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Abstract—Unsupervised deep learning has recently demon-
strated the promise of producing high-quality samples. While
it has tremendous potential to promote the image colorization
task, the performance is limited owing to the high-dimension of
data manifold and model capability. This study presents a novel
scheme that exploits the score-based generative model in wavelet
domain to address the issues. By taking advantage of the multi-
scale and multi-channel representation via wavelet transform, the
proposed model learns the richer priors from stacked coarse and
detailed wavelet coefficient components jointly and effectively.
This strategy also reduces the dimension of the original manifold
and alleviates the curse of dimensionality, which is beneficial
for estimation and sampling. Moreover, dual consistency terms
in the wavelet domain, namely data-consistency and structure-
consistency are devised to leverage colorization task better.
Specifically, in the training phase, a set of multi-channel tensors
consisting of wavelet coefficients is used as the input to train
the network with denoising score matching. In the inference
phase, samples are iteratively generated via annealed Langevin
dynamics with data and structure consistencies. Experiments
demonstrated remarkable improvements of the proposed method
on both generation and colorization quality, particularly in
colorization robustness and diversity.

Index Terms—Automatic colorization, Wavelet transform, Un-
supervised learning, Generative model, Multi-scale.

I. INTRODUCTION

IMAGE colorization, the process of adding color to an
original grayscale image, has many practical applications in

the computer vision and graphics community [1]–[3]. As the
colorization problem requires a mapping from a one-channel
grayscale image to a multi-channel composite image, it is
essentially ill-conditioned and ambiguous with multi-modal
uncertainty.

Over the past decades, many approaches, including earlier
attempts that required user interaction (e.g., scribble-based
[4]–[7] or example-based methods [8]–[11]) and automatic
learning-based methods [12]–[21], have been developed to
tackle the issue of colorization. Among them, traditional
methods rely on significant user effort and time to achieve
proper results. The supervised methods have disadvantages
of demanding a large quantity of labeled training datasets
and producing monotonous colorization results. Therefore,
some unsupervised learning techniques have been heavily
investigated in these years. The most prevailing methods use
generative adversarial network (GAN) or variational auto-
encoder (VAE). For instance, Yoo et al. [13] proposed a model
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called MemoPainter that can produce high-quality colorization
with limited data via GAN and memory networks. Suarez
et al. [14] used a triplet model based on GAN architecture
for learning each of color channels independently in a more
homogeneous way. Deshpande et al. [22] employed VAE
to yield multiple diverse yet realistic colorization. Recently,
some underlying theoretic schemes concerning denoising score
matching (DSM) [23], [24] were reported by different research
groups. Jayaram et al. [25] made a preliminary attempt that
treating the colorization task as a color channel separation
problem, and proposed a “BASIS” separation method based
on Noise Conditional Score Networks (NCSN) [26] using
DSM. NCSN is a kind of explicit generative model where
samples are produced progressively via Langevin dynamics
using score—the gradient of logarithm of probability density
which is estimated by DSM. Remarkably, NCSN can estimate
and sample explicitly without adversarial optimization, and
can produce realistic images that rival GANs.

Currently, the major deficiencies of score matching based
generative models include the short of model capability and
the curse of manifold dimensionality [27], [28]. Specifically,
both the score estimation of DSM and the sampling speed and
quaility of Langevin dynamics are highly correlated with the
intrinsic dimension of data manifold. It is difficult for DSM
to provide accurate score estimation in high-dimensional pixel
space, where the sampling of Langevin dynamics has serious
obstacles in mixing time and convergence as well. In fact, a
lot of progress has been made in improving the naı̈ve NCSN.
Quan et al. [29] employed the channel-copy technique to form
an embedded multi-channel tensor to enhance score estimation
accuracy. Zhou et al. [30] learned a high-dimensional distribu-
tion with score estimation under latent neural Fokker-Planck
kernels. Notably, Block et al. [31] proposed a multi-resolution
strategy based on upsampling to reduce the dimension of
data to improve the generative speed and quality. However,
their strategy is still enforced in intensity domain and lacks
significant progress. Motivated by this, we focus on a more
neat and efficient method to construct theoretically lower-
dimensional manifold of the images features distribution, thus
to improve the performance of generative model. Specifically,
we leverage the image generation capability by embedding
with specific wavelet kernel, additionally with constraints in
the latent space.

In this work, we aim to combine the score-based genera-
tive model with the Discrete Wavelet Transform (DWT) for
generation and colorization task. DWT [32]–[39] is a well-
known tool in image processing, which allows images to be
decomposed into elementary form at different positions and
scales, and subsequently reconstructed with high precision. It
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Enlargement of (e) Enlargement of (f)

(a) Grayscale (b) Zhang et al. (f) WACM+DC+SC(e) WACM+DC(c) ChromaGAN (d) MemoPainter

Fig. 1. Visual comparison of Zhang et al. (b), ChromaGAN (c), MemoPainter (d) and WACM with different constraints (e, f). It can be observed in the
first line that Zhang et al. (b) assigns unreasonable colors to objects, such as the red floor and blue wall. Meanwhile, the results of ChromaGAN (c) and
MemoPainter (d) in the second line suffer from color pollution and desaturation respectively. In this work, dual consistency terms are introduced to leverage
the generative model in wavelet domain. The Data-Consistency (DC) in (e) is enforced to achieve a basic proper colorization. Additionally, by enforcing DC
and Structure-Consistency (SC) simultaneously, some gridding effects shown in (e) can be eliminated to achieve a better colorization image as in (f). The
proposed WACM model involved with two consistencies can attain a high-quality colorization performance.

has been widely applied to various image processing tasks. For
example, Acharya et al. [34] proposed an image classification
method that processes the input with DWT, which can reduce
the analyzing time and increase the accuracy. Guo et al.
[35] suggested training network in wavelet domain to address
image super-resolution problem as well.

There are several key advantages for introducing DWT
into score-based generative model: First, DWT is a powerful
mathematical tool for image processing, which provides an
efficient characterization of the coarse and detailed frequency
spectrums in images. The richer, structured statistical infor-
mation of an image contained in wavelet domain is beneficial
for the model to learn prior information than in intensity
domain. Second, DWT provides a multi-scale downsampling
representation of an image, which effectively reduces the
inherent dimension of the data manifold, especially for high-
resolution images with complex patterns. In addition, Liu et
al. [40] proposed that the inputs of Denoising AutoEncoder
(DAE) with more channels contribute to the network learning
capability and the subsequent recovery ability, which is also
consistent with the phenomenon that the prior information
learned from multi-channel images is more effective than that
from the single-channel counterpart in image restoration tasks.
On this basis, the separate wavelet coefficients are processed
into a multi-channel feature. To sum up, by exploiting the
multi-scale and multi-channel feature aggregation via wavelet
transform, the proposed strategy provides a lower-dimensional
but more informative representation for generative modeling

in wavelet domain, which greatly facilitates both the score es-
timation and Langevin dynamics, and finally improves model
capability and generation performance.

