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A Novel Mix-normalization Method for
Generalizable Multi-source Person Re-identification

Lei Qi, Lei Wang, Yinghuan Shi, Xin Geng*

Abstract—Person re-identification (Re-ID) has achieved great
success in the supervised scenario. However, it is difficult to di-
rectly transfer the supervised model to arbitrary unseen domains
due to the model overfitting to the seen source domains. In this
paper, we aim to tackle the generalizable multi-source person
Re-ID task (i.e., there are multiple available source domains,
and the testing domain is unseen during training) from the data
augmentation perspective, thus we put forward a novel method,
termed MixNorm. It consists of domain-aware mix-normalization
(DMN) and domain-aware center regularization (DCR). Different
from the conventional data augmentation, the proposed domain-
aware mix-normalization enhances the diversity of features
during training from the normalization perspective of the neural
network, which can effectively alleviate the model overfitting to
the source domains, so as to boost the generalization capability of
the model in the unseen domain. To further promote the efficacy
of the proposed DMN, we exploit the domain-aware center
regularization to better map the diversely generated features into
the same space. Extensive experiments on multiple benchmark
datasets validate the effectiveness of the proposed method and
show that the proposed method can outperform the state-of-the-
art methods. Besides, further analysis also reveals the superiority
of the proposed method.

Index Terms—MixNorm, domain-aware mix-normalization,
generalizable multi-source person re-identification.

I. INTRODUCTION

N recent years, person re-identification (Re-ID) has at-

tracted an increasing interest in both academia and industry
due to its great potentials in the video surveillance system [[1]],
[2], [3]. Person Re-ID resorts to matching images of the same
person captured by different cameras with the non-overlapping
camera views. This main challenge of person Re-ID is the
variations including body pose, viewing angle, illumination,
image resolution, occlusion, background and so on across
different cameras [4], [3]], [6]. In general, person Re-ID can be
treated as a special case of the image retrieval problem with
the goal of querying from a large-scale gallery set to quickly
and accurately find images that match with a query image.
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Currently, the typical person Re-ID methods have obtained
good performance in the supervised setting due to the power
of deep neural network [[7], (8], [9], [LON, [L1]], [12f], [13], [14].
For example, in [13]], a novel interaction—aggregation-update is
introduced to comprehensively leverage the spatial-temporal
context information, which can enable the feature to incor-
porate the globally spatial, temporal, and channel context. To
address the occluded person Re-ID task, Hou et al. [14]] design
an occlusion-robust block, which can effectively recover the
semantics of occluded regions in the feature space. However,
when these models are used to the unseen domain, they will
fail on performance because of the model overfitting to the
source domains. Generally, when using these methods in a
new domain or scenario, we need to collect the data and then
label the data, which is expensive and time-consuming, thus
these existing supervised models cannot be directly deployed
in the real-world application. Although some unsupervised
domains adaptation (UDA) methods are proposed to mitigate
the labeling task [15], [IL6], [L7], [L8], [19], they still require
to collect data and re-train the model for the new scenario.

Domain generalization (DG) methods can address the above
problem, which resorts to learning a model in the source
domains and testing in the unseen domain [20]. In the person
Re-ID community, some DG methods have been developed
to produce a robust model for the unseen target domain.
For example, the method in [21] treats image matching as
finding local correspondences in feature maps and constructs
query-adaptive convolution kernels on the fly to achieve local
matching. In [22], a meta-learning strategy is introduced to
simulate the train-test process of domain generalization for
learning a more generalizable model. The method [23]] adopts
an effective voting-based mixture mechanism to dynamically
leverage the diverse characteristics of source domains to
improve the generalization ability of the model. Differently, we
aim to solve the issue from the data-augmentation perspective.

In this paper, we focus on the generalizable multi-source
person re-identification task as in [22]], where there are mul-
tiple available source domains in the training stage, and the
testing data is unseen during training. Considering the conven-
tional batch normalization (BN) [24] uses the same statistics to
normalize all samples in a batch, which could lead to learning
the fixed pattern in the training process and further overfitting
the trained model to the seen source domains. To address the
issue, we propose a domain-aware mix-normalization (DMN)
to achieve the feature augmentation, which can alleviate the
overfitting problem via yielding the diverse features. To be
specific, we randomly combine different domains to generate
the mixed statistics (i.e., mean and variance) in a batch when



conducting the forward operation during training, and they
are employed to normalize the samples in the combined
domains. To deeply mine the power of the proposed DMN,
we employ the domain-aware center regularization (DCR) [25]]
to better train the model with the diverse features, which
can effectively map all features into the same space, so that
the domain-invariant feature can be obtained. Together, the
above two modules give rise to a novel “MixNorm” method
for generalizable multi-source person Re-ID. We conduct the
experiments on multiple benchmark person Re-ID datasets to
confirm the effectiveness of the proposed method. Besides, the
deep analysis by extensive experiments reveals the superiority
of MixNorm. In this paper, our main contributions can be
summarized as:

« We propose a simple yet effective domain-aware mix-
normalization, which can produce diverse features to
enhance the robustness and effectiveness of the model
in unseen domains.

o To further promote the power of our proposed mix-
normalization during training, we exploit a domain-aware
center regularization to guarantee that the diverse samples
from DMN are mapped into the same space.

o We evaluate our approach on multiple standard bench-
mark datasets, and the results show that our approach
outperforms the state-of-the-art accuracy. Moreover, the
ablation study and further analysis are provided to vali-
date the efficacy of our method.

The rest of this paper is organized as follows. We review
some related work in Section The proposed method is
introduced in Section Experimental results and analysis
are presented in Section [[V] and Section [V] is conclusion.

II. RELATED WORK

In this section, we review the related work to our work, in-
cluding the generalizable person re-identification, the domain
generalization methods and open set domain adaptation. The
detailed investigation is presented in the following part.

A. Generalizable Person Re-identification

Currently, several methods have been developed to solve the
generalizable (i.e., domain generalization) person Re-ID task,
including the instance normalization based methods, the meta-
learning based methods and the sample-adaptive methods.

