e). To quantitively evaluate the 
quality of these images, two quality evaluators, FADE and IL-
NIQE [16], are chosen for exemplification. From the view of 
haze density prediction, the higher the FADE index is, the 
denser the fog in the image. From the perspective of the 
distortion measure, the higher the IL-NIQE is, the worse the 
distortion. It can be found that neither FADE nor IL-NIQE 
correlates with subjective perception very well, so it is
necessary to measure both the haze removal effect and 
distortion artifacts for the DQA method. Furthermore, it is
worth noting that the overall quality rating of dehazed images 
depends on the haze removal effect and artifact measurements
during subjective experiments [3],[13].

Fig. 3 shows example images of common JP2K, Blur, and 
WN distortions in the IQA database [17] along with structural 
loss, over-enhancement, and color shift distortion in the DQA 

Fig. 1. General framework of no-reference dehazed image quality assessment.

Fig. 2. Performances of dehazed images predicted by different quality 
estimators.

(a) JP2K                           (b) Blur                            (c) WN

(d) Structural loss         (e) Over-enhancement            (f) Color shift
Fig. 3. Comparison between classical distortion types and distortion types in 
dehazed images.

database. The common distortion types are synthesized to
imitate the disturbance occurring at the acquisition, 
transmission, and image compression steps. However, the 
distortions of dehazed images are induced by the side effects of 
dehazing algorithms. Compared with the common distortion 
types, the distribution of the distortion from dehazing 
algorithms tends to be heterogeneous, resulting in the 
inapplicability of IQA metrics for the DQA task.

Inspired by the above findings, we propose a novel NR-
DQA method by joint measurement of the visibility and 
distortion of dehazed images. To imitate the spatial 
decomposition mechanism that occurs in the primary visual 
cortex [18] well, the complex contourlet transform is utilized to 
extract the visibility- and distortion-aware features. The 
contributions of this paper are as follows:

1) We propose a method for learning both visibility and 
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distortion-aware features DQA (VDA-DQA) for 
comprehensively considering two aspects of dehazing 
algorithms: the effect of haze removal and the 
introduction of distorted artifacts, where sharpness, 
brightness and contrast features are used for measuring 
haze removal, and the structure and color features are 
utilized for capturing the distortion artifacts.

2) To measure haze removal, a series of visibility-aware 
features are discovered: the log energy of high-frequency 
CCT subbands for sharpness features, the subband 
entropy of dehazed images and brightness-changed 
images for brightness features, and the significant 
differences between the dehazed image and contrast-
changed image for contrast calculation.

3) To measure distorted artifacts, we use the high-frequency 
part of CCT subbands to generate a reconstructed image 
by inverse CCT to highlight the change in structure and 
take its LBP histogram statistics as structure-aware 
features. The standard deviation of the joint statistics of 
the CCT subbands, normalized by the GGSM-DNT, 
corresponding to the chroma and saturation map, is 
utilized as a color-aware feature.

4) Experimental results on several DQA databases show 
that the proposed VDA-DQA is highly linear against 
subjective visual perception and outperforms the state-
of-the-art general-purpose IQA, contrast-enhancement 
IQA, and other DQA-oriented methods.

The rest of the paper is arranged as follows. The complex 
contourlet transform is presented in Section 2. Section 3
describes the proposed VDA-DQA method in detail. Section 4
presents the experimental results and discussion. Finally, the 
general conclusion of this article is given in Section 5.

II. COMPLEX CONTOURLET TRANSFORM

The contourlet transform (CT) [19],[20] performs better 
than the classical wavelet in many image processing tasks due 
to the characteristics of shift sensitivity and directionality. 
However, the lack of translation invariance leads to pseudo-
Gibbs phenomena through the contourlet transform. Then, 
Chen et al. [21] proposed a complex contourlet transform to 
overcome the disadvantages of CT. The CCT utilizes the dual-
tree complex wavelet transform (DT-CWT) [22] and direction 
filter bank (DFB) [23] for scale and orientation decomposition. 
Among them, DT-CWT is translation invariant, and DFB can 
strengthen the directional selectivity. Fig. 4 presents the 
decomposition procedure of CCT.

As shown in Fig. 4, trees A and B represent the real and 
imaginary parts of DT-CWT, and the DFB operation further 
improves the direction resolution of the complex wavelet 
transform. Examples of a complex contourlet decomposition of 
a hazy image and dehazed image with a 1-scale and 2-
orientation bandpass transform are presented in Fig. 5. From 
Fig. 5, it can be found that the inherent characteristics of CCT
are useful for capturing contour information of images that 
exhibit directional multiscale dependencies, which can be 
related to the change in image quality.

III. PROPOSED NO-REFERENCE VDA-DQA METHOD

The whole procedure of our proposed VDA-DQA method is

Fig. 4. The CCT decomposition procedure.