However, it is necessary to impose some guidelines and
consistent constraints to further exploit the generative model-
ing in wavelet domain for colorization task. Therefore, Data-
Consistency (DC) and Structure-Consistency (SC) are devised
in this study to solve these issues effectively. Among them,
DC can guarantee the basic effect of colorization on the
input grayscale images. SC is used to avoid improper effects
and improve the colorization performance by ensuring that
the generated results in wavelet domain satisfy the strict
transformation relationship between the wavelet transform and
its inverse process. For example, in Fig. 1(e), we can observe
the deficiency of the “gridding” effect that appeared in the
colorization results. Benefiting from the multi-scale and multi-
channel representation in wavelet domain as well as iteratively
generating under the dual consistencies, the proposed Wavelet
transform-assisted Adaptive Colorization Model(WACM) per-
forms excellently in various image colorization tasks. In
summary, the main contributions of this work are as follows:

1) New Strategy Design: It is the first pilot method that
exploring score-based generative modeling in wavelet domain.
To alleviate the issues of model capability and dimension of
manifold, a novel scheme is proposed to exploit the advantages
of the wavelet transform. Both the estimation and subsequent
sampling are performed in a multi-scale and multi-channel
space with lower-dimension, which paves the way for attaining
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TABLE I
SUMMARY OF RELATED COLORIZATION METHODS.

Method Model Diversity Description Disadvantages

Zhang et al. [18] CNN × A classification network with re-balancing Speckle noise
Iizuka et al. [19] CNN × Has two branches to learn features at multiple scales Produce single color
Isola et al. [20] GAN × A GAN conditional network with L1 loss “Mode collapse” problem
Cao et al. [17] GAN × Adding noise channels to solving “mode collapse” Exist colored noise

Memopainter [13] GAN X Integrating memory network with networks Low saturation outputs
ChromaGAN [15] GAN X Incorporating perceptual and semantic features Color bleeding

Deshpande et al. [22] VAE X Using mixture density network and VAE’s decoder Blurry and sepia toned outputs
iGM-6C [16] DSM X Exploring multi-color space prior Blurry and low saturation

more diverse and high-quality generation and colorization.
2) Two Efficient Consistencies: Two consistencies, namely

data-consistency and structure-consistency, are devised to fa-
cilitate the colorization model in wavelet domain. DC guaran-
tees the basic color performance of the model, and SC helps
to achieve better performance. The dual consistencies further
improve the adaptability and robustness of colorization.

3) Remarkable Performance and Diversity: Combining
the above advantages, the proposed WACM achieves highly
competitive colorization performance compared to the state-
of-the-arts. Sufficient experimental results demonstrate the
superiority of WACM in accuracy, naturalness and diversity
on multiple benchmark datasets.

Section II provides a brief overview of some relevant works
on colorization, 2D-DWT, DSM and Langevin dynamics. In
section III, we elaborate on the formulation of the proposed
method and the dual consistencies. Section IV presents the
colorization performance of the present model, including com-
parisons with the state-of-the-arts, ablation study, robustness,
and diversity tests, as well as discusses the effects of pre-
processing and post-processing on the colorization results and
two existing limitations in real-world applications. Conclusion
and future works are given in Section V.

II. RELATED WORK

A. Image Colorization Techniques

Image colorization refers to estimating the color information
from a grayscale image, which provides a practical solution
to enhance old pictures as well as express artistic creativity.
In the past two decades, several colorization techniques have
been proposed, ranging from user-guided methods [4]–[11] to
automatic learning-based methods [12]–[22].

Because colorization is ill-posed and inherently ambiguous,
early attempts highly rely on additional user interventions.
Considering the amount of user involvement in problem-
solving and the way of retrieving the data required, these
methods can be roughly categorized into scribble-based [4]–
[7] and example-based [8]–[11]. Scribble-based methods gen-
erally formulate colorization as a constrained optimization
problem that propagates user-specified color scribbles based
on some low-level similarity metrics. Example-based methods
focus on colorizing the input grayscale image with the color
statistics transferred from a reference.

Recently, learning-based approaches have demonstrated
their effectiveness in image colorization task. Zhang et al. [18]

considered colorization as a classification task and proposed
a network trained with a multinomial cross entropy loss with
class-rebalancing techniques to predict “ab” pairs in Lab color
space. Iizuka et al. [19] proposed a deep network with a fusion
layer that merges local information dependent on small image
patches with global priors computed from the entire image.

Due to the diversity of results and the less reliance on
structured datasets, unsupervised learning is considered a
promising future direction for image colorization [41]. Cao
et al. [17] proposed the utilization of conditional GANs for
the diverse colorization of real-world objects. They employed
five fully convolutional layers with batch normalization and
ReLU in the generator of GAN network. However, there
is still noise in their results as the method [20] . Yoo et
al. [13] proposed a memory-augmented model MemoPainter
that consists of memory networks and colorization networks
to produce colorization with limited data. Zhou et al. [16]
proposed an iterative generative model which is exploited
in multi-color spaces jointly and is enforced with linearly
autocorrelative constraint. Victoria et al. [15] exploited fea-
tures via an end-to-end self-supervised generative adversarial
network that learns to colorize by incorporating perceptual and
semantic understanding.

B. 2D-DWT

DWT is a well-known tool in image processing community,
which is capable of effectively analyzing image features,
particularly image details [33]. Although wavelets have been
applied in a variety of applications such as removing speckle
noise from images [36], image classification [37], texture
analysis [37], [38] and image compression [39], it has rarely
been applied in image colorization.

The fundamental idea behind DWT is to analyze images
according to scale [39], which can produce images at different
frequencies. The 2D-DWT is performed by applying the 1D-
DWT along the rows and columns separately and subsequently,
as shown in Fig. 2(a). The first analysis filter is applied to
the row of the image and produces a set of approximate row
coefficients and a set of detailed row coefficients. The second
analysis filter is applied to the column of the new image and
produces four different sub-band images, among which sub-
band cA contains approximation information of the original
image. The sub-bands denoted cH , cV , and cD contain the
finest-scale detailed wavelet coefficients. Meanwhile, the 2D
Inverse DWT (2D-IDWT) traces back the 2D-DWT procedure
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Fig. 2. The procedure of 2D-DWT and 2D-IDWT. (a) The flowchart of 2D-
DWT. (b) Example of Haar wavelet.

by inverting the steps, so the components can be assembled
back into the original image without losing information [34].
This non-redundant image representation provides better im-
age information compared with other multi-scale representa-
tions such as Gaussian and Laplacian pyramids.