Considering that the domain discrepancy in Re-ID is due
to style and content variance across datasets, and instance
normalization (IN) [26] can effectively remove the style infor-
mation, Jia et al. [27] adopt instance and feature normalization
to alleviate much of the resulting domain-shift in deep Re-ID
models. However, IN inevitably removes discriminative infor-
mation, while it filters out style variations, such as illumination
and color contrast. Therefore, Jin ef al. [28] propose to distill
identity-relevant feature from the removed information and
restitute it to the network to ensure high discrimination. For
better disentanglement, the method enforces a dual causality
loss constraint in SNR to encourage the separation of identity-
relevant features and identity-irrelevant features.

Besides, some methods employ the meta-learning scheme to
enhance the generalization capability to the unseen domains.
In [29]], a novel deep Re-ID model termed Domain-Invariant
Mapping Network (DIMN) is proposed, which utilizes the
meta-learning pipeline to sample a subset of source domain
training tasks during each training episode, so as to make
the model domain-invariant. Choi et al. [30] combine learn-
able batch-instance normalization layers with meta-learning
and investigate the challenging cases caused by both batch
and instance normalization layers. Moreover, the method di-
versifies the virtual simulations via the meta-train loss ac-
companied by a cyclic inner-updating manner to boost the
model’s generalization. Zhao et al. [22] design the Memory-
based Multi-Source MetaLearning (ML) framework to train
a generalizable model for unseen domains. In this frame-
work, a meta-learning strategy is introduced to simulate the
train-test process of domain generalization for learning more
generalizable models. Moreover, this method also presents a
meta batch normalization layer to diversify meta-test features,
further establishing the advantage of meta-learning.

Different from the aforementioned methods, some adaptive
approaches are also designed to perform well in the unseen
target domain, which can adjust the parameters or module ac-
cording to each testing image in the testing stage. For example,
Dai et al. [23] introduce a novel method called the relevance-
aware mixture of experts (RaMoE), using an effective voting-
based mixture mechanism to dynamically leverage the diverse
characteristics of source domains to improve the generalization
ability of the model. Particularly, in the testing stage, the
method can change the weights of each experts according to
the current testing image. In [21]], the method treats image
matching as finding local correspondences in feature maps,
and constructs query-adaptive convolution kernels on the fly
to achieve local matching. In this way, the matching process
and results are interpretable, and this explicit matching is more
generalizable than representation features to unseen domains,
such as unknown misalignments, pose or viewpoint changes.

In this paper, unlike the above methods for generalizable
person Re-ID, we resort to improving the generalization capa-
bility of the model from the data augmentation perspective
when there are multiple available source domains during
training, as the setting in [22]].

B. Domain Generalization

Recently, some methods are also proposed to address the
domain generalization problem in the classification and se-
mantic segmentation tasks [31[], [32], [33], [34], [35[, [36],
[137]], [38]]. Particularly, the data augmentation based methods
have obtained significant advance in these tasks, which can be
divided into image-level and feature-level data augmentation.

For the image-level augmentation, Zhou et al. [39]] employ
a data generator to synthesize data from pseudo-novel do-
mains to augment the source domains. Moreover, in [40], a
novel DG approach based on Deep Domain-Adversarial Image
Generation (DDAIG) is proposed, which aims to map the
source training data into unseen domains. This is achieved
by a learning objective formulated to ensure that the gener-
ated data can be correctly classified by the label classifier



while fooling the domain classifier. Particularly, augmenting
the source training data with the generated unseen domain
data can make the label classifier more robust to unknown
domain changes. Differently, considering the Fourier phase
information contains high-level semantics and is not easily
affected by domain shifts, Xu et al [41] develop a novel
Fourier-based data augmentation strategy to force the model to
capture phase information, which linearly interpolates between
the amplitude spectrums of two images.

For the feature-level augmentation, Huang et al. [42] intro-
duce a simple training heuristic, called Representation Self-
Challenging (RSC), that significantly improves the generaliza-
tion of CNN to the out-of-domain data. RSC iteratively dis-
cards the dominant features activated on the training data, and
forces the network to activate remaining features that correlate
with labels. Li et al. [43] propose an extremely simple tech-
nique of perturbing the feature embedding with Gaussian noise
during training leads to a classifier with domain-generalization
performance comparable to existing state-of-the-art. Besides,
in [44]), a novel approach is proposed based on probabilistically
mixing instance-level feature statistics of training samples
across source domains, termed MixStyle. Mixing styles of
training instances results in novel domains being synthesized
implicitly, which increases the domain diversity of the source
domains, and hence improves the generalization ability of the
trained model.

In this paper, we solve the generalizable person Re-ID
task from the data augmentation perspective. Particularly, our
proposed method belongs to the feature-level augmentation.
Differently, we achieve to generate the diverse features from
the normalization view of the neural network, which is not
well investigated in the existing works.

C. Open Set Domain Adaptation

Generalizable person re-identification can be also consid-
ered as an open set task, where there is no overlapping
category between source domains and unseen target domain.
Recently, the open set setting has attracted much attention in
the domain adaptation community, which is firstly proposed
in [45)]. Some methods have been designed to deal with the
issue [46], [47], [48], [49], [50]. For example, Saito et al. [46]]
propose to utilize adversarial training to extract features that
separate unknown target from known target samples. In [47]],
the approach adopts a coarse-to-fine weighting mechanism to
progressively separate the samples of unknown and known
classes, and simultaneously measure their importance on fea-
ture distribution alignment. Luo et al. [49] introduce an
end-to-end progressive graph learning framework where a
graph neural network with episodic training is integrated to
suppress underlying conditional shift, and adversarial learning
is adopted to close the gap between the source and target
distributions. Moreover, Shermin et al. [S0] put forward
a novel adversarial domain adaptation model with multiple
auxiliary classifiers, which can effectively encourage positive
transfers during adversarial training and simultaneously reduce
the domain gap between the shared classes of the source and
target domains.

Different from the open set domain adaptation task, the
target domain is unseen during the training course in the
generalizable person Re-ID task. Therefore, we cannot directly
pull the distance between source and target domains in the
generalizable Re-ID task. In this paper, we solve this issue
by generating the diverse features to enrich the data diversity
from the normalization perspective.