(a) Hazy image

(b) Dehazed image
Fig. 5. Examples of complex contourlet transforms.

shown in Fig. 6. First, brightness and contrast-changed images are 
obtained by adjusting the brightness and contrast of the original 
dehazed image. Then, a novel reconstructed dehazed image that 
reflects the structure information variation is generated by 
reconstructing the high-frequency CCT subbands via the inverse 
CCT. For visibility-aware features, the brightness and contrast 
features are extracted from brightness and contrast-changed 
images in the complex contourlet domain, and the sharpness 
feature is calculated by using the high-frequency subband energy 
of the dehazed image. For distortion-aware features, the histogram
statistics of LBP are extracted from the reconstructed image to
reflect structure variation, and the across-scale and across-
orientation statistics are extracted from the CCT subbands of the 
chroma and saturation map to reveal the quality degradation under



4

Fig. 6. Framework of the proposed VDA-DQA method.

color distortion. Finally, the SVR model is utilized to conduct 
regression mapping for the above perceptual features.

A. Visibility-aware Features
For the image dehazing task, the residual haze in the dehazed 

images has a significant effect on the visibility of the original
image, so a high-quality dehazed image should have appropriate 
brightness and contrast for presenting more details.

1) Sharpness feature
As an important factor related to image quality, the sharpest 

region in the image is easily identified by the viewers. The 
degradation of sharpness characteristic reflecting the variation in 
local details can arise from the atmospheric turbulence or the side 
effect of image restoration methods [24]. For the dehazed images, 
the higher the sharpness of the dehazed image is, the more salient
edges it preserves, and the higher the quality. In [25], the authors 
found that sharp images contain more high-frequency content than 
smooth images owing to the occurrence of the blurring effect in the 
high-frequency part of the image. Following that, we only compute 
the log energy of each high-frequency CCT subband at each 
decomposition level as the sharpness intensity of the dehazed 
image. The detailed equation is as follows (1):

(1)

where i represents the pixel index of the image and Kl is the number 
of CCT subband coefficients at decomposition level l. Then, the 
total log energy of CCT subbands at each decomposition level is 
calculated by 

(2)

where the parameter is used to impose larger weights on the HH 
part of CCT subbands, which contain more distortion-sensitive
high-frequency contents [26]. Here, we set to 4, using the same 
method as ref [25]. Fig. 7 shows five different intensities of hazy
images at the same scene on LIVE_Image_Defogging_Database 
[6], and the corresponding log-energy-based sharpness distribution 

(a) D1(72.35)                       (b) D2(54.95)                     (c) D3(40.65)

(d) D4(23.30)                       (e) D5(3.50)
Fig. 7. Examples of hazy images in the LIVE_Image_Defogging_Database.

Fig. 8. Subband energy distribution of the examples in Fig. 7.

of these images is shown in Fig. 8. In Fig. 7, the numbers in the 
brackets indicate the fog density in the hazy image, which 
continues decreasing from D1 to D5. Additionally, it can be found 
that the sharpness value decreases with the fog becoming 
increasingly dense in Fig. 8 and increases with the decomposition 
scale becoming finer. Thus, the sharpness feature can be utilized as 
an effective visibility-aware feature.

2) Brightness feature
The brightness characteristics can render dehazed images a 

broad dynamic range [27]. Different from the local perception of 
sharpness, a good dehazed image with suitable brightness can help
in understanding scene information. However, the existence of 
residual haze in dehazed images leads to the attenuation of
brightness. Moreover, the improper operation of dehazing
algorithms can lead to the underexposure and overexposure of 
dehazed images, so it is essential to measure the intensity of
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(a) He09 (b) Kim13 (c) Kolor (d) Meng13                                   (e) PSAC
Fig. 9. Examples of dehazed images in the IVCDehazing Database.

(a) 1st scale                                    (b) 2nd scale                                     (c) 3rd scale
Fig. 10. Entropy distribution of the CCT subbands corresponding to different decomposition scales.

brightness corresponding to the dehazed image. Gu et al. [28]
suggested that the tone-mapped image with suitable brightness 
comprises more valuable information than others, even if the 
brightness of the original image changes obviously. Referring to
[28], we create a series of brightness-changed images by increasing 
or decreasing the brightness of the original dehazed images,
generated by the following (3):

           (3)
where I represents the grayscale image of the dehazed image and 
parameter Mi stands for the i-th multiplier. Here, we set

by considering both effectiveness and 
computation complexity. In addition, the operators min and max
are used to limit the grayscale level of brightness-changed images 
to the range of 0-255. To measure abundant detail information
contained in images with suitable brightness, the entropy of CCT 
subband coefficients at each decomposition scale and orientation 
is calculated here. Compared with [28], the entropy of the subbands 
used here conforms to the multiscale perception method of 
humans, utilizing the different contributions of the entropy at each 
scale. Let denote the entropy of CCT subband coefficients at 
the s-th decomposition scale and o-th decomposition orientation,
and the formula is given by (4)

(4)

where denotes the CCT subband coefficients of the 
corresponding brightness-changed images in Equation (3),

denotes all the values of subband coefficients ,
and is the probability density function corresponding to .

the entropies are 
pooled at each scale s, along the decomposition 
orientations as follows:

(5)
where denotes the pooled value of entropies at all
orientations of the s-th scale and No represents the number of 
decompositions at the s-th scale.