Typically, there are various types of wavelets, such as Haar
[42], Morlet [43], Daubechies [44], etc. Different wavelets
may generate various sparse representations of an image. In
this study, we use the Haar wavelet to linearly decompose
the image. As shown in Fig. 2(b), supposing an 2× 2 image
I = [[a, b], [c, d]], then the resolution of the four wavelet
coefficients is 1× 1 . The calculation process is as follows:

cA = ((a+ b) + (c+ d))/2 cH = ((a+ b)− (c+ d))/2

cV = ((a− b) + (c− d))/2 cD = ((a− b)− (c− d))/2.
(1)

C. DSM and Langevin Dynamics

Generative modeling can be roughly divided into two types:
explicit and implicit. GANs, as representatives of implicit
generative models, adopt adversarial optimization methods
and do not directly model the likelihood. Explicit generative
models directly estimate the likelihood, e.g., Deep Boltzmann
Machine [45], Variational Autoencoder [46] and DAE, etc.
Recently, Vincent et al. [24] proposed DSM, a variant of score
matching [47]. Defining the score of a probability density p(x)
to be the gradient of the log density ∇xlogp(x), DSM is
able to estimate the score of high-dimensional data via deep
networks. Furthermore, [24] also revealed the connection that
DAE is equivalent to performing DSM but DSM optimizes the
data distribution more directly than DAE.

As shown in [24], [26], defining a dataset consists of i.i.d.
samples {xi ∈ Rd}Ni=1 from an unknown data distribution
pdata(x), the score network Sθ : Rd → Rd is a neural network
parameterized by θ that will be trained to approximate the
score of pdata(x). DSM first perturbs the data point x with
a pre-specified noise distribution qσ(x̃|x) and then employs
score matching. The objective was proved equivalent to the

following:

LDSM (s) =
1

2
Eqσ(x̃|x)pdata(x)[‖Sθ(x̃)−∇x̃logqσ(x̃|x)‖

2
2].

(2)
When Eq. (2) is minimized and the noise is small enough

such that qσ(x) ≈ pdata(x), and the optimal score network
Sθ∗(x) satisfies Sθ∗(x) = ∇xlogqσ(x) ≈ ∇xlogpdata(x).

As a class of Markov Chain Monte Carlo (MCMC) tech-
niques [48], Langevin dynamics [49] provides a well-known
and much studied way to sample from the distribution pdata(x)
using only the score function ∇xlogpdata(x) or the trained
score network Sθ∗(x). Langevin dynamics algorithm can be
interpreted as a discrete approximation of a continuous diffu-
sion denoted as Yt, which started at some Y0 ∈ Rd ∼ µ0. The
diffusion process is given by:

dYt = ∇logpσ(Yt)dt+
√
2dBt, (3)

where Bt is a standard d-dimensional Brownian motion.
Denoting by vt the law of Yt, under quite general conditions,
vt converges to pdata(x) [31], [50].

III. PROPOSED WACM MODEL

The forward formulation of the colorization task can be
mathematically expressed as:

y = F (x), (4)

where y and x denote the gray-level image and the original
color image, F denotes a degenerate function. For example,
for a color image in RGB space, Eq. (4) is often considered
as:

y = (xR + xG + xB)/3.0, (5)

or

y = 0.299xR + 0.58xG + 0.114xB . (6)

The goal of colorization is to retrieve color information from
a grayscale image. As discussed above, generative model
has become one of the most important candidates for this
task. In this study, the colorization model WACM is iterated
in wavelet domain to improve the capability of score-based
generative model. Specifically, WACM initially learns the prior
in wavelet domain via DSM, then generates the high-quality
wavelet coefficient samples via Langevin dynamics. To further
accomplish the colorization task and make synthesized color
to be natural and reasonable, dual consistency terms in wavelet
domain are enforced in iterations sequentially. Finally, the
inverse wavelet transform is used to assemble twelve wavelet
coefficients back into a high-dimensional colorized image.

A. Generative Modeling in Wavelet Domain

To advance the colorization task through the generative
model with score matching, the first component in WACM
is to develop a more sophisticated modeling strategy. Song
et al. [26] proposed noise conditional score networks, which
perturbs data with random Gaussian noise to make the data



5

distribution more amenable to score-based generative mod-
eling precisely. Let {σi}Li=1 be a positive geometric se-
quence that satisfies σ1/σ2 = σ2/σ3 = · · · = σL−1/σL > 1
and qσ(x̃|x) = N(x̃|x, σ2I), the unified DSM objective used
in NCSN becomes:

L(θ; {σ}Li=1) ,
1

2L

L∑
i=1

λ(σi)Epdata(x)Eqσ(x̃|x)

‖Sθ(x̃, σi) + (x̃− x)/σ2
i ‖22,

(7)

where λ(σi) > 0 is a coefficient function depending on σi.
As a conical combination of DSM objectives, Sθ(x, σ) mini-
mizes Eq. (7) if and only if Sθ(x, σi) = ∇xlogqσi(x) for all
i ∈ {1, 2, · · · , L}.

After Sθ(x, σi) is determined at the training phase, annealed
Langevin dynamics as a sampling approach is introduced. It
recursively computes the follows:

xt+1 = xt +
αi
2
∇xlogqσi(xt) +

√
αizt

= xt +
αi
2
Sθ(xt, σi) +

√
αizt,

(8)

where αi is the step size which gradually annealed along the
geometric sequence, t is the number of iteration index for
each noise level, and ∀t : zt ∼ N(0, I). Although NCSN has
achieved good results empirically, it still leaves a huge room
for improvement, particularly in prior representation and the
dimension of manifold.

The rate of convergence of Langevin dynamics is governed
by a parameter of the population distribution called the log-
Sobolev constant which tends to grow exponentially with the
dimension of the space. And for image generation in the high-
dimensional pixel space, one would expect the mixing to be
so slow as to be prohibitive. However, as the foundation of
manifold learning, the manifold hypothesis states that certain
high-dimensional data can be learned because they lie on or
near a much lower-dimensional manifold embedded into the
ambient space [51], [52]. Block et al. [31] proved that in this
paradigm, especially for highly structured data such as images,
the relevant measure of the mixing of Langevin dynamics
is only the intrinsic dimension of the data rather than any
extrinsic features. A key conclusion is as follows:

cLS(p
2
σ) = O

(
σ2 +K4d

′2
κ20K

2d
′)
. (9)

where d
′

is the intrinsic dimension and K > 1, κ > 1. The
above bound is completely intrinsic to the geometry of the
data manifold and the dimension of the feature space does
not appear. More specific proof and derivation process can be
found in Appendix.

Despite the intrinsic dimension is much smaller than the
apparent dimension, the authors of [31] still argued that the
high dimension of the sampling space significantly impairs the
performance of Langevin dynamics, and there can be very bad
dimensional dependence in the score estimation. Furthermore,
training and sampling in high dimension are also compute
intensive. Following the above analysis, the authors in [31]
proposed a multi-resolution strategy based on upsampling to
reduce the dimension of data, which can transfer some of the

hard work of score estimation to an easier, lower-dimensional
regime. This way falls into the progressive strategy, that is,
the images are generated from low-dimensional resolution to
high-dimensional resolution progressively. But unfortunately,
compared with the naı̈ve NCSN, experiments demonstrated
that the progressive strategy utilizing the multi-resolution
scheme lacked significant improvement.