III. THE PROPOSED METHOD

In this paper, to enhance the generalization capacity of
the model to the unseen domain, we put forward a novel
mix-normalization method termed MixNorm, as illustrated in
Fig.|l} Specifically, in this method, we develop domain-aware
mix-normalization (DMN) to conduct the feature augmenta-
tion, which randomly combines different domains to com-
pute the statistics during each normalization. Thus, perturbed
features can be generated to promote the diversity of the
training samples. Furthermore, to boost the effectiveness of
the DMN, we leverage the domain-aware center regularization
(DCR) [25] to map all samples into the same space, which can
effectively enforce the model to learn the domain-invariant
features. The detailed description of the proposed method will
be presented in the following part.

A. Domain-aware Mix-normalization

In this part, we will introduce the domain-aware mix-
normalization (DMN) for generalizable multi-source person
re-identification. During training, we randomly select the same
number of samples from each source domain to form each
batch. For example, we have D source domains and choose P
samples from each domain, thus the batch size is N = D x P
in the training stage. In general, the conventional batch nor-
malization (BN) [24] is leveraged to normalize all samples in
each batch, which can be defined as:

BN(f) = /21

+p3, de{l,..., D}, (1)

where f; € RVXEXHXW denotes the feature maps from the
d-th domain, v, 3 € R are learnable affine transformation
parameters, and C is the number of channel on the corre-
sponding feature maps. j1, 0 € RC represent the channel-wise
mean and standard deviation of BN for the feature maps (i.e.,
statistics) as follows:

1 D P H W
d=1p=1h=1w=1
D P H W
7= DPHWZZZZfdPHh“’] 1?2 €,
d=1p=1h=1w=1
3)

where € is a constant for numerical stability. As seen in the
above equation, BN utilizes the same statistics (i.e., a pair of
1 and o) for all samples in each batch, which could result
in that the fixed pattern is learned by neural network, so that
the final model overfits to the source domains. Most existing
methods address the issue in person Re-ID community by the
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An illustration of the proposed MixNorm. Here we take three source domains as an example. As seen in this figure, the method is composed of

domain-aware mix-normalization (DMN) and domain-aware center regularization (DCR). In this figure, we show that source-1 and source-3 are randomly
selected to calculate statistics for normalization together, and the remaining source-2 independently conducts the normalization operation. These green, yellow
and blue blocks in “S-17, “S-2” and “S-3” represent the feature map for each sample of the corresponding domain, which will be normalized by our DMN.

Best viewed in color.

instance normalization based methods, the meta-learning based
methods or the sample-adaptive methods.

Differently, we propose to tackle this problem from the
data augmentation perspective based on the normalization of
the neural network. Considering that using the same mean
and variance for all samples in each batch could capture the
fixed pattern, we propose a domain-aware mix-normalization
for performing the normalization, which randomly combines
the different domains to yield the diverse statistics. Therefore,
normalizing the features using diverse statistics can achieve the
function of the feature-level data augmentation. The domain-
aware mix-normalization (DMN) can be formulated by:

fa = My(9)

+ B8, deog, “4)

where ¢ is the randomly selected domain set, and M,,(¢) and
M, (o) represent the statistics for the ¢. For the DMN, we
firstly initialize a domain set S including all domains and
produce a random integer C', which is constrained between 1
and D —1 (i.e., [1, D —1]) in our method. Then we randomly
choose C' domains (i.e., ¢) from S and remove them from
S. For the selected domain set ¢, we compute the statistics
as Eqs. 5] and [6] and conduct the normalization as Eq. [d We
will continue to select C' domains from S until S is empty. It
is worth noting that, if the number of the remaining domains
is smaller than C', we will leverage all remaining domains to
compute the statistics for normalizing themselves. Specifically,
M, (¢) and M, (o) can be described as:

P H W
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where |¢| denotes the number of the selected domains. The
forward process of the proposed DMN is given in Algorithm|I]
Moreover, it is worth noting that there is only a pair of
statistics for evaluation in each DMN during testing, i.e., the
statistics of all random combinations are accumulated to a
pair of the mean and variance used for the evaluation, as the
operation in BN [24].

Remark. For the proposed DMN, we use it by replacing
all the original BN layers in the whole network. Particularly,
since each DMN is independent, the randomization appears not
only in each normalization but also between normalizations of
different layers. This way can bring more diversity of features
during training so as to promote the generalization to the
unseen domain, as validated in the further analysis of the
experimental section.

Besides, when using the DMN to train the model, we set
the maximum numbers of the randomly selected domains as
D — 1. If it is set as D (i.e., using the mean and variance
of all domains to normalize features during training), it could
cause slight overfitting to the source domains, because the
final statistics for testing are the expectation of all domains.
In other words, if all domains are selected together, this will
be equivalent to the raw batch normalization, which cannot
diversify features in the normalization layer. Therefore, this
could result in the overfitting to source domains. The related
results are given in the experiment.

Moreover, considering that the DMN requires the uniform
sampling for each domain during the training course, i.e.,
there is the same number of samples for each domain in a



batch, which is short of the randomization when compared
with the random sampling, i.e., we combine all samples from
all domains to a dataset and then randomly sample from the
combined dataset to generate each batch. Particularly, although
the random sampling scheme can bring the randomization
across different batches, it still utilizes the global statistics to
normalize all samples in each batch. Differently, our method
randomly produces the local statistics in each batch to normal-
ize the different samples, thus it could better prevent the model
from learning the fixed pattern, so as to alleviate the overfitting
to the seen source domains. In the experimental section, we
also verify that our method can produce a more robust model
than the random sampling scheme in the generalizable multi-
source person Re-ID task.

Particularly, our DMN is different from MetaBN [22]. The
original MetaBN mixes the original meta-test features and
the sampled features to diversify the the original meta-test
features, and then performs the batch normalization for the
mixed features. Differently, our method randomly mixes the
statistics of different domains, and then uses the statistics for
normalizing the original features. The advantage of our method
is that, all samples from different domains in each batch are
not normalized by the shared statistics as the conventional
batch normalization, thus it is beneficial for yielding diverse
features.

Algorithm 1 The forward process of mix-normalization (DMN)

1: Input: Feature f of all D x P samples in a batch.