Fig. 9 shows five dehazed images in the IVCDehazing database
[29], and their corresponding entropy curve is shown in Fig. 10.

From Fig. 9 and Fig. 10, it can be found that the dehazed image 
with proper brightness presents more detailed information than 
other dehazed images, no matter how the luminance intensity is 
adjusted. Here, the brightness feature is chosen as the second kind 
of visibility-aware feature.

3) Contrast feature
The goal of image dehazing is to generate a clean image with 

high visibility and appropriate contrast. As an important attribute 
of the image, the contrast has a significant effect on the visual 
perception behaviors of the human brain. A high-quality dehazed 
image with appropriate contrast appears perceptually pleasing and 
visually informative, strengthening the ability to distinguish the
object [30], so the contrast measure is vital for an image. In our 
previous work [31], a novel blur index was constructed based on 
the difference between the blurred image and its reblurred version. 
Inspired by this, we estimate the contrast of dehazed images based 
on the significant differences between the original dehazed image 
and its contrast-changed version.

To reduce the statistical dependencies between subbands, the 
generalized Gaussian scale mixture (GGSM)-based divisive 
normalization transform (DNT) [32] is used to normalize the CCT 
subband coefficients. As shown in [33], the nonlinear behavior of 
cortical neurons can be characterized by the DNT, modeling the 
interactions between neighboring neurons and pooling the 
response of surrounding neurons. The authors of [33] suggest that 
the generalized Gaussian scale mixture (GGSM)-based divisive 
normalization transform (GGSM-DNT) is more robust to distorted 
natural images than GSM-DNT, so we use GGSM-DNT to 
normalize the CCT subband coefficients to reduce the statistical 
dependencies between subbands. According to [32], an N-
dimensional random vector Y can be expressed as a GGSM only if 

, where symbol represents equality in the probability
distribution, u is a zero-mean multivariate generalized Gaussian
(MVGG) random vector, whose scale parameter is and shape
parameter is s, and the mixing multiplier is a scalar random 
variable. Given the variance field , the vector Y corresponding
conditional density function is given by the following:

(6)
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(a) D1                                               (b) D2                                                 (c) D3
Fig. 11. Comparison between original and normalized subband statistics of hazy images in Fig. 7.

(a) D1                                               (b) D2                                              (c) D3                                               (d) D4                                              (e) D5
Fig. 12. Marginal distribution of CCT subbands corresponding to the examples in Fig. 7.

For a center coefficient yc at each CCT subband y, its DNT 
neighborhood vector Y consists of the coefficients from the 3×3 
neighborhood around yc in the same subband, the parent subband, 
and the same spatial location in the subbands at the same scale but 
different orientations. Then, the normalization parameter ,
computed by the neighborhood vector Y, is exploited to process the 
coefficients at each subband to generate its corresponding 
divisively normalized subband . The maximum likelihood 
estimation of factor is given by:

(7)

The effect of GGSM-DNT on the statistics of the CCT subband 
coefficients is shown in Fig. 11. The statistics of the CCT subband 
coefficients before and after the GGSM-DNT operation are shown 
in the first and second rows in Fig. 11, respectively, which suggest
that the GGSM-based DNT operation converts the approximate 
Laplacian nature of the original CCT subband coefficients into the 
Gaussian-like nature of normalized subbands. The marginal 
distribution of normalized CCT subbands corresponding to the
hazy images in Fig. 7 and their contrast-changed images is shown 
in Fig. 12. Here
method. Additionally,
correction method whose values of gamma are 0.1 and 10,
respectively, which ensure that the contrast degrades greatly. It can 
be seen in Fig. 12 that the distance between the marginal 
distribution of original hazy images and their contrast-changed 

images decreases as the haze becomes dense.
Similar to [34], if the contrast of the image is poor enough, the 

gap between itself and its contrast change image is also small. 
Based on the above findings, the difference in the standard 
deviation and kurtosis parameter of the CCT subbands 
corresponding to the original image and contrast-changed image is 
calculated as:

           (8)

          (9)
where and represent the standard deviation of the 
marginal distribution of the i-th subband, and and
represent the kurtosis parameter of the marginal distribution. In 
addition, the local entropy is used to estimate the information loss 
as follows (10):

          (10)
where and represent the local entropy of the i-th subband 
of the original image and contrast-change image, respectively. The 
formula of local entropy is as follows:

(11)

where represents the i-th block of size 5×5 in the CCT subband
and N is the number of blocks in the image.