Our idea is also motivated by the theoretical analysis to
data dimension above, while achieves a better performance in
practice. Different from the “sequence” method in [31], we
take advantage of the wavelet transform in a “joint” manner
by processing image into multi-scale and multi-channel rep-
resentation, thus to make the score-based generative model
estimating and sampling in a lower-dimensional but more
informative wavelet subspace.

Intuitively, the multi-scale decomposing and downsampling
processing operations on images in wavelet transform allow
some hard parts of generative modeling to be easily trans-
ferred to a lower-dimensional subspace without adding strong
conditions on the target density [53]. Furthermore, compared
to the original image, this representation contains one low-
frequency sub-band image with complex content and three
high-frequency sub-band images with simple content, which
provides richer statistical information for the model to learn
more favorable priors and improve capability. In addition,
thanks to the IDWT process, the generated wavelet coefficients
can be assembled back into the image of original resolution
non-destructively and almost without spending extra time,
which also reduces computational complexity and speeds up
the runtime compared with the ”sequence” method.

More concretely, supposing x is a target image containing
the three color-channel of R,G,B, which can be expressed as
x = [xR, xG, xB ]. Applying DWT to each channel, it yields

W (xR) = [cAR, cHR, cVR, cDR] =WR

W (xG) = [cAG, cHG, cVG, cDG] =WG

W (xB) = [cAB , cHB , cVB , cDB ] =WB ,

(10)

where WR,WG,WB are three four-channel tensors superim-
posed by the four sub-band images whose resolution is one-
quarter of the reference.

Stacking the three tensors together, a 12-channel tensor
X = [WR,WG,WB ] is obtained to train the network. The
goal of stacking to be X is to form object in multiple lower-
dimensional manifold jointly in favor of the subsequent net-
work learning [29], [40], thereby avoiding potential difficulties
with both accuracy in score estimation and sampling with
Langevin dynamics. Accordingly, the objective of WACM is:

L(θ; {σ}Li=1) ,
1

2L

L∑
i=1

λ(σi)Epdata(x)Eqσ(X̃|X)

‖Sθ(X̃, σi) + (X̃ −X)/σ2
i ‖22.

(11)

To investigate the multi-scale and joint-learning strategy of
WACM, we train the naı̈ve NCSN and WACM on CelebA
dataset in 64× 64 and 128× 128, respectively. The interme-
diate generated results of modeling in wavelet domain are
shown in Fig. 4. It can be observed that, as the iteration
increases, the intermediate results approach the ground truth
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CelebA 64 × 64 CelebA 128 × 128

(a) NCSN (Iter. = 215k) (b) WACM (Iter. = 160k) (c) NCSN (Iter. = 295k) (d) WACM (Iter. = 275k

Fig. 3. The visual results generated by the model of naı̈ve NCSN in intensity domain and WACM in wavelet domain. Left: 64× 64, right: 128× 128. It can
be observed that naı̈ve NCSN performs fair against our model in 64× 64 images. Both of them generate appropriate and realistic results in (a)(b). However,
influenced by the curse of dimension, naı̈ve NCSN is not capable of generating complete and clear results in higher resolution images with size of 128× 128
and only generates chaos images with basic features of human faces as illustrated in (c). By contrast, benefiting from the proposed method, our results perform
excellently in 128× 128 images, which is significantly better than the naı̈ve NCSN. This phenomenon strongly indicates the superiority and effectiveness of
this strategy.

Fig. 4. Sampling trajectories of the wavelet coefficients. Notice that the low-
frequency component mixes at an earlier stage (i.e., the fifth column). At the
same time, the other high-frequency components mix more slowly (i.e., the
seventh column).

gradually. The low-frequency component mixes at an earlier
stage (i.e., the fifth column), meanwhile, the other high-
frequency components mix more slowly (i.e., the seventh
column).

The generation comparison between the results of modeling
in intensity or wavelet domain is shown in Fig. 3. The
generation effect of WACM is significantly better than the
naı̈ve NCSN for CelebA 128× 128. In addition, because the
face position of the CelebA data set is aligned and the face
images are smooth. The data distribution of the high-frequency
wavelet coefficients is relatively regular and the network
can learn the prior and generate the subspace information
faithfully.

B. Colorization under Two Consistencies

The key to utilizing score-based generative model for col-
orization and reducing the intrinsic limitations lies in the
design of proper consistency strategies. Consequently, in the
second component of WACM, data-consistency and structure-
consistency are devised to guide the model to achieve superior
colorization performance.

1) Data-Consistency in Wavelet Domain: To limit the un-
conditional generative model and guide it to colorize the input

grayscale image, a Data-Consistency (DC) term is proposed
and added in the iterative procedure. More precisely, the DC
term guides the generative model to complete the colorization
task on the input grayscale by minimizing the error between
the observed value of the intermediate result at each iteration
and the sub-band image of the original input.

Because of the linear relationship between the degenerate
function F and the Haar wavelet W , the order of the two
operations is commutative. Thus, the following equation can
be obtained as:

W (y) =W (F (x)) = F (W (x)), (12)

and

cAy = F (cAR, cAG, cAB) cHy = F (cHR, cHG, cHB)

cVy = F (cVR, cVG, cVB) cDy = F (cDR, cDG, cDB).
(13)

Therefore, the DC term can be directly applied to the
wavelet domain, that is, the 12 channels of X as:

w1DC(X)= w1(F (W (x))− F (y))
= w1(F (X)− F (y)),

(14)

where w1 is a hyper-parameter that is related to the noise level
at the current iteration.

The colorization results of WACM with only data-
consistency in wavelet domain are shown in Fig. 6. It demon-
strates that, after the DC term is enforced, the model can
already perform basic colorization on the input grayscale
image, but due to the deviation of the generated wavelet
coefficients, the final effect still has certain structural defects.

2) Structure-Consistency in Wavelet Domain: The pro-
posal of the Structure-Consistency (SC) is based on the
observation of the overall RGB color deviation and grid
phenomenon in the colorization results after the DC term is
applied.
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Predicted image Predicted distribution Original distribution Original image
Predicted distribution

enforced with SC

SC

Distribution with diviation Accurate distribution Accurate distribution

Fig. 5. The histograms of the high-frequency wavelet coefficients of the R, G, and B channels of the original image (a) and the predicted image (b). Compared
with the original image, the high-frequency histograms of the generative image have dissimilar distributions, which leads to errors in the edge and ”gridding”
effects of the generated image.

(a) (b)

Fig. 6. Results generated by WACM with DC term. (a) Colorized bedrooms
with DC. (b) Colorized churches with DC. Although the colorization results
are natural overall, they suffer from improper gridding effects in detail.

