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An underwater image quality assessment metric

Pengfei Guo, Hantao Liu, Delu Zeng, Tao Xiang, Leida Li, and Ke Gu

Various image enhancement algorithms are adopted to im-
prove underwater images that often suffer from visual distortions.
It is critical to assess the output quality of underwater images
undergoing enhancement algorithms, and use the results to
optimise underwater imaging systems. In our previous study,
we created a benchmark for quality assessment of underwater
image enhancement via subjective experiments. Building on the
benchmark, this paper proposes a new objective metric that can
automatically assess the output quality of image enhancement,
namely UWEQM. By characterising specific underwater physics
and relevant properties of the human visual system, image quality
attributes are computed and combined to yield an overall metric.
Experimental results show that the proposed UWEQM metric
yields good performance in predicting image quality as perceived
by human subjects.

Index Terms—Underwater, image quality, enhancement, hu-
man visual system, objective metric.

I. INTRODUCTION

THE acquisition of high quality images plays an important

role in marine industry [1]–[5] and other maritime activi-

ties [6]–[11]. However, the complexity of underwater environ-

ment poses many challenges to image acquisition. First, water

absorbs different wavelengths of light at different degrees [12];

and underwater images often suffer from greenish or bluish

color cast [13]. Second, object edges and details are often

blurred due to the scattering of light [14]. Third, the backward

scattering of light by particles can cause the effect of low

contrast [15]. Therefore, many algorithms have been developed

to improve the quality of underwater images [14], [16]–[22].

The underwater image enhancement algorithms can be cat-

egorized into image formation model-based (IFM-based) and

image formation model-free (IFM-free) approaches [23]. The

IFM-based methods improve the quality of underwater images

by estimating the optical properties of underwater imaging

and recovering color, sharpness and contrast [14], [17], [18],

P. Guo is with the School of Computational Science, Zhongkai Univer-
sity of Agriculture and Engineering, Guangzhou, 510225 China, and also
with the School of Mathematics, South China University of Technology,
Guangzhou,510641, China (e-mail: Guopfzhku@163.com).

H. Liu is with the School of Computer Science and Informat-
ics, Cardiff University, Cardiff, CF24 3AA United Kingdom (e-mail:
LiuH35@cardiff.ac.uk)(corresponding author).

D. Zeng is with the School of Mathematics, South China University of
Technology, Guangzhou,510641, China (e-mail: dlzeng@scut.edu.cn).

T. Xiang is with the College of Computer Science, Chongqing University,
Chongqing 400044, China (e-mail: txiang@cqu.edu.cn).

L. Li is with the School of Artificial Intelligence, Xidian University, Xi’an
710071, China (e-mail: ldli@xidian.edu.cn).

K. Gu is with Faculty of Information Technology, Beijing University of
Technology, Beijing 100124, China (e-mail: guke.doctor@gmail.com)

This work is funded in part by Guangdong basic and applied basic research
foundation (Grant No. 2020A1515110958), and the Fundamental Research
Program 401 of Guangdong, China (Grant No. 2020B1515310023).

[22], [24]; and the IFM-free methods attempt to correct the

color and details of underwater images by re-distributing

their intensity values [16], [19], [20]. Assessing the output

image quality of these enhancement algorithms remains an

academic challenge [25], [26]. The first challenge lies in the

lack of subjective study on the perceived quality of underwater

images undergoing enhancement algorithms or processes. The

second challenge is to build a reliable algorithm to predict

image quality in close agreement with human judgements.

In our previous study [27], a benchmark was created for

quality assessment of underwater images undergoing various

enhancement algorithms. The ground truth of perceived image

quality revealed the way human viewers judge the output im-

age quality of these enhancement algorithms. When properly

conducted, subjective evaluation is the most reliable means of

measuring perceived image quality; however, it is cumbersome

and impractical in many circumstances. A more realistic way

to measure image quality is to develop an objective metric,

which can automatically assess perceived quality.

Image quality assessment (IQA) algorithms can be divided

into full-reference (FR), reduced-reference (RR), and no-

reference (NR) approaches [28]. The FR IQA algorithms use

the whole information of the reference image to evaluate the

quality of the test image [29], [30]. The RR IQA methods use

partial information of the reference image to assess the quality

of the test image [31], [32]. NR IQA methods rely on the test

image only and extract the IQA features for the measure of

image quality [33]–[38].