In this paper, the contrast features, including the difference
between the standard deviation, kurtosis and local entropy of the 
subbands corresponding to original and contrast-changed images,
are chosen as the third kind of visibility-aware features. Different 
from the work in [35], the difference between the three above types
of parameters is calculated upon the pseudo-reference criterion for 
estimating the contrast of dehazed images in this paper.
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Fig. 13. The generated process of the reconstructed image.

(a) Haze-free image (b) Structure loss image (c) Over-enhanced image

(d)                         (e)                                     (f)                                 (g)                                    (h)                               (i)
Fig. 14. Examples of dehazed image reconstruction.

B. Distortion-aware Features
Apart from the fine visibility, it assumes that a high-quality 

dehazed image should look natural as well. This means that the 
dehazing algorithms should not only restore the clean scene but 
also preserve the original detailed information without producing
any artifacts.

1) Structure-aware feature
Reconstructed image generation

As the basic component of the image, structural information 
can be adaptively extracted from the input stimulus by the human 
vision system, as shown in [36]. During the dehazing process, 
some dehazing algorithms can damage the genuine structure of the 
image, resulting in a poor dehazing effect. For example, some
dehazing methods blindly pursue the complete removal of haze, 
ultimately losing the intrinsic structural information of the dehazed 
image. In contrast, another kind of structure distortion artifact is the 
over-enhancement phenomenon. Several dehazing methods 
incorrectly enhance the inapparent detail information in the low-
contrast background area of hazy images. All of the above 
operations result in dehazed image quality degradation.

The characteristics of CCT can be used to capture image 
structures. The high-frequency component of the CCT subbands 
contains abundant contour information of the image, while the

Fig. 15. The LBP histograms of different reconstructed images.

low-frequency component is rich in useless information. Here, the
low-frequency CCT subbands are set to zero to preserve only the 
structure description of the dehazed image. Finally, the high-
frequency CCT subbands are converted to the reconstructed image 
via the inverse CCT. The reconstruction procedure for the dehazed 
image is shown in Fig. 13. Moreover, examples of reconstructed 
images corresponding to the haze-free image, structure loss image, 
and over-enhanced image are shown in Fig. 14.

In Fig. 14, the original input images are shown in the first 
row, the corresponding reconstructed images are shown in the 
second row, and Fig. 14 (d), (f), (h) and (e), (g), (i) are the 
enlarged regions of the blue and red rectangles in the above 
three images. Comparing Fig. 14 (d), (f), and (h), it can be seen
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(a) Haze-free image              (b) He09                    (c) Berman16                  (d) Meng13
Fig. 16. Examples of haze-free image and corresponding dehazed images in the SHRQA database.

in Fig. 14(h) that the imperceptible details in the image are 
incorrectly enhanced because of the overoperation of the 
algorithm. In Fig. 14 (g), the structure information of the 
bicycle is completely lost. In Fig. 14 (i), it is apparent that the 
intrinsic structure information of the bicycle is wrongly 
highlighted. In summary, the reconstructed image can 
effectively characterize the structural information change.

LBP statistics calculation
In classical IQA tasks [37],[38], the local binary pattern (LBP) 

is widely employed to capture local structural relationships in the 
image, according to the calculation of the gray-level differences 
between the center pixel and surrounding pixels of a local area. 
However, the output dimensionality of the original LBP
histograms is up to 256, which greatly increases the computational 
complexity. To achieve rotation-invariance and reduce the 
dimension, the rotation-invariant and uniform LBP [39] is used to 
describe the primitive microstructures of the reconstructed image. 
Compared with the classical version, uniform LBP contains no 
more than two spatial bitwise transitions. Moreover, the rotation-
invariant and uniform variant with a lower feature dimension can 
further increase the discriminative capability of LBP. The rotation-
invariant uniform LBP at one location can be formulated as (12):

          (12)

where Ii and Ic are the center location and its neighbor in the 
reconstructed image, respectively, and P and R are the numbers of 
neighbors and the neighborhood radius, respectively. U is the 
uniform measure that calculates the number of bitwise transitions, 
and has a U value of at most 2. The uniform measure U
can be computed as follows (13):

(13)

Then, the normalized probability histogram HLBP(t) is used as 
the structure-aware feature, and its definition is shown as (14):

(a) Across-scale distribution of normalized subbands

(b) Across-orientation distribution of normalized subbands
Fig. 17. Normalized histogram of coefficients from across-scale and across-
orientation for the image in Fig. 16.