As shown in Fig. 5, we output the histograms of the high-
frequency wavelet coefficients of the R, G, and B channels of
the original color picture and the gridded picture, respectively.
Due to the inherent freedom of the generative model, the data
distribution of the obtained cH , cV , and cD have certain
deviations compared with the original RGB image. Since the
IDWT result is very sensitive to the wavelet coefficients, es-
pecially the high frequency components, these deviations will
cause display defects of edge differences and grid phenomenon
in the final colorization results.

It can be observed that the high-frequency wavelet distribu-
tion curve of the RGB channel and of the grayscale are similar
to the normal distribution without outliers, and the mean or
median of the distribution can be used to approximate the
center. On this basis, we devise the SC term to correct the
generated high-frequency wavelet coefficients using the mean
of the grayscale input. For the i-th channel Xi in X , SC can
be expressed as:

w2SC(Xi) = w2(Mean(Xi)−Mean(W (y)i)). (15)

where w2 is the weight of SC which is set to 1 by default.
For each channel of high-frequency wavelet coefficients, the
SC(Xi) is the difference between the mean value of the
channel and the mean value of the corresponding wavelet co-
efficient of the input grayscale image. The calculated SC(Xi)
of each channel is a real number, and then Xi is modified
by subtracting a product of the difference and w2 from each
pixel.

After each iteration, SC is used to correct the high-frequency
wavelet coefficients of intermediate result by shifting the
coefficients as a whole to the correct distribution. Notably,
the SC term is only applied to high frequency wavelet coeffi-
cients. Otherwise, applying SC to the low-frequency wavelet
coefficients will result in the colorization with low saturation,
because this will make the distribution center of RGB channels
tend to the same position, and the same RGB value visually
appears as gray.

C. Summary of WACM

With the above-mentioned dual consistency terms, the
model can better utilize the wavelet transform in the col-
orization task with score matching. Overall, as Fig. 7, the
entire colorization diagram includes two processes: learning
prior information in wavelet domain and iterative generate
colorization process. Specifically, in the training phase, a set
of 12-channel tensors is formed by applying wavelet transform
to the R, G, B channels of an image respectively to train the
DSM network in the multiple low-dimensional space. After the
network is trained, the model can sample with the annealed
Langevin dynamics which recursively computes the following
formula modified with the DC term:

Xt+1 = Xt +
αi
2
Sθ(Xt, σi)− w1DC(Xt) +

√
αizt, (16)

where ∀t : zt ∼ N(0, I).
In the sampling process, a 12-channel tensor X0 is initial-

ized from uniform noise as the input for the first iteration, and
a list of noise levels {σi}Li=1 which is reduced proportionally,
is generated for each step of the outer loop. At each iteration,
the annealed Langevin dynamics samples an intermediate
result from qσ(X), and then artificial noise is added to the
intermediate result based on the noise level σi. This transition
helps smoothly transfer the benefits of large noise levels to
low noise levels where the perturbed data is almost indistin-
guishable from the original one. At the same time, the DC is
incorporated into the update of the iterative generative process,
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Fig. 7. Iterative colorization procedure of WACM. Specifically, in the prior learning stage, the network Sθ(X) learns to retrieve ∇X logpdata(X) in wavelet
domain that best matches the ground truth of the input image. In the colorization stage, WACM generates samples from the 12-dimensional noisy data
distribution by annealed Langevin dynamics with data-consistency. At the meantime, the structure-consistency is used to improve the performance and reduce
the improper effects of the samples. Here symbol ”

⊕
” stands for the sum operator, DC and SC stand for data-consistency and structure-consistency.

which constitutes the inner loop of the iterative generation step
jointly. Then, the proposed SC is applied to the generated
wavelet coefficients in the outer loop. When σL ≈ 0, qσ(X)
is close to pdata(X), the results of color channels expressed in
wavelet coefficients are obtained. Finally, the final result can
be attained by performing an inverse wavelet transform on the
iteratively generated wavelet coefficients. The whole sampling
process is explained in Algorithm 1.

Algorithm 1. Iterative Colorization via WACM
Initialization:
(a) Set parameters ε, L, T , w1 and w2.
(b) Initialize noise level {σi}Li=1 and X0 ∼ U(−1, 1).
Outer loop:
For i = 1, 2, · · · , L do

(c) Set the step size αi = ε · σ2
i /σ

2
L.

Inner loop:
For t = 1, 2, · · · , T do

(d) Xt+1 = Xt +
αi
2 Sθ(Xt, σi)− w1DC(Xt) +

√
αizt

End For
(e) Calculate SC(XT ) via Eq. (15).
(f) Update XT = XT − w2SC(XT ).
(g) Output the colorization result x = IDWT (XT ).

End For

IV. EXPERIMENTS

In this section, after the experimental setup is detailed,
the present WACM is compared with the state-of-the-arts

qualitatively and quantitatively. Then, several key factors that
contribute to the final WACM are separately investigated.
In addition, two main advantages of WACM are exhibited:
colorization robustness and diversity. Finally, the effects of
pre-processing and post-processing on the colorization results
and some existing limitations in real-world applications are
discussed as well. For the purpose of replicating research, the
code is available at: .

A. Experiment Setup

1) Datasets: We experiment with multiple image datasets
from various sources as follows:

LSUN [54] (bedroom and church): LSUN contains around
one million labeled images for each of 10 scene categories and
20 object categories, including bedroom, fixed room, living
room, classroom, church, etc. In this study, we choose the
indoor scene LSUN-bedroom dataset and the outdoor scene
LSUN-church dataset to evaluate WACM.

COCO-stuff [55]: The COCO-stuff is a subset of the COCO
dataset [56] generated for scene parsing. It contains 164k
images that span over 172 categories, including 80 things, 91
stuff, and 1 class unlabeled, most of which are natural scenes
with various objects.

2) Implementation Details: Following [26], the proposed
WACM selects the 4-cascaded RefineNet [57] architectures
with instance normalization and dilated convolutions as the
score network, and continue to use the hyperparameters in
[26], [57]. Adam is chosen as the optimizer with a learning
rate of 0.005 and β1 of 0.9. For the setting of parameters,
we choose L = 10, σ1 = 1, σL = 0.01 to determine the noise

https://github.com/yqx7150/WACM
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TABLE II
COLORIZATION COMPARISON OF OUR MODEL TO STATE-OF-THE-ART TECHNIQUES IN THE 128× 128 IMAGES.