2: Output: The normalized feature f.

3: Initialization: The domain set S is all D source domains.
4: Randomly produce the number of mixing domains as C.
5: while |S| # 0 do

6: if |S| =< C then

7: Set C' as |S].

8: end if

9:  Randomly select C' domains ¢ from the S.

10  Remove the selected C' domains (i.e., ¢) from the S.

—_

Compute the statistics (i.e., mean and variance) for the

selected C' domains as Egs. [5] and [6]

12:  Utilize the statistics to normalize all samples from the
selected C' domains as Eq. [

13: end while

B. Domain-aware Center Regularization

The proposed domain-aware mix-normalization can enhance
the diversity of features during training, thus we further uti-
lize domain-aware center regularization (DCR) [25] to better
learn the domain-invariant model using the diverse features.
Generally, the Maximum Mean Discrepancy (MMD) [51] can
be used to reduce domain shift between two domains. In
our task, there are available multiple domains in the training
process, thus the MMD cannot be directly employed to address
our issue. Therefore, we utilize the domain-aware center
regularization [25] to reduce the domain gap across different

domains, which can be defined as:

D P
der :ZZ”T’[dxp, :] _FHgv (7)

d=1p=1

where € RV*B is the feature representation of all samples

in a batch, and B indicates the dimension of the the features.
7 € R'*B denotes the mean of all features.

Remark. Tt is worth noting that the domain-aware center
regularization is merely effective when the domain-aware mix-
normalization is used. The main reason is that the original
model is easy to train due to the single pattern (i.e., using
the same mean and variance for all samples in a batch)
in the training stage. Since using the domain-aware mix-
normalization introduces the diverse features, it could need a
strong regularization to map all features into the same space,
so as to learn the domain-invariant model. We will report the
results in the experimental section.

C. The Overall Loss

During training, we employ the cross-entropy loss (i.e.,
L), the triplet loss (i.e., L.;) with hard mining sam-
pling [26] and the domain-aware center regularization (i.e.,
Lg.) to train the model. Particularly, the cross-entropy loss
and the triplet loss are the basic loss in the person Re-ID
community [52], [S3]. The overall loss for training the model
can be described as:

Loverall = Lcls + Ltri + )\dera (8)

where ) is the hyper-parameter to trade off the basic loss and
the domain-aware center regularization.

IV. EXPERIMENTS

In this part, we firstly introduce the experimental datasets
and settings in Section Then, we compare the proposed
method with the state-of-the-art generalizable Re-ID methods
in Section respectively. To validate the effectiveness of
various components in the proposed framework, we conduct
ablation studies in Section Lastly, we further analyze
the property of the proposed method in Section

A. Datasets and Experimental Settings

1) Datasets: We evaluate our approach on four large-scale
image datasets: Market1501 [54], DukeMTMC-reID [55],
MSMT17 [56] and CUHKO3-NP [57], [58]. Market1501
(Ma) contains 1,501 persons with 32,668 images from six
cameras. Among them, 12,936 images of 751 identities are
used as a training set. For evaluation, there are 3,368 and
19,732 images in the query set and the gallery set, respec-
tively. DukeMTMC-reID (D) has 1,404 persons from eight
cameras, with 16,522 training images, 2,228 query images,
and 17,661 gallery images. MSMT17 (Ms) is collected from
a 15-camera network deployed on campus. The training set
contains 32,621 images of 1,041 identities. For evaluation,
11,659 and 82,161 images are used as query and gallery
images, respectively. CUHKO03-NP (C) has an average of 4.8
images in each camera. The dataset provides both manually



labeled bounding boxes and DPM-detected bounding boxes.
On this dataset, there are 7,365 training images, and 1,400
images and 5, 332 images in query set and gallery set are used
in the testing stage. Particularly, we divide these four datasets
into two parts: three domains as source domains for training
and the other one as target domain for testing. We adopt the
recommended setting in [22].

In addition, we also train our method on more
datasets including Market1501, DukeMTMC-reID, CUHKO3,
CUHKO2 [59] and CUHK-SYSU [60], and test on two small-
scale datasets including PRID [61]] and VIPeR [62]. Partic-
ularly, the performances of these small RelD datasets are
evaluated on the average of 10 repeated random splits of
gallery and probe sets. For all datasets, we employ CMC (i.e.,
Cumulative Match Characteristic) accuracy and mAP (i.e.,
mean Average Precision) for Re-ID evaluation [54].

2) Implementation Details: In this experiment, we use
the ResNet-50 [63] and IBN-Net50 [64] pre-trained on Im-
ageNet [65]] to initialize the network parameters. In a batch,
the number of IDs and the number of images per person are set
as 16 and 4 to produce triplets for each domain, respectively.
The initial learning rate is 3.5 x 10~* and divided by 10
at the 30-th and 50-th epochs, respectively. The proposed
model is trained with the Adam optimizer in a total of 60
epochs. The size of the input image is 256 x 128. For data
augmentation, we perform random cropping, random flipping
and auto-argumentation [66]]. Besides, A in Eq. [§]is set as 0.2.
Particularly, we utilize the same setting for all experiments on
all datasets in this paper.

B. Comparison with State-of-the-art Methods

We compare our proposed method (i.e., MixNorm) with
some state-of-the-art methods as reported in Table |l} including
IBN-Net50 [64], QAConvs, [21], and ML [22]. IBN-Net50
carefully integrates Instance Normalization (IN) and Batch
Normalization (BN) as building blocks, where IN learns fea-
tures that are invariant to appearance changes, such as colors
and styles, while BN is essential for preserving content-related
information. This method remarkably enhances a CNN’s mod-
eling ability on one domain as well as its generalization ca-
pacity on another domain without finetuning. QAConvs treats
image matching as finding local correspondences in feature
maps, and constructs query-adaptive convolution kernels on
the fly to achieve local matching. M3L utilizes a meta-
learning strategy to simulate the train-test process of domain
generalization for learning more generalizable models. As seen
in Table [, our MixNorm outperforms all other methods on
Rank-1 and mAP. For example, in the “D+C+Ms—Ma” task,
our method increases M3L by +2.2% (54.7 vs. 52.5) and
+3.1% (81.4 vs. 78.3) on mAP and Rank-1 when using IBN-
Net50 as the backbone. This mainly owes to the effectiveness
of the domain-aware mix-normalization, which can bring
diverse features to prevent the model’s overfitting to the source
domains. Moreover, using domain-aware center regularization
can better exploit these diverse features to learn the domain-
invariant model. Besides, although the performance of our
method is slightly poorer than ML when ResNet-50 is used

as the backbone in the “Ma+D+Ms—C” task, our method has
better results than M3L based on IBN-Net50. Particularly, in
this task, each component of our method is also effective, as
shown in the below ablation study.