             (14)

where

             (15)

where is the correspondence between the actual pixel value 
and the possible value t of each pixel in the image , and 
M and N are the two-dimensional sizes of the image. Fig. 15 shows
the normalized rotation-invariant and uniform LBP histograms of 
the examples in Fig. 14. In Fig. 15, it can be found that there are 
significant differences between the three above images. To accord 
with the multiscale characteristics of human visual perception, the
two scales. The normalized histogram of LBP is chosen as the first
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Fig. 18. Statistical analysis of the saturation and chroma map.

kind of distortion-aware feature.
2) Color-aware feature

Feature map analysis
All of the above factors related to the quality of dehazed images 

are conducted in the grayscale space, whereas the color 
information of images reflects the plentiful degree of color scenes 
and plays a significant role in quality assessment [40]. In addition 
to the structure distortion artifacts, several dehazing algorithms can 
inevitably introduce color distortion (color shift, etc.) during the
image dehazing process, as shown in Fig. 16. Such artifacts 
aroused from the side effect of dehazing algorithms destroy the 
naturalness of the original image, leading to quality deterioration. 
In the first row, the color distribution of the dehazed image 
generated by He09 [41] is close to the haze-free image. The color 
appearance of the dehazed image obtained by Berman16 [42] and 
Meng13 [43] differs from the original image. Choi et al. [6] found 
that the saturation-based colorfulness descriptor is an effective fog-
aware feature. In addition, a novel chroma image that integrates the 
saturation and value components of the HSV color space was used 
for measuring the color change in [5]. The saturation and chroma 
map of haze-free and different dehazed images are shown in the 
second and third rows in Fig. 16, respectively. As shown in Fig. 
16, the dehazed images corresponding to the latter two methods are 
far from the ideal haze-free image in terms of the intensity 
distribution of the saturation and chroma map.

Across-scale and across-orientation statistics calculation
In this paper, the CCT subband coefficients of the above

saturation and chroma map are used to characterize the color
distortion. Before researching the statistical properties of the above 
feature maps, the same GGSM-DNT operation used in calculating 
the contrast feature is implemented for normalizing the CCT 
subbands of the saturation and chroma map. There exists a 
relationship between CCT subbands at each orientation but across 
scales, which can be affected by distortions. Here, the CCT
subbands from different scales but the same orientation are merged 
to form a 1-D vector. Similarly, the same operation is implemented 
on the CCT subbands from different orientations but the same
scale. The histograms of the across-scale and across-orientation 
subband coefficients are shown in Fig. 17. As shown in Fig. 17, the
normalized histograms of haze-free and dehazed images both obey 
the generation Gaussian distribution (GGD). The variance in
distribution increases when the color distortion of the dehazed 
image becomes more severe.

In Fig. 18, we plot the distribution of standard deviation 
parameters corresponding to the across-scale and across-
orientation subband coefficients. Confirming the findings in Fig. 
17, the change in the standard deviation statistics of the feature

TABLE I 
SUMMARY OF THE FEATURES IN THE VDA-DQA MODEL

maps corresponding to the dehazed images are consistent with the 
change in color distortion. Thus, the standard deviation 
corresponding to the distribution of across-scale and across-
orientation subband coefficients is chosen as the color-aware 
feature.

C. Quality Prediction
Here, visibility-aware features, including sharpness, brightness, 

and contrast features, and distortion-aware features consisting of 
structure and color features are summarized in Table I. After 
extracting these perceptual features, a regression model is needed 
to train for mapping the feature into a quality score Q as follows
(16):

           (16)
where denotes the combination of visibility-aware 
feature set FV and distortion-aware feature set FD. Once the model 
is built, the score of any test dehazed image with its corresponding 
feature set Fall, t can be predicted by Formula (17): 

           (17)
Here, the SVR model implemented by the LIBSVM package 

[44] is chosen for the quality regression task. The kernel function 
of SVR is the radial basis function (RBF) kernel.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Database Description
To verify the effectiveness and robustness of the proposed 

VDA-DQA method, we analyze its performance on the following 
six publicly available DQA databases: SHRQR database [3],
SHRQA database [3], reprocessed D-HAZY database [13], DHQ 
database [13], IVCDehazing database [29] and exBeDDE database
[4].
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The SHRQR database consists of 45 haze-free images, 45 
synthetic hazy images, and 360 dehazed images produced from 8 
typical image dehazing algorithms.

The SHRQA database includes 30 haze-free aerial images, 
30 synthetic hazy images, and 240 dehazed images produced from 
the same 8 image dehazing algorithms used in the SHRQR 
database.

The reprocessed D-HAZY database includes 23 haze-free 
images and the corresponding synthetic hazy images collected 
from the D-HAZY database [45]. Then, the same 8 dehazing 
algorithms used in the SHRQR database are also implemented to 
obtain 184 dehazed images.

The DHQ database contains 250 real hazy images and 1,750 
dehazed images produced from 7 typical image dehazing 
algorithms.