Algorithm LSUN-church LSUN-bedroom COCO-stuff Runtime(s)

Zhang et al.(2016) 23.65/0.9228 20.89/0.8946 20.21/0.8844 1.896
MemoPainter 21.66/0.8767 22.92/0.8975 22.05/0.8929 0.244
ChromaGAN 24.63/0.9106 24.16/0.8899 22.98/0.8924 0.378

iGM-6C 20.60/0.8953 22.40/0.9099 19.68/0.8493 0.055/iter
WACM 25.44/0.9265 24.13/0.9056 22.41/0.8810 0.044/iter

level, T = 100 as the total number of iterations for each level.
Besides, w1, w2 and step size are chosen to be w1 = αi/σi

2,
w2 = 1 and ε = 1.56× 10−5 via the grid search method of
hyperparameter optimization. As shown in Fig. 18 in Ap-
pendix, the colorization results are sensitive to the parameters.
In the training phase, we reshape each image into 128× 128
or 256× 256, then perform random flip as pre-processing.
In each dataset, the WACM model is trained for 500,000
iterations with a batch size of 8, and checkpoints are saved
every 5000 iterations, which takes around 40 hours. The model
is performed with Pytorch interface on 2 NVIDIA Titan XP
GPUs, 12 GB RAM. In the testing phase, we randomly choose
100 images from the validation set for each dataset, then 12
diverse results are produced for each grayscale image.

3) Evaluation Metrics: Two quantitative assessments of
our method are included in terms of Peak Signal to Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM). In
addition, Lightness-Order-Error (LOE) [58] and a user study
are conducted to test the naturalness of different methods.

B. Comparisons with State-of-the-arts
To demonstrate the superiority of the proposed WACM,

we compare it with four state-of-the-art colorization methods
quantitatively and qualitatively, including Zhang et al.(2016)
[18], MemoPainter [13], ChromaGAN [15] and iGM-6C [16].
Meanwhile, to further test the colorization quality of WACM
on higher resolution images, we qualitatively compare WACM
with mGANprior [59], which reports excellent colorization
results on LUSN-bedroom and LSUN-church datasets by using
Multi-Code GAN Prior.

1) Quantitative Comparison: In this experiment, we ran-
domly select 100 images from LSUN-bedroom, LSUN-church,
and COCO-stuff datasets, respectively, and resize them to be
128× 128, then calculate the average PSNR and SSIM values
of the results that are colorized by different methods. Table II
and Fig. 8 summarize the colorization performance of WACM
and other state-of-the-art methods on 128× 128 images.

One can observe that, in general, the PSNR and SSIM
values of WACM are higher than most of those obtained by
other methods. In LSUN-church dataset, WACM achieves the
highest PSNR and SSIM values, as well as the highest PSNR
values in LSUN-bedroom dataset. For COCO-sutff dataset
which consists of more complex outdoor images, the ability
of generative model is limited to a certain extent.However,
WACM still represents strong colorization performance with
the help of the multi-scale and multi-channel strategies, and
the value of PSNR is slightly lower than that of ChromaGAN.

For the sake of comparison, some results are depicted in Fig.
8. Overall, the results of other methods provide sometimes

vivid colors as in the second line and sixth line in Fig.
8(d) and sometimes uncolored results as in the sixth line
in Fig. 8(c)(e). However, their results suffer from the issues
of color pollution and desaturation. On the contrary, WACM
yields better results in terms of consistent hue, saturation,
and contrast, etc. For example, in the third row of Fig. 8(g),
there are no discordant green colors on the ground like (c)
and (d), and the image of WACM in the second row has
obvious contrast in luminance between table lamp and the
bed. The quantitative comparison to state-of-the-art methods
indicates the superiority of WACM in aspects of naturalness
and structural characteristics, including luminance, contrast,
and structure.

Furthermore, to prove the contribution of wavelet transforms
to the colorization performance of higher resolution images,
the colorization results of WACM and mGANprior [59] on
256× 256 images are shown in Fig. 9. It can be observed
that the results of WACM are quite realistic and free of
color pollution. The results further illustrate the superiority
of WACM in promoting colorization task on higher resolution
images by integrating multi-scale and multi-channel strategies
with score-based generative model. More diverse examples of
WACM are included in Supplementary Materials.

2) Naturalness Test: We use the LOE indicator and a user
survey to test the naturalness of colorization results accurately.

LOE is an indicator by measuring the relative order of
illumination between the original image and the enhanced
image to measure its naturalness. The smaller the error, the
better the naturalness. In this study, we use it as an indicator
of the preservation of naturalness between the grayscale image
and the colorized image. The results are shown in Table III,
which proves that the colorization results of WACM are real
and natural.

Similar to [60], the user study is designed using the Two-
Alternative Forced Choice (2AFC) paradigm. We choose five
random colorization results generated by four methods (Chro-
maGAN, MemoPainter, Zhang et al. and WACM) to make
the comparison and invite 68 users in different age groups to
participate in this study. For each image, there are 6 pairs of
colorized results to make sure any two methods are compared.
The order of image pairs is randomized to avoid bias.

During the experiment, the users are asked to choose one
of each pair that looks more natural. The total number of user
preferences (clicks) for each colorization result is recorded,
which is shown in Fig. 10. The highest clicks imply that the
results of WACM is mostly preferred by users. Besides, the
lowest standard deviation indicates that colorization results
of WACM are always satisfactory despite in different image
content.
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(a) Grayscale (b) Ground truth (c) Zhang et al. (d) ChromaGAN (e) MemoPainter (f) iGM-6C (g) WACM (h) WACM

Fig. 8. Visual comparisons with the state-of-the-arts on images with the size of 128× 128. From left to right: Grayscale, Ground truth, Zhang et al.,
ChromaGAN, MemoPainter, iGM and two diversity results of WACM. The present WACM can predict more visually pleasing colors.

(a) Grayscale (b) mGANprior (c) WACM (a) Grayscale (b) mGANprior (c) WACM

Fig. 9. Some colorization results of mGANprior and WACM in 256× 256 images. The images in the first column are the input grayscales, and the images in
the second and third column are results of mGANprior and WACM, respectively. Benefiting from the multi-scale and multi-channel characteristics of DWT,
WACM produces high-quality colorization results in higher resolution images, which alleviates the difficulty of NCSN to generate high-resolution images.
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TABLE III
NATURALNESS MEASUREMENT RESULTS OF LOE.

Algorithm LSUN-church LSUN-bedroom COCO-stuff
Zhang et al. 554,55 1221.14 839.53
MemoPainter 634.21 4590.30 4573.79
ChromaGAN 568.55 4609.66 4600.94

iGM-6C 482.75 1013.50 470.11
WACM 551.14 994.86 791.35

Fig. 10. The total value and standard deviation (shown above the bar) of user
clicks for four colorization results obtained by different methods.

C. Ablation Study

Three main components are critical to the performance of
the final WACM: prior learning in wavelet domain, structure-
consistency that enforced in wavelet domain, and training
high-frequency and low-frequency wavelet coefficients jointly.
Here several ablation studies are conducted to validate these
important designs.

1) Prior Learning in Wavelet or Intensity Domain: We
conduct an experiment to quantify the key factor of this
research—training DSM in wavelet domain. We report the
quantitative comparisons of prior learning in wavelet domain
and intensity domain on LSUN-church and LSUN-bedroom
datasets in Table IV and exhibit some examples in Fig. 11. The
results present a significant performance boost gained by our
method in all metrics, which further highlights the contribution
of prior learning in wavelet domain. The significant improve-
ment of SSIM is worth noting. For example, it increases by
0.07 in LSUN-church dataset, and 0.08 in LSUN-bedroom
dataset, which is benefited from the complete description of
details and texture of the image at all available scales via DWT.