TABLE I
EXPERIMENTAL RESULTS ON FOUR LARGE-SCALE DATASETS, INCLUDING
MARKET1501 (MA), DUKEMTMC-REID (D), MSMT17 (MsS), AND
CUHKO03 (C). “D+C+MS—MA” INDICATES THAT THE MODEL IS
TRAINED ON D, C AND MS, AND TESTED ON MA. THE BOLD DENOTES
THE BEST RESULT.

D+C+Ms—Ma Ma+C+Ms—D

Method mMAP  Rank-1 | mAP  Rank-
IBN-Net50 [64] 43.0 73.4 45.7 64.9
QAConvsqg [21]] 39.5 68.6 43.4 64.9
MB3L(ResNet-50) [22] 51.1 76.5 48.2 67.1
MB3L(IBN-Net50) [22] 52.5 78.3 48.8 67.2
MixNorm (ResNet-50) 514 78.9 49.9 70.8
MixNorm (IBN-Net50) 54.7 814 523 70.6

Ma+D+C—Ms Ma+D+Ms—C

Method mAP  Rank-1 | mAP  Rank-1
IBN-Net50 [64] 17.0 43.9 21.3 21.6
QAConvsg [21]] 10.0 29.9 19.2 229
M3L(ResNet-50) [22] 13.1 32.0 30.9 31.9
MB3L(IBN-Net50) [22] 15.4 37.1 31.4 31.6
MixNorm (ResNet-50) 19.4 47.2 29.0 29.6
MixNorm (IBN-Net50) 23.1 52.2 323 324

In addition, our method is also compared with some other
methods on small-scale datasets when using more datasets to
train the model, and these methods include Agg Align [67],
Reptile [68], CrossGrad [69], Agg PCB [70], MLDG [71],
PPA [72], DIMN [29], SNR [28] and RaMoE [23]]. The exper-
imental results are given in Table [[I} For example, DIMN [29]]
learns a mapping between a person image and its identity
classifier and follows a meta-learning pipeline to sample a
subset of source domain training tasks during each training
episode. SNR [28] distills identity-relevant features from the
removed information conducted by instance normalization
and restitute it to the network to ensure high discrimina-
tion. RaMoE [23]] adopts an effective voting-based mixture
mechanism to dynamically leverage the diverse characteristics
of source domains to improve the model’s generalization.
As seen in Table [[I our method can basically obtain better
performance than other methods when using the IBN-Net50
as the backbone. For example, when compared with SNR, our
method improve +7.8% (74.3 vs. 66.5) on mAP. It is worth
noting that, SNR uses the IN to remove the style information,
thus this is a fair comparison when we use IBN-Net50 as
the backbone. Moreover, compared with the baseline, using
our method can achieve a great improvement. For example,
on PRID, two baselines (i.e., IBN-Net50 and ResNet50) can
be gained by +21.6% (74.3 vs. 52.7) and +11.8% (59.1
vs. 47.3) on mAP, thus this validates the efficacy of the
proposed method when there are more source domains during
the training course.

We perform the comparison between MetaBIN [30] and
our method. It is worth noting that MetaBIN utilize more
data to train the model when compared with our method. For
example, when using the Market1501 dataset during training,
we only employ the training set of this dataset (i.e., 751 IDs).
Differently, MetaBIN [30] uses not only the training set but



TABLE II
EXPERIMENTAL RESULTS ON TWO SMALL-SCALE DATASETS. THE MODEL
IS TRAINED ON FIVE DATASETS INCLUDING MARKET1501 (MA),
DUKEMTMC-REID, CUHK03, CUHK02 AND CUHK-SYSU. ¥
DENOTES THAT THE MODEL IS TRAINED USING MORE DATA AS IN [30].

PRID VIPeR
Method mAP  Rank-1 | mAP  Rank-1
Agg Align 255 172 52.9 428
Reptile 26.9 17.9 31.3 22.1
CrossGrad 28.2 18.8 30.4 20.9
Agg PCB 32.0 21.5 45.4 38.1
MLDG 35.4 24.0 33.5 23.5
PPA [72] 453 31.9 54.5 45.1
DIMN 52.0 39.2 60.1 51.2
SNR 66.5 52.1 61.3 52.9
RaMoE [23] 67.3 577 64.6 56.6
Baseline 47.3 37.2 49.8 40.2
MixNorm (ResNet-50) | 59.1 492 60.6 50.8
Baseline 52.7 42.6 57.9 47.7
MixNorm (IBN-Net50) | 74.3 65.2 66.6 56.4
MetaBINT [30] 810 742 | 686 599
MixNorm 78.4 71.0 70.2 61.7

also query set and gallery set (i.e., 1501 IDs). Similarly, on
other training set, MetaBIN also uses all samples (i.e., training
set and testing set) to train the model. Besides, to conduct a fair
comparison, we take IBN-Net50 (i.e., the normalization layer
consists of instance normalization and batch normalization
based on ResNet-50) as the backbone because MetaBIN also
includes instance normalization and the batch normalization
based on ResNet-50. In this experiment, we leverage the same
training data to train our model as MetaBIN, and T denotes
that the model is trained using more data in Table[[l] As seen,
when using more data to train the model, the performance of
our method can be further increased. Besides, our method can
obtain better performance compared with MetaBIN on VIPeR.
Moreover, despite our method is inferior to MetaBIN on PRID,
our method can indeed achieve a large improvement compared
with the baseline.