The IVCDehazing database contains 25 hazy images and 
200 dehazed images obtained by 7 typical image dehazing 
algorithms and a Photoshop-based image processing tool.

The exBeDDE database contains 167 real hazy images 
captured in several capital cities of China and 1,670 corresponding 
dehazed images reprocessed by 10 image dehazing algorithms. 

The subjective scores of each dehazed image in these databases 
are provided for DQA studies. Note that the subjective scores of 
the above six DQA databases, except for the reprocessed D-HAZY 
database, are in the form of MOS. The subjective score of the 
reprocessed D-HAZY database is labeled with the predicted results 
of the DEHAZEfr metric [3].

Among the six above databases, the SHRQR, SHRQA, and 
reprocessed D-HAZY databases are synthetic DQA databases, and
the DHQ, IVCDehazing, and exBeDDE databases are authentic 
DQA databases. Fig. 19 shows several hazy images in synthetic 
and authentic DQA databases, and it can be seen that the haze that 
exists in synthetic hazy images is homogenous, whereas the haze
corresponding to authentic hazy images is more complicated than 
its synthetic counterpart.

Here, three common metrics are chosen to evaluate the
performance of the model, namely, the Pearson linear correlation 
coefficient (PLCC), Spearman rank-order correlation coefficient 
(SROCC), and root mean square error (RMSE). PLCC and RMSE 
evaluate the prediction accuracy of the quality metric. SROCC
aims to evaluate the monotonic prediction of the model. A value 
close to 1 for SROCC and PLCC and a value close to 0 for RMSE 
indicate a superior correlation with human perception. For the 
PLCC and RMSE criteria, a five-parameter logistic regression 
function is employed to map the predicted scores to the subjective 
scores, as follows:

(18)

where r and q(r) are the original and mapped predicted scores,
respectively, and to are the fitting parameters of the model.

In this experiment, 80% of the dehazed images from each DQA 
database are randomly sampled as the training set, and the 
remaining 20% of the images are sampled as the test set, ensuring 
independence between the training set and test set. The training-
testing procedures are randomly repeated 1,000 times, and the 
median value of the results is reported.

(a) SHRQR  (b) SHRQA                      (c) D-HAZY

(d) DHQ                       (e) IVCDehazing                    (f) exBeDDE
Fig. 19. Examples of hazy images on authentic DQA databases.

B. Comparison on a Single Database
In this section, the performance comparison of 5 general-

purpose IQA methods (BRISQUE [1], PSQA- I [46], dipIQ [47],
hyperIQA [48] and MetaIQA [49]) and 4 contrast-enhancement 
and DQA-oriented IQA methods (NIQMC [50], BIQME [27], 
FADE [6], DHQI [13]) and the proposed VDA-DQA method is
evaluated on the six public DQA databases. For the handcrafted 
feature-based OA-BIQA methods, we retrain them on these DQA 
databases and obtain the optimum SVR parameters (penalty C and 

The SROCC, PLCC and 
RMSE on synthetic and real haze databases are shown in Tables II
and III, and the top two results are marked in bold blue and green,
respectively. It is noteworthy that since the exBeDDE database is
utilized for pretraining the MetaIQA model, the results of 
MetaIQA are not reported in Table III.

As shown in Tables II and III, whether in the synthetic or 
authentic DQA databases, the DQA-oriented methods VDA-DQA 
and DHQI outperform the state-of-the-art IQA methods, including 
recent deep-learning-based hyperIQA and MetaIQA, perhaps
because it is difficult for them to learn perception rules or meta-
knowledge about dehazing methods. These results indicate the 
large difference between the classical IQA and DQA tasks. 
Furthermore, DQA-oriented haze density predictor FADE also
shows poor performance, which suggests the importance of 
measuring distortion artifacts in the DQA task.

In Tables II and III, the proposed VDA-DQA shows the best 
performance on the SHRQR, D-HAZY, IVCDehazing and 
exBeDDE databases overall, and the DHQI method performs the 
best only on the SHRQA and DHQ databases. This is because in 
the SHRQA database, the haze density of hazy images is slight, the
structural similarity in the DHQI metric can better measure the 
structural damage, and the over-enhancement measurement term 
of the DHQI metric can better deal with the over-enhancement 
distortion in the DHQ database. However, the overall proposed
VDA-DQA is superior to DHQI, which is attributed to both 
structure-aware features and color-aware features in VDA-DQA, 
strengthening the discrimination of distortion arising from the side
effects of dehazing algorithms.