It should be noted that in the context of image enhancement,

a pristine reference image of “perfect” quality does not exist,

therefore, the objective IQA metrics must be available in the

no-reference (NR) framework. In the literature, developing

an NR metric has been the most challenging task in the

image quality research community, mainly due to our lack

of knowledge on the human visual system (HVS) [39]–

[41]. Some successful NR metrics have been developed and

proven effective for specific applications with specific visual

distortions [33]–[35]. These metrics, however, are generally

challenged when dealing with the complexity and diversity

in natural content. For underwater images, it is known that

the image statistics, due to e.g., light attenuation, scattering

and reflection, are different from the ordinary natural scene

statistics [27]. This makes the problem of developing an NR

IQA metric even more challenging, which is to be investigated

in this paper.

The contributions of this paper are:

• First, we exploit the image formation model [42]–[44],

which describes the processes of underwater optical

imaging. We propose to utilize the restoration model

parameters that represent the physical optics information
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(a) (b) (c) (d) (e) (f)

Fig. 1. Illustration of an original underwater image (a) and results (b)-(f) of five image enhancement algorithms, HE, DS, IF, UDCP and NLD in the UEIQA
database [27]. (a) represents the original image with MOS (mean opinion score) = 1.6161, (b) represents the result of HE with MOS = 4.3007, (c) represents
the result of DS with MOS = 2.2353, (d) represents the result of IF with MOS = 5.8368, (e) represents the result of UDCP with MOS = 4.0820, and (f)
represents the result of NLD with MOS = 6.2122.

of underwater imaging to build relevant features for

image quality assessment.

• Second, we investigate the properties of the human visual

system (HVS), and build sophisticated image quality

descriptors for underwater images. More specifically, we

construct a new feature representation (i.e., Michaelson-

like) to assess the contrast of underwater images, which

can adequately reveal the changes of contrast under

the low light environment; a new feature representation

combining saliency and local binary patterns for the

assessment of texture quality of underwater images; and

a new feature representation based on color correlograms

to capture the color properties of underwater images.

• Third, the above underwater-specific and HVS-based IQA

features are integrated into a single metric. We thoroughly

analyse the selection and individual contribution of IQA

features, and compare our proposed metric to existing

state-of-the-art IQA metrics, including general-purpose,

underwater-specific and deep learning-based metrics. Our

proposed metric demonstrates superior performance in as-

sessing output quality of underwater image enhancement.

II. PROBLEM DEFINITIONS AND CHALLENGES

We briefly describe the UEIQA database as the benchmark

for measuring the output quality of underwater image en-

hancement. Also, we analyse the limitations and challenges of

objective quality measurement for this particular application.

A. The benchmark: subjective measure of output quality of

underwater image enhancement

We built a benchmark database for Underwater Enhance-

ment Image Quality Assessment (UEIQA) [27]. This database

contained 40 different underwater scenes with a resolution of

1280 × 720 pixels; and each scene yielded the results of five

enhancement algorithms, including Contrast Limited Adaptive

Histogram Equalization (HE) [16], Decorrelation Stretch (DS)

[19], Image Fusion (IF) [20], Underwater Dark Channel Prior

(UDCP) [18], and Non-local Dehazing (NLD) [45]. Hence,

the UEIQA benchmark consists of 40 originally acquired

images and 200 algorithmically enhanced images. A fully

controlled perception experiment was conducted, where each

image was evaluated by 18 subjects using a single-stimulus

method as prescribed in [46]. The mean opinion score (MOS)

of each stimulus was computed as the most reliable measure

of perceived image quality [29]. Fig.1 illustrates an original

underwater image and results of five image enhancement

algorithms in the UEIQA database; and the perceived quality

(i.e., MOS) resulted from the perception study.

B. Limitations and challenges: objective measure of output

quality of underwater image enhancement

As mentioned in Section I, the IQA metrics used for the

application of underwater image enhancement must be in a

no-reference (NR) framework. Now, we investigate the exist-

ing NR metrics, including general-purpose and underwater-

specific metrics, and analyse the limitations and challenges.