C. Ablation Studies

In this part, we conduct the ablation study to verify the
effectiveness of each component in our method. Our method
mainly consists of domain-aware mix-normalization (DMN)
and domain-aware center regularization (DCR). Table
shows the experimental results when we employ ResNet-50
as the backbone. As seen, when adding the DMN into the
baseline, the baseline can be gained in multiple different tasks.
For example, in the “D+C+Ms—Ma” task, using the DMN can
increase the baseline by +8.1% (48.5 vs. 40.4) and +7.3%
(76.9 vs. 69.6) on mAP and Rank-1. This shows that using the
DMN to enrich the diversity of the feature can indeed alleviate
the model’s overfitting and boost the generalization capability
of the model to the unseen domain. Moreover, using DCR
can further improve the model’s robustness. For example, in
the “D+C+Ms—Ma” and “Ma+D+Ms—C” tasks, adding the
DCR can bring the +2.9% (51.4 vs. 48.5) and +2.3% (29.0 vs.
26.7) improvements on mAP, thus it confirms the effectiveness
of DCR in our method, which can better utilize the diverse
features from the DMN to learn the domain-invariant model.

TABLE III
ABLATION STUDY WHEN RESNET-50 IS UTILIZED AS THE BACKBONE.

mAP  Rank-1 Rank-5 Rank-10
Module D+C+Ms—Ma
Baseline 40.4 69.6 83.8 87.9
Baseline+ DMN 48.5 76.9 88.8 92.1
Baseline+DMN+DCR 514 78.9 90.2 93.3
Ma+C+Ms—D
Baseline 44.2 64.0 77.0 81.5
Baseline+ DMN 48.4 67.9 80.4 83.7
Baseline+ DMN+DCR | 49.9 70.8 81.7 85.0
Ma+D+Ms—C
Baseline 24.0 24.4 41.7 51.4
Baseline+ DMN 26.7 26.9 45.5 56.2
Baseline+DMN+DCR | 29.0 29.6 47.2 58.1

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

DMN R DMN +DCR

(a) D+C+Ms—Ma (b) Ma+D+Ms—C

Fig. 2. Ablation study when IBN-Net50 is used as the backbone.

Besides, we also validate the efficacy of each component
on IBN-Net50, as reported in Fig. [2] As seen in all reported
tasks, “Baseline+DMN” has better results than the “Baseline”.
Moreover, adding the DCR (i.e., “Baseline+DMN+DCR”) can
further improve the generalization capability to the unseen
domains. For example, in the “Ma+D+Ms—C” task, DMN can
increase the baseline by +8.4% (29.7 vs. 21.3), while using
the DCR can further gain +2.6% (32.3 vs. 29.7) on mAP. This
experiment deeply confirms the value of each component in
our method.

D. Further Analysis

Hyper-parameter analysis. We perform the experiment to
evaluate the sensitivity of the hyper-parameter X in Eq. [8] The
experimental results are shown in Fig. EI As seen, when \ is
set as 0.2, the best performance can be obtained. If using
the smaller )\, the diverse features from the domain-aware
mix-normalization could not be sufficiently exploited. If we
use the larger A, the model could more focus on reducing
the domain gap across different source domains, thus it might
slightly destroy the discriminative information of the learned
features. According to the results in Fig. [3] we set A as 0.2 in

= mAP m Rank-1

2 1.5 1 0.4 0.3 0.2 0.1 0

Fig. 3. The impact of A\ of Eq. |3_§| in the “D+C+Ms—Ma” task. Note that
the red is the best result.
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(a) D+C+Ms—Ma (b) Ma+C+Ms—D

Fig. 4. The experimental results of domain-aware center regularization (DCR)
used on different baselines in two tasks. Best viewed in color.

all our experiments.

More experiments on DCR. Domain-aware center regu-
larization (DCR) is utilized to better train the model when the
DMN module produces diverse features. Here we also adopt
it to the original baseline (i.e., the raw ResNet50), and the
experimental results are displayed in Fig. fi] As seen, if we
directly use DCR on the original baseline, the performance
will obviously decrease. For example, in the “D+C+Ms—Ma”
task, when leveraging the DCR on the baseline, the result
will drop by —4.5% (35.9 vs. 40.4) on mAP. Considering
the pattern in the original baseline is fixed, which does not
need to focus on the domain gap, using the DCR could have a
negative effect on the learning of the discriminative features.
On the contrary, using the DCR on the baseline with DMN
will obtain an obvious improvement.

Comparison between DCR and center loss. The center
loss (CL) in [73]] simultaneously learns a center for deep
features of each class and penalizes the distances between
the deep features and their corresponding class centers, which
can be also utilized to reduce the domain gap across different
domains in the generalizable person Re-ID. In this experiment,
we replace the domain-aware center regularization (DCR) by
the center loss in our method. Similar to [23]], we set A in Eq. @
as 5 x 10* when using the center loss. The experimental
results are reported in Table [Vl As seen, using the DCR
can obtain better performance than CL. For example, in the
“Ma+C+Ms—D” task, the DCR exceeds CL by +2.2% (49.9
vs. 47.7) on mAP. This mainly thanks to that, this method aims
to pull each domain close to the center of all domains in each
batch, which can further promote the power of our DMN, thus
it can better mitigate the domain gap across different domains.

TABLE IV
COMPARISON BETWEEN DCR AND CENTER LOSS (CL) [73].

mAP Rank-1 Rank-5 Rank-10

Method D+C+Ms—Ma

CL 49.2 77.2 88.8 924

DCR 514 78.9 90.2 93.3
Ma+C+Ms—D

CL 47.7 67.7 79.6 83.7

DCR 49.9 70.8 81.7 85.0
Ma+D+Ms—C

CL 26.9 27.1 44.8 554

DCR 29.0 29.6 47.2 58.1

The effectiveness of the different domain combinations
(DDC) for each DMN at each iteration. During training,

each proposed domain-aware mix-normalization (DMN) in-
dependently conducts the normalization operation, thus the
domain’s combination in Egs. 5] and [f] is different, i.e., the
randomly selected domain set ¢ could be different in each
DMN. Here we also conduct the experiment when using the
same domain combination for all DMN at each iteration, as
reported in Table [V] As seen, the performance of using the
same domain combination for all DMN at each iteration will
decrease in general. For example, in the “Ma+D+Ms—C” task,
the result will drop by —2.1% (26.9 vs. 29.0) and —1.5%
(28.1 vs. 29.6) on mAP and Rank-1. This main reason is
that the randomization appears not only in each DMN but
also inter the different DMNs when we adopt the independent
DMN. Therefore, using the DDC scheme can further boost the
diversity of features, so that it can enhance the generalization
capability of the model to the unseen domain.