In addition to the quantitative evaluation results, the scatter 
plots of objective scores against subjective scores are shown in Fig. 
20. Among them, the IQA methods BRISQUE, PSQA-I, dipIQ, 
hyperIQA, NIQMC and BIQME, along with the DQA-oriented
methods FADE, DHQI and VDA-DQA, are utilized for 
straightforward comparison on the exBeDDE database. As shown
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(a) BRISQUE                                     (b) PSQA-I                                        (c) dipIQ                                      (d) hyperIQA                                     (e) NIQMC

(f) BIQME                                        (g) FADE                                         (h) DHQI                   (i) VDA-DQA
Fig. 20. Scatter plots of predicted scores versus subjective scores on the exBeDDE database.

TABLE II
PERFORMANCE COMPARISON ON SYNTHETIC DQA DATABASES

 

 
 
 
 

 
 
 

 
 

TABLE III
PERFORMANCE COMPARISON ON AUTHENTIC DQA DATABASES

 

 
 
 
 

 
 
 

 
 

in Fig. 20, the proposed VDA-DQA performs better than other 
IQA metrics in terms of convergence and monotonicity, which 
further indicates that the high correlation of the proposed method 
with human subjective judgments.

C. Ablation Study
A series of perceptual features, including sharpness, brightness, 

contrast, structure, and color features, are extracted for designing 
the DQA method in this paper. To analyze the impact of single 

features, they are removed from the feature vectors and tested on
the synthetic and authentic DQA databases, and the results are 
reported in Tables IV and V. In Tables IV and V, the definition of 
the feature groups is shown as follows:

Case 1: Only excluding the luminance feature term;
Case 2: Only excluding the sharpness feature term;
Case 3: Only excluding the contrast feature term;
Case 4: Only excluding the structure feature term;
Case 5: Only excluding the color feature term;
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(a) SROCC (b) PLCC                                             (c) SROCC                                             (d) PLCC
Fig. 21. Comparison of the quality prediction of different features in synthetic and authentic DQA databases.

TABLE IV
RESULTS OF THE ABLATION EXPERIMENTS ON SYNTHETIC DQA DATABASES

TABLE V
RESULTS OF THE ABLATION EXPERIMENTS ON AUTHENTIC DQA DATABASES

TABLE VI
RESULTS OF THE PARAMETER SENSITIVITY TEST ON SYNTHETIC AND AUTHENTIC DQA DATABASES.

TABLE VII
SROCC RESULTS OF THE INDIVIDUAL DEHAZING ALGORITHM ON THE exBeDDE DATABASE

Case 6: The proposed VDA-DQA method.
As shown in Tables IV and V, the performance of the metric is 

inferior to the proposed method while excluding any types of
features. It is noteworthy that the structure-aware features 

contribute the best to most databases, confirming the finding that 
humans are highly sensitive to the degradation of structure
information in [36]. Contrast-aware features also make a 
significant contribution to these databases, which is not surprising 
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TABLE VIII
CROSS-TEST RESULTS ON SYNTHETIC DQA DATABASES

 

  

TABLE IX
CROSS-TEST RESULTS ON AUTHENTIC DQA DATABASES

 

  

since the primary goal of dehazing is to generate a clean image with 
high contrast.

After analyzing each type of feature, the performance 
comparison of visibility-aware features (including sharpness, 
brightness, and contrast features) and distortion-aware features 
(structure and color features) are plotted in Fig. 21, where the 

denotes the visibility-
stands for the distortion-aware features. It can be seen in Fig. 21
that Daf is more important than Vaf, and they are complementary,
which supports our motivation that DQA should comprehensively 
measure haze effects and distortion artifacts.

The only parameter in the VDA-
in Equation (2), which is utilized to balance the LH, HL and HH 
parts of the CCT subbands. Here, it is set to 4, which is the same 
as ref [25]. The comparisons of different values of are shown in
Table VI. It can be seen from Table VI that is set to 4, the 
performances reach the best, which balances the LH, HL and HH 
parts the best.

D. Performance Evaluation of the Dehazing Algorithms
One purpose of DQA is to evaluate the performance of 

dehazing methods for optimal parameters. Here, we compare 10 
classical dehazing algorithms using the exBeDDE database, 5 of 

which are prior knowledge-based methods and the other 5 deep 
learning-based methods. Table VII shows the SROCC result on 
each image dehazing method, and the top two performances are 
marked in bold blue and green, respectively. Avg. is the direct 
average results of ten dehazing methods.

From Table VII, it can be found that the proposed VDA-DQA 
performs the best on most dehazing algorithms. Additionally, the 
result of the VDA-DQA method on the NLD [42] method is
comparable to the PSQA-I and DHQI methods. Furthermore, on 
average, the proposed VDA-DQA far outperforms other QA 
methods, which further indicates that measuring both haze removal 
and distortion artifacts is necessary for human visual perception.

E. Cross-database Comparison
Since the VDA-DQA is a training-based method, we test its 

generalization ability through cross dataset validation on synthetic 
and authentic DQA databases. The results of the cross-test are
listed in Tables VIII and IX, and the top results are marked in blue
and bold.