1) General-purpose image quality metrics

There are several no-reference (NR) IQA metrics that have

proven effective for general-purpose applications, including

BRISQUE [35], NIQE [34], BLIINDS II [47], SSEQ [48],

LPC [49]. These general-purpose NR metrics are based on

measuring structural changes when images undergoing certain

distortion types (e.g., BRISQUE, SSEQ, and LPC) or cap-

turing universal statistical information inspired by the human

visual system (e.g., NIQE and BLIINDS II). However, it is

unknown whether these general-purpose metrics are helpful

for measuring the output quality of underwater image enhance-

ment. To this end, we evaluate these metrics on the UEIQA

benchmark. The performance (i.e., Spearman rank order cor-

relation coefficient (SROCC)) of BRISQUE, NIQE, BLIINDS

II, SSEQ, and LPC metrics on the UEIQA benchmark is 0.40,

0.24, 0.27, 0.18, and 0.75, respectively (note the complete

results of performance comparison can be found in Table

IV). All metrics show poor or unsatisfactory correlation (e.g.,

SROCC<0.8) with subjective quality, suggesting that these

general-purpose NR metrics are useless for our application.

There are two possible reasons for the observed poor

performance: (1) The above-mentioned IQA metrics have been

designed to handle natural scenes, which exhibit different

image characteristics than underwater images. Fig. 2 illustrates

the histograms of an underwater image and an image of natural

scene. It can be seen that the intensities of former concentrate

on a narrow range of the histogram, whereas the histogram

of latter distributes in a wider range of intensity. (2) These

general-purpose IQA metrics have been designed to measure

conventional signal distortions caused by compression and

transmission. They may not necessarily capture the properties

of the unique distortions caused by underwater environment,

such as color cast caused by light attenuation in water [27].

More importantly, distortions that are inevitably introduced

by an underwater image enhancement process/algorithm could

complicate the inherent distortions [27]. Therefore, a dedicated
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IQA metric for underwater images undergoing enhancement is

desirable.

(a) (b)

(c) (d)

Fig. 2. Illustration of the histograms of an underwater image (a) and an image
of natural scene (b). The intensities of former concentrate on a narrow range
of the histogram (c) , whereas the histogram (d) of latter distributes in a wider
range of intensity.

2) Underwater-specific image quality metrics

Research has been undertaken to develop dedicated IQA

metrics for underwater images. In 2014, Yang et. al. first

reported an underwater image/video quality evaluator which

included a discriminator of underwater environment based on

the log-contrast power spectrum. This block-based metric cal-

culated a weighted-average of gray-scale contrast, the global

brightness and block average gradient [39]. Then, in 2015,

Yang et. al. conducted a series of experiments to measure un-

derwater image quality subjectively and objectively, and pro-

posed an Underwater Color Image Quality Evaluator (UCIQE)

[40] by transferring an RGB image to CIELab color space

and linearly combining the chroma, contrast, and saturation.

This metric aims to evaluate the color and sharpness factors of

underwater images. Panetta et. al. presented a new underwater

IQA framework [50] inspired by the human visual system. The

factors that cause low quality underwater images such as light

attenuation and scattering effects were explicitly considered;

and the color-cast, blurring and stereoscopic distortions were

described by three individual metrics i.e., the Underwater

Image Color Measure (UICM), Underwater Image Sharpness

Measure (UISM), and Underwater Image Contrast Measure

(UIConM), respectively. An overall metric, Underwater Image

Quality Metric (UIQM) is a linear combination of UICM,

UISM, and UIConM.