2) Iteration with Different Consistencies: This ablation
study is conducted to investigate the contribution of SC in
wavelet domain. WACM is sampling under two different
cases: without/with SC term. Fig. 12 provides qualitative
and quantitative comparisons. As shown, although the model
without SC accomplishes the correct colorization with high
saturation overall, the results suffer from improper gridding
effects in details, which cause lower PSNR and SSIM values
and imperfect visual effects.

However, the model with SC can constrain the generation of
high-frequency wavelet coefficients and guide them toward the
correct distribution, thus effectively eliminating the gridding

TABLE IV
QUANTITATIVE COMPARISONS FOR THE ABLATION STUDY OF PRIOR

LEARNING IN DIFFERENT DOMAINS ON LUSN-CHURCH AND
LSUN-BEDROOM DATASETS.

Domain LSUN-church LSUN-bedroom

Intensity domain 22.67/0.8584 20.29/0.8150
Wavelet domain 25.44/0.9265 22.92/0.8975

Fig. 11. Visual comparisons between prior learning in intensity domain (the
first line) and wavelet domain (the second line).

artifacts. We also zoom in on the partial map for observation.
It can be observed that the result in Fig. 12(b) retains the
benefits of high saturation and proper color while reducing
the improper effects appearing in Fig. 12(a). The results
demonstrate the effectiveness using SC, especially in terms
of SSIM value, which is a metric for structural characteristics.
This experiment demonstrates that SC operation indeed helps
to achieve finer results.

3) Training Wavelet Coefficients Jointly or Separately: In
this experiment, we investigate the colorization performance
in two settings: joint training or separate training of high-
frequency and low-frequency wavelet coefficients, namely
WACM-joint and WACM-divide. The quantitative compar-
isons are conducted on LSUN-church dataset to evaluate
their performance. Fig. 13 and Table V list the comparison
results. Generally, thanks to prior learning and sampling in
wavelet domain, both of them can produce satisfactory results.
However, results in Table V present a performance boost
gained by WACM-joint.

An important reason for the superior performance of joint
training is that training separately cannot guarantee the con-
sistency of the high-frequency and low-frequency wavelet
coefficients generated by the network. Another reason is
that sampling in the multi-channel embedding space is more
effective than the information obtained from original objects
[40]. In addition, a single network can effectively reduce the
computation cost, which improves the efficiency of the model.

D. Robustness Test

Due to the wide application of colorization task but the
datasets in real-world may be insufficient, it is impossible
to train the model with all types of images. Therefore, the
robustness of model, i.e., one model for tackling various
images in different datasets, is necessary. Considering natural
images contain the multiple types of potential priors, in this
section, we use a model only trained by COCO-stuff to handle
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(a) WACM without SC (b) WACM with SC

Fig. 12. Quantitative and qualitative comparisons between (a) WACM without SC and (b) WACM with both DC and SC. The comparison results in (a)(b)
validate a performance boost gained by using SC. It can be noticed that both the PSNR and SSIM values improved under the constraint of SC as well as
eliminating the “gridding” artifacts visually, which demonstrates that SC helps to achieve finer results.

TABLE V
COLORIZATION COMPARISON OF WACM-JOINT AND WACM-DIVIDE IN

THE 128×128 IMAGE OF LSUN-CHURCH DATASET.

Algorithm PSNR SSIM

WACM-joint 25.44 0.9265
WACM-divide 22.71 0.9023

Fig. 13. Colorization comparison of the proposed WACM between separate
training and joint training of high-frequency and low-frequency wavelet
coefficients. Top line: WACM-joint, Bottom line: WACM-divide.

a variety of colorization tasks, including legacy black-and-
white photos and cartoons.

1) Colorizing Legacy Black-and-White Photos: Different
from colorizing the pictures from the test datasets, which
processes the original color images to obtain the grayscale
images and then colorize them. In more general cases, we
can only observe the grayscale image y without knowing its
forward model F . In this circumstance, the task of “blind”
colorization is more challenging.

In this experiment, a prevailing processing method of form-
ing F is chosen:

F (x) = (xR + xG + xB)/3.0. (17)

As observed in Fig. 14, convincing results are generated by
WACM. Taking the first picture for example, the results are
realistic in terms of texture, contrast and saturation.

2) Colorizing Cartoons: When it comes to real-world ap-
plications, cartoons and animation are two main areas needed
for colorization. However, data for animations and cartoons
is often limited as the cartoon images are difficult to create
and must be colored by hand. This problem can be alleviated
by training the model on natural image datasets that have
abundant images and then applying it to cartoon colorization.

In this experiment, we try to learn wavelet prior from the
COCO-stuff dataset and apply it to colorize cartoons. Some
results of WACM are exhibited in Fig. 15. Although the
accuracy of manual colorization cannot be achieved, the results
produced by WACM are satisfactory and quite good. As can
be seen in the second image, the cartoon characters are colored
in blue and orange and have obtained color consistency. In the
fifth image, the textures of the character (the metallic texture
of the character’s body) are retained as well.

In most cases, WACM can produce realistic and satisfactory
results. Notably, in these experiments, WACM is only trained
on the COCO-stuff dataset. This phenomenon indicates the
effectiveness and robustness of WACM.

E. Colorization Diversity

Image colorization is essentially a one-to-many task as
multiple feasible colorized results can be given for the same
grayscale input. Generating a diverse set of colorization
solutions is an effective way to tackle this multi-modality
challenge. In general, it can be achieved via generative models.

Leveraging the generative model as well as multi-scale and
multi-channel representation in wavelet domain, our model can
generate multiple feasible colorized images to meet different
needs. Some diverse colorization results are shown in Fig. 16.
The results show that our generated colored images have fine-
grained and vibrant colors.

F. Pre-processing and Post-processing

To further improve the subjective quality and reduce visual
artifacts of colorized images, some pre-processing and post-
processing techniques via image enhancement and filtering can
be used to help generate more pleasing results.
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Fig. 14. Colorizing legacy black and white photographs. Our model can obtain
realistic colorization results whether it is a picture of landscapes or close-ups.
The images we choose are (a) Colorado National Park, 1941 (b) Textile Mill,
June 1937 (c) Hamilton, 1936.

Fig. 15. Colorize cartoon images. The top line involves the observed grayscale
image. The bottom line lists the results obtained by WACM. Notice that all
these results are obtained automatically by WACM without model re-training
in the cartoon dataset.

1) Pre-processing via Image Enhancement: We can pre-
process grayscale images using image enhancement techniques
before feeding them into the colorization network. Motivated
by [61], in this experiment, we pre-process the grayscale image
by enhancing the details of salient areas. To be more specific,
we employ frequency-tuned methods [62] to detect the salient
regions, then the details in these regions are enhanced by the
multi-scale detail boosting method [63].