From Table VIII, it can be concluded that the proposed VDA-
DQA method outclasses other methods on average. Regardless of
when the model is trained on the SHRQR or D-HAZY database 
and tested on the remaining databases, the VDA-DQA performs
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TABLE X
RESULTS OF F-TEST BWTWEEN DIFFERENT MODELS ON THE SHRQR DATABASE

    

 

 

TABLE XI
RESULTS OF F-TEST BWTWEEN DIFFERENT MODELS ON THE ExBeDDE DATABASE

   

 

 

TABLE XII
COMPARISON OF THE COMPUTATIONAL COMPLEXITIES BETWEEN DIFFERENT IQA METRICS.

   

better than the other five models. The performance of the VDA-
DQA is only inferior to the DHQI metric when the model is trained 
on the SHRQA database and tested on the other two databases. The 
reason may be that there exists an additional over-enhancement 
distortion in the other two databases compared with the SHRQA 
database, and the learning ability of the over-enhancement
distortion of the VDA-DQA method is weaker than that of the 
DHQI. Limited by insufficient training samples in synthetic DQA 
databases, both the deep-learning-based hyperIQA and MetaIQA 
metrics are inferior to the two DQA-oriented methods overall.

Since MetaIQA needs the exBeDDE database for pretraining,
its cross-database experiments are only conducted on the other two 
authentic DQA databases. As shown in Table IX, the VDA-DQA 
is superior to all compared metrics when the model is tested on 
IVCDehazing, which is attributed to the contrast and color 
distortion measurement terms of VDA-DQA. The FADE shows 
advantages on the exBeDDE, perhaps because the opinion-free 
FADE can adaptively learn the pattern of dehazed images in the 
exBeDDE database. Furthermore, due to the elaborate over-
enhancement term, the DHQI achieves the best performance on the
DHQ dataset. Overall, the proposed VDA-DQA shows the best
performance, which further illustrates that the joint measurement 
of the visibility and distortion of images strengthens its robustness.

F. Statistical Significance Testing
On the SHRQR database and the exBeDDE database, an F-test 

based on the discrepancy between the subjective and predicted 
quality scores was conducted to verify whether the differences 

between different IQA models were statistically significant. 
Among the F-tests, the null hypothesis means that the differences 
between a pair of IQA models sharing the same distribution are 
statistically indistinguishable with a confidence of 95%. The 
results of the F-test depend on the discrepancy between the 
subjective and predicted quality scores, as shown in Tables X and 
XI.

In Tables X and XI indicates that the method in 
a row is significantly superior to the counterpart in a column, while 

indicates that the row method is significantly 
inferior to the column method. T
methods in the row and column are statistically indistinguishable. 
From Tables X and XI, the VDA-DQA is significantly superior to 
other methods on the SHRQR and exBeDDE databases, which 
suggests that VDA-DQA is the best performer on both the SHRQR 
and the exBeDDE databases.

G. Running Time Comparison
Apart from the high accuracy, computational efficiency is also 

a very important quantitative index for IQA metrics in practical 
applications. To verify the computational efficiency of the IQA 
metrics, the average time of 100 images randomly selected from 
the SHRQR database is computed as the complexity index, as 
shown in Table XII. Noting that training the hyperIQA and 
MetaIQA methods relies on GPU devices, we only compare the 
running time of handcrafted feature-based methods here. All 
methods are tested with MATLAB R2017b on a 3.2-GHz 
processor with 8 GB RAM. As shown in Table XII, the running
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time of the proposed VDA-DQA increased because of the 
frequency domain decomposition and the GGSM-DNT operation. 

V. CONCLUSION

In this paper, we propose a VDA-DQA method by learning 
both the visibility and distortion measurement of dehazed 
images. For the visibility measure, we extracted a series of
perceptual features in the complex contourlet domain, including 
the entropy of brightness-changed image, the significant
difference between the original image and the contrast-changed 
image and the high-frequency logarithmic energy of the 
dehazed image. For distortion perception, two kinds of 
perceptual features are deployed for realness measurement of 
dehazed images, consisting of the histogram statistics of LBP 
computed from the novel reconstructed image and the across-
scale and across-orientation statistics of chroma and saturation 
map. Finally, the SVR model is used to map perceptual features 
into quality scores. The experimental results verify the good 
correlation of the proposed VDA-DQA method with human 
subjective assessment.

In the future, we plan to extend our work from the following 
two parts. First, inspired by the success of the deep learning-
based method in deraining image quality assessment [51], we 
will utilize powerful deep neural networks to capture abstract 
semantic features for dehazed image quality assessment. 
Second, the features extracted in our proposed method will be 
inserted into some existing models [52]-[54] to boost the 
detection and recognition performance of particulate matter or 
smoke.
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