TABLE V
THE EXPERIMENTAL RESULTS OF THE DIFFERENT COMBINATIONS (DDC)
AND THE SAME DOMAIN COMBINATION FOR EACH DMN AT EACH
ITERATION DURING TRAINING

Using DDC (Y/N) | mAP  Rank-1 Rank-5 Rank-10

D+C+Ms—Ma

X 49.2 77.6 88.4 92.2

v 514 78.9 90.2 93.3
Ma+C+Ms—D

X 49.2 68.2 81.0 83.9

v 49.9 70.8 81.7 85.0
Ma+D+C—Ms

X 19.1 46.3 60.2 65.8

v 194 47.2 60.0 65.4
Ma+D+Ms—C

X 26.9 28.1 45.1 54.3

v 29.0 29.6 47.2 58.1

Analysis of the number of randomly selected domains
in DMN. In our experiment, we observe that, if the maximum
number of randomly selected domains in domain-aware mix-
normalization (DMN) is equal to the number of all source
domains, the performance will decrease, as shown in Tablem
As observed, when setting the maximum domain number
as D, the mAP and Rank-1,5,10 will slightly drop in the
“Ma+C+Ms—D” task. This could be because the final statis-
tics for testing accumulate the statistics of all domains, thus
if using the statistics of all domains to normalize the features
in the training stage, the model could be mildly overfitting
to source domains. Therefore, in all experiments, we set the
maximum number of randomly selected domains as D — 1.

TABLE VI
EXPERIMENTAL RESULTS WHEN THE MAXIMUM NUMBER OF RANDOMLY
SELECTED DOMAINS (MNRSD) IN DMN IS EQUAL TO THE NUMBER OF
ALL SOURCE DOMAINS. NOTE THAT D IS THE TOTAL NUMBER OF SOURCE

DOMAINS.

mAP  Rank-1 Rank-5  Rank-10

MNRSD D+C+Ms—Ma
D 49.9 77.9 89.7 92.0
D-1 514 78.9 90.2 93.3

Ma+C+Ms—D
D 49.3 69.1 80.6 84.9
D-1 49.9 70.8 81.7 85.0

Analysis of different sampling schemes. Our method



is based on the uniform sampling (US) scheme, i.e., we
randomly select the same number of samples for all domains
to generate each batch in the training stage. As mentioned
in Section [ it could result in the model’s overfitting to
source domains due to the fixed pattern of the statistics.
To further confirm the effectiveness of our method, we also
perform the random sampling (RS) scheme during training,
i.e., we first combine all domains into a set, and then randomly
select IDs and samples to generate a batch. Particularly, the
batch size of RS is the same as US, and all experimental
setting is also consistent. The results are reported in Table
As seen, compared with “US(Baseline)”, “RS(Baseline)” can
yield better results due to its randomness across different
batches. However, the randomness is limited because the
random sampling scheme still utilizes the same statistics to
normalize all samples in a batch. On the contrary, our method
randomly combines different domains to generate the local
statistics to normalize the samples in each batch, which can
produce diverse features to reduce the model’s overfitting and
enhance the generalization capability of the model to the
unseen domain. As shown in Table m our method (i.e.,
“US(MixNorm)”) significantly outperforms the random sam-
pling scheme in all tasks. Therefore, this experiment further
verifies the effectiveness of our method.

TABLE VII
EXPERIMENTAL RESULTS OF DIFFERENT SAMPLING METHODS. NOTE
THAT RS AND US INDICATE THE RANDOM SAMPLING AND UNIFORM
SAMPLING, RESPECTIVELY.

mAP  Rank-1 Rank-5 Rank-10
Method D+C+Ms—Ma
RS (Baseline) 44.5 72.9 85.8 89.6
US (Baseline) 40.4 69.6 83.8 87.9
US (MixNorm) | 51.4 78.9 90.2 93.3
Ma+C+Ms—D
RS (Baseline) 46.1 65.2 79.1 83.0
US (Baseline) 44.2 64.0 77.0 81.5
US (MixNorm) 49.9 70.8 81.7 85.0
Ma+D+C—Ms
RS (Baseline) 16.1 41.2 54.9 61.2
US (Baseline) 14.7 39.6 53.9 59.5
US (MixNorm) 194 47.2 60.0 65.4
Ma+D+Ms—C
RS (Baseline) 26.0 26.2 43.6 54.1
US (Baseline) 24.0 24.4 41.7 51.4
US (MixNorm) | 29.0 29.6 47.2 58.1

Comparison between our MixNorm and MixStyle.
MixStyle [44] is developed to tackle the domain generalization
issue from the data augmentation in the feature-level, which
mixes the style of different images to generate the style to
produce the diverse features. We conduct a single experiment
to compare it with our method, as displayed in Table In
this experiment, we use the MixStyle with domain information
to mix different styles, i.e., mixing samples from different
domains to form the new style, and insert the module in the
back of Block-1,2,3 of ResNet50. According to the experi-
mental results in Table we observe that our MixNorm
has better performance than MixStyle in all tasks, e.g., in
the “D+C+Ms—Ma” task, MixNorm exceeds the MixStyle
by +9.1% (51.4 vs. 42.3) on mAP. This mainly owes to the
effectiveness of domain-aware mix-moralization and domain-

aware center regularization in our MixNorm.