Now, we evaluate the underwater-specific IQA metrics on

the UEIQA benchmark. The performance (i.e., Spearman

rank order correlation coefficient (SROCC)) of UICM, UISM,

UIConM, UIQM, and UCIQE metrics is 0.69, 0.49, 0.77,

0.29, and 0.57, respectively (note the complete results of

performance comparison can be found in Table IV). It can

be seen that these metrics that include underwater-specific

features still show limited capabilities (e.g., SROCC<0.8) in

assessing the output quality of underwater enhancement. The

possible reasons are (1) Some methods are based on the his-

togram of features, which intuitively represents the statistical

characteristics of underwater images. However, local infor-

mation is not sufficiently reflected by these histogram-based

methods. Some methods include the human visual system

(HVS) properties, e.g., by measuring the perceptual preference

of color, sharpness and contrast. These methods adopt simple

HVS features and combine these features using a simple

linear model, which however, neglect the way (non-linear

behaviour) humans perceive the overall quality of images. (2)

Moreover, image enhancement algorithms applied to under-

water images often adopt physical optics prior information

for signal restoration. The output quality of underwater image

enhancement is not only related to the inherent distortions

caused by underwater environment but also related to the

signal distortions induced by the enhancement algorithms.

Therefore, for the problem of assessing the output quality

of image enhancement, the unique challenges regarding what

makes an enhanced image of “better” quality and how to

measure the output quality are largely unsolved and are to

be investigated in this paper.

III. PROPOSED METHOD

Since our goal is to evaluate the output quality of underwater

image enhancement and there is no reference image of “ideal”

quality, we consider image attributes that explicitly reflect

underwater optical imaging and human perceptions of image

quality aspects. To make a realistic metric, we construct

two pivotal types of attributes: the first type defines the

underlying physics of underwater optical imaging; the second

type addresses the human visual system (HVS) properties, in-

cluding contrast, texture, color and attention. IQA features are

formulated and spatial feature representations are calculated.

These extracted features are combined to yield a final metric,

using the random forest regression algorithm.

A. Underwater physics attribute

Based on the image acquisition system and environment,

underwater optical imaging can be formulated as an image

formation model (IFM) of Jaffe-McGlamery [53]. An under-

water image can be represented as the linear superposition of

three components:

ET(x) = EDT(x) + EFS(x) + EBS(x), (1)

where x denotes the pixel position of the image, ET(x) is the

total energy received by the underwater camera, EDT(x) rep-

resents the energy component of direct transmission, EFS(x)
and EBS(x) are the energy components of forward light

scattering and backward light scattering.

To approach underwater imaging as a restoration process,

the Jaffe-McGlamery model of equation (1) could be inter-

preted as an inverse engineering problem. To this end, a

simplified formation model [42]–[44] is proposed and widely

used in the literature for dealing with underwater images.

The simplified image formation model (or underwater image
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TABLE I
ESTIMATION OF BL AND TM BY DIFFERENT OPTICAL PRIOR BASED UNDERWATER IMAGE RESTORATION MODELS

Model index Optical prior BL Estimation TM Estimation

U-Model 1 DCP [17] Bc(I) = Ic(argmaxx∈I(minc(miny∈Ω(x) Ic(y)))) t(x) = 1−minc(miny∈Ω(x)(Ic(y)/Bc))

U-Model 2 UDCP [18] Bc(I) = Ic(argmaxx∈I(minc(miny∈Ω(x) Ic(y)))) t(x) = 1−minc∗ (miny∈Ω(x)(Ic∗ (y)/Bc∗ ))

U-Model 3 MIP [51]
MIP(x) = maxy∈Ω(x) Ir(y)−maxc∗ (maxy∈Ω(x) Ic∗ (y))

Bc(I) = Ic(argmaxx∈I(MIP(x)))

t(x) = MIP(x) + (1−maxx∈I(MIP(x)))

U-Model 4
MIP/UDCP

[24]

Idark
c (x) = miny∈Ω(x) Ic(y)

Bc(I) = Ic(argmaxx∈I(I
dark
c (x)− (maxc∗ Idark

c∗ (x))))

tc∗ (x) = 1−minc∗ (miny∈Ω(x)(Ic∗ (y)/Bc∗ ))

tr(x) = αmaxy∈Ω(x) Ir(y)

α =
Avg(tc∗ )

Avg(maxy∈Ω(x) Ir(y))

U-Model 5 IBLAP [14]

Bsel
c = {Avg(LV(Ic)),Avg(LB(Ic,Pblr)),DCPc}

Bmin,c = min{Bsel
c },Bmax,c = max{Bsel

c }

Bc(I) = βBmax,c + (1− β)Bmin,c,

β is sigmoid function based weight.

dD = 1− Strech(MIP(x))

dR = 1− Strech(maxy∈Ω(x) Ir(y))

dB = 1− Strech(Reconstruct(Pr(x))),

Pr(x) = maxy∈Ω(x)
1
n

∑n
i=1 |Igray(x)−Gî,̂i((x))|

t(x) = γ2[γ1dD + (1− γ1)dR] + (1− γ2)dB,

γ1, γ2 are the sigmoid function based weights.