2) Post-processing via Image Filtering: Considering that
colorization is a highly free task, the generated colorization
results may have problems such as existing noise or color
overflow. Thus, some post-processing such as Gaussian fil-
tering [64] or bilateral filtering [65], [66] can be applied to
improve the quality of the colorization images. We initially
used method [67] for this post-processing experiment. As
can be seen from Fig. 17, by pre-processing the images via
image enhancement, the colorization results become sharper,
and the edges of objects are clearer. In addition, after post-
processing via filtering, the noise in the images is suppressed,
and the colorization results become smoother. Therefore, by
combining the model with pre-processing or post-processing
techniques, we can obtain different styles of results with higher
subjective quality.

Fig. 16. Illustration of the diverse colorization by WACM. For each image,
WACM produces twelve colorized samples, from which four different styles
are chosen. It can be noticed that WACM can produce various styles for a
single image.

Fig. 17. Colorization comparison of the original results and those produced
after pre-processing or post-processing techniques. Top line: WACM without
image enhancement. Second line: WACM with image enhancement. Bottom
line: WACM with filtering.

G. Limitations in Real-world Applications

Extensive experiments have demonstrated that WACM is
capable of producing diverse and high-quality colorization
results. When it comes to real-world applications, there are
still two existing limitations under some circumstances: 1)
Colorization degradation caused by data distribution; 2) Com-
putational burden.

First, different from approximating the potential mapping
from grayscale to color directly, WACM tackles colorization
task using MCMC method. In most cases, WACM has satis-
factory robustness and generalization thanks to the proposed
strategy, while performance degradation still occasionally oc-
curs when dealing with some images that has different cat-
egories or content to the training set, especially when their
colored version happens to locate in the low-density regions
of the learned distribution. In practical applications, a possible
solution is to further process training set and training schedule
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according to the specific application scenario to learn a more
appropriate probability density distribution.

Second, since the colorization process of WACM is con-
ducted in iterative manner, and a larger number of iterations
at each noise level generally contributes to better samples.
Thus, it achieves better performance at the price of more
computation compared with some supervised learning methods
in end-to-end manner. This limitation could be alleviated by
parallelizing sampling process, or striking a suitable trade-
off between performance and computation by choosing noise
levels.

V. CONCLUSIONS

To summarize, this work proposed an iterative generative
model in wavelet domain to address the colorization problem.
We have shown that utilizing the multi-scale and multi-channel
strategy to make the prior learning procedure in a lower-
dimensional and more statistically informative subspace via
wavelet transform is an effective optimization scheme to
improve the performance of score-based generative models.
By taking advantage of the non-redundant and multi-scale
representation of DWT and the high-precision reconstruction
of IDWT, we address some general problems in generative
modeling. Meanwhile, two consistency terms are proposed
to make full use of wavelet transform in colorization while
avoiding the improper effects caused by the uncertainty of
generative model. Extensive experiments have been conducted
to demonstrate that the proposed method achieves state-of-the-
art performance in automatic colorization, and shows strong
superiority over the previous methods in both quantitative and
qualitative assessments.

For future work, research could continue to explore and ap-
ply the proposed method to few-shot image colorization task.
Combining it with meta-learning [68] and clustering methods
such as spectral clustering [69], [70] to construct a model
that can produce excellent colorization results even without
a large quantity of data. Also, the effectiveness of multi-level
wavelet transform prior can be further explored, as well as the
most efficient way to utilize it in score-based generative model.
Furthermore, the hyperparameter optimization problem using
modern statistical methods such as Bayesian optimization [71],
[72] for both the estimation and sampling process of the score-
based generative model in wavelet domain is also a direction
worthy of more exploration in the future.
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APPENDIX

A. Notations
TABLE VI

SUMMARIZATION OF NOTATIONS

Notation Description Notation Description

cA, cH, cV, cD Wavelet coefficient qσ(x̃|x) Pre-specified noise distribution
∇xlogp(x) Gradient of log density p(x) Yt The t-th Langevin diffusion
Sθ(·) Score-based network Bt Standard Brownian motion

pdata(x) Distribution of data x vt The law of Yt
y Grayscale image z Random Gaussian noise
x Color image cLS(·) A log-Sobolev inequality with constant

xR,xG,xB R, G, B channel of x d
′

Intrinsic dimension
{σi}Li=1 A series of noise level W (·) Discrete wavelet transform
λ(σi) Coefficient function depending on σi WR,WG,WB Wavelet transform of xR, xG, xB
αi Step size X Stack of WR,WG,WB

t Number of iteration index ε A parameter of step size
T Total number of iteration F (·) Degenerate function

B. Derivation of the Theorems

Theorem 1 (Theorem 1 from [31]). Let d ≥ 3 and suppose that the scores of p and p2σ are L-Lipschitz and
(m, b)− dissipative. Let Sθ be an estimate of the score of pσ2 whose expected squared error with respect to pσ2 is bounded
by ε2. Suppose that X0 − v̂0. Under technical conditions on v̂0 satisfied by a multivariate Gaussian, we have

W2(V̂t, p) ≤ (σ
√
d+W2(V̂0, pσ2)e

− 2t
cLS(p

σ2
) )+

C
√

(b+ d)(εt+ ‖pσ2‖ 1
2−

1
d e

L
√
d

4 t
√
tε

1
d

1
4 ),

(18)

where does not depend on the dimension. As can be seen, the bound of the Wasserstein distance in Eq. (18) is determined by
the intrinsic subspace dimension. Furthermore, under Assumption 1, the bound will be simpler and more precise.

Assumption 1. Let M, g be a d
′ − dimensional, smooth, closed, complete, connected Riemannian manifold isometrically

embedded in Rd and contained in a ball of radius ρ, such that there exists a K ≤ 0 such that RicM < −Kg for all y ∈M in
the sense of quadratic forms. With respect to the inherited metric, M has a volume form vol, which has finite total integral
on M due to compactness. Then p = pvolM is continuous with respect to the volume form and we refer to its density with
respect to this volume form as p as well, by abuse of notation.

Theorem 2 (Theorem 3 from [31]). Suppose that the pair (M, g) satisfies Assumption 1 and let p ∝ volM be uniform on
M . Assume that K > 1 and that κ > 1, then

cLS(p
2
σ) = O

(
σ2 +K4d

′2
κ20K

2d
′)
. (19)

It should be emphasized that the above bound is completely intrinsic to the geometry of the data manifold and that the
dimension of the feature space does not appear, thus we can conclude that even with arbitrarily high dimension in pixel space,
if the feasible space has small dimension d

′
, Langevin dynamics will still mix quickly.

C. The Influence of Parameters on Colorization

(a) WACM (b) 10×SC (c) SC on low-frequency (d) 0.01×DC (e) 12×DC (f) 0.01×ε (g) 10×ε

Fig. 18. The influence of different parameters on colorization. Appropriate parameters of WACM contribute to the final high-quality colored results.
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