TABLE VIII
COMPARISON BETWEEN OUR MIXNORM AND MIXSTYLE [44].

mAP  Rank-1 Rank-5  Rank-10
Method D+C+Ms—Ma
MixStyle [44] 423 71.5 84.9 89.1
MixNorm (ours) 514 78.9 90.2 93.3
Ma+C+Ms—D
MixStyle [44] 44.8 65.1 78.5 81.6
MixNorm (ours) | 49.9 70.8 81.7 85.0
Ma+D+C—Ms
MixStyle [44] 16.4 422 55.9 61.7
MixNorm (ours) | 19.4 47.2 60.0 65.4
Ma+D+Ms—C
MixStyle [44] 24.8 25.1 429 53.1
MixNorm (ours) | 29.0 29.6 47.2 58.1

Evaluation on source domains. In this part, to validate
the effectiveness of our method on alleviating the overfitting
issue, we compare our method with the baseline on the source
domains, as shown in Table [X] As seen, our method has
poorer performance than the baseline on all source domains
of all tasks. Moreover, we combine the above analysis and
experiment (i.e., our method can significantly exceed the
baseline on the unseen domain in all tasks), thus this confirms
the proposed method can effectively mitigate the overfitting
to the source domains. For example, in the “D+Ms+C—Ma”
task, the mAP of our method improves the baseline by +11.0%
(51.4 vs. 40.4) on the unseen domain (as shown in Table [[LI}),
while the mAP of our method decreases by —4.2% (65.4 vs.
69.6) on the source domain “DukeMTMC-reID”. Therefore,
this validates that our method can mitigate the overfitting issue.

TABLE IX
EXPERIMENTAL RESULTS ON SOURCE DOMAINS.

Method mAP  Rank-1 [ mAP  Rank-1 | mAP  Rank-1
D+Ms+C—Ma
Test: D Test: Ms Test: C
Baseline 69.6 83.7 45.3 73.3 56.1 57.5
MixNorm | 65.4 81.0 43.1 73.1 45.5 45.3
Ma+Ms+C—D
Test: Ma Test: Ms Test: C
Baseline 79.6 92.2 45.5 73.5 58.8 60.9
MixNorm | 76.5 91.7 42.8 72.4 50.3 51.7
Ma+D+C—Ms
Test: Ma Test: D Test: C
Baseline 79.8 92.2 69.0 83.8 58.2 60.4
MixNorm | 76.9 92.0 66.1 82.5 48.3 48.8
Ma+D+Ms—C
Test: Ma Test: D Test: Ms
Baseline 80.4 92.1 71.8 84.9 472 74.7
MixNorm | 76.6 91.5 67.4 82.4 429 72.1

Visualization of the feature distribution. In Fig. 5] we
visualize the feature distribution on source domains. As ob-
served in this figure, the features of different domains from the
baseline are scattered in different regions, while our method
obviously tends to mix all the source domains into the same
region, which validates that our method can well learn the
domain-invariant features so as to capture the generalizable
model to the unseen domain.



(a) Baseline (D+Ms+C) (b) MixNorm (D+Ms+C)

(c) Baseline (Ma+Ms+C) (d) MixNorm (Ma+Ms+C)

Fig. 5. Visualization of the features via t-SNE [74] on source domains.
(a) and (b) are the visualization of feature representations from the model
trained on DukeMTMC-reID, MSMT17 and CUHKO3, and (c) and (d) are the
visualization of feature representations from the model trained on Market1501,
MSMT17 and CUHKO3. Different colors denote different domains.

Evaluation on DMN in different layers. In this part, we
perform the experiment when using our DMN in different
layers as reported in Table In this table, “All” indicates
replacing all BNs with DMN. As observed in this table, using
the DMN in each layer can bring the improvement compared
with the baseline. Particularly, when we use DMN in all layers,
the best result can be obtained.

TABLE X
THE EXPERIMENTAL OF USING THE PROPOSED DMN IN DIFFERENT
LAYERS.
mAP  Rank-1 Rank-5 Rank-10

Layer D+C+Ms—Ma
Baseline 40.4 69.6 83.8 87.9
layer-1 44.1 72.2 85.7 90.1
layer-2 43.6 72.9 86.5 90.3
layer-3 46.0 75.2 87.7 91.2
layer-4 46.6 73.8 86.8 90.5
All (ours) | 51.4 78.9 90.2 93.3

Ma+C+Ms—D
Baseline 44.2 64.0 77.0 81.5
layer-1 47.7 68.2 79.4 83.6
layer-2 46.5 66.7 80.3 83.6
layer-3 46.6 66.9 79.3 84.2
layer-4 47.6 68.1 79.3 83.4
All (ours) | 49.9 70.8 81.7 85.0

Ma+D+C—Ms
Baseline 14.7 39.6 53.9 59.5
layer-1 16.3 424 552 60.9
layer-2 16.6 42.3 55.9 61.6
layer-3 16.6 429 56.2 62.1
layer-4 16.1 42.7 56.2 61.7
All (ours) | 19.4 47.2 60.0 65.4

Further analysis of DMN. To further analyze the property
of DMN, we always set C' in Algorithm [I] as 1 as displayed
in Table XTI As observed in this table, when C' is set as
1, the proposed method can outperform the baseline clearly,
which is attributed to the diverse statistics in a batch (i.e.,

each domain is normalized by the the statistics of the own
domain instead of shared statistics of all domains). Besides,
if by randomly combining different domains to normalize
themselves, our method can achieve the better performance
because more diverse features are generated.

TABLE XI
THE EXPERIMENTAL RESULTS WITH DIFFERENT C' IN ALGORITHM[I]OF
OUR MAIN PAPER.

mAP  Rank-1 Rank-5 Rank-10
¢ D+C+Ms—Ma
Baseline 40.4 69.6 83.8 87.9
1 48.4 76.4 89.2 92.8
Ours 51.4 78.9 90.2 93.3
Ma+C+Ms—D
Baseline 44.2 64.0 77.0 81.5
1 47.0 67.2 79.2 83.0
Ours 49.9 70.8 81.7 85.0

V. CONCLUSION

In this paper, we aim to tackle the generalizable multi-
source person Re-ID task from the data augmentation view.
Different from the existing methods, we propose a novel
domain-aware mix-normalization (DMN) method to achieve
data augmentation in the feature level, which can generate
diverse features to prevent the overfitting of the model to
source domains. Furthermore, we employ a domain-aware cen-
ter regularization (DCR) for better using the diverse features
from DMN, which can map all features into the same space,
thus it can enforce to learn the domain-invariant feature rep-
resentations. We conduct the experiment on multiple datasets,
which demonstrates the effectiveness of the proposed method.
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