U-Model 6 ULAP [52]

d(x) = µ1 + µ2 maxy∈Ω(x) Ir(y) + µ3 maxc∗ (maxy∈Ω(x) Ic∗ (y)),

µ1 = 0.5321, µ2 = −0.9106, µ3 = 0.5130

Bc(I) = Ic(argmaxx∈P0.1%
(d(x)))

tc(x) = Nrer
da(x)
c ,

da(x) = 10× d(x),

Nrerr = 0.83,Nrrrg = 0.95,Nrerb = 0.97

(a) DCP-TM map (b) UDCP-TM map (c) MIP-TM map (d) MIP/UDCP-TM map (e) IBLAP-TM map (f) ULAP-TM map

Fig. 3. Illustration of TM maps (visualized by MATLAB’s colormap function) of an original underwater image (i.e., Fig. 1(a)) estimated by U-Model 1,
U-Model 2, U-Model 3, U-Model 4, U-Model 5, and U-Model 6, respectively.

restoration model) describes the relationship between the ob-

served image and its restored image under the conditions of

underwater environment, and can be described as:

I(x) = t(x)J(x) + (1− t(x))B, (2)

where I is the raw captured image by the camera, J is the

restored image, t(x) is the transmission medium (TM) map,

and B is the background light (BL). As presented in the IFM

model of equation (1), underwater image degradation is caused

by light attenuation and light scattering. Therefore, a prior

that represents the optical properties is often constructed to

form the restored image J in the IFM model of equation (2),

such as Dark Channel Prior (DCP), Underwater Dark Chan-

nel Prior (UDCP), Maximum Intensity Prior (MIP), Image

Blurriness and Light Absorption Prior (IBLAP), Underwater

Light Attenuation Prior (ULAP), as shown in Table I. Based

on these optical priors, the BL and TM maps are estimated

from the camera captured image I by solving the inverse

problem of equation (2). These models (i.e., U-Model 1 to

U-Model 6 in table I) represent state-of-the-art optical prior

based underwater image restoration methods. Fig. 3 illustrates

the TM maps (visualized by MATLAB’s colormap function)

of an original underwater image (i.e., Fig. 1(a)) estimated by

U-Model 1 [17], U-Model 2 [18], U-Model 3 [51], U-Model 4
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Fig. 4. Illustration of underwater physics attribute. Top row from left to right: original underwater image and results of five image enhancement algorithms
used in the UEIQA database [27]. Second row shows the transmission medium (TM) maps estimated by one of the optical prior based underwater image
restoration models (i.e., U-Model 1 [17] in Table I).

[24], U-Model 5 [14], and U-Model 6 [52], respectively. Fig. 4

illustrates the TM maps estimated by the one of these models

(i.e., U-Model 1) for original and enhanced images (i.e., Fig.

1(a)-(f)).

For our problem of assessing output quality of image

enhancement, there is no “ideal” reference image of perfect

quality. We could formulate this problem using the above

image formation model of equation (2) by assuming the

current/test image (i.e., I in equation (2)) remains sub-optimal

and its quality could be further improved towards a restored

image of optimal quality (i.e., J in equation (2)). Since we

do not need to produce the final restored image, we only

use the optical prior based model to approximate the TM

as the underwater physics-related attribute to form part of

our IQA framework (note it can be seen from Table I that

TM is highly related to BL hence only TM is used for the

sake of simplicity). The formulas for TM estimation of DCP-

based, UDCP-based, MIP-based, MIP/UDCP-based, IBLAP-

based, and ULAP-based models are listed in Table I, where

c ∈ {r,g,b}, c∗ ∈ {g,b}, and r,g,b represent the R, G, B

channels in the RGB colorspace.

B. HVS-based attributes

Now, we present the HVS-based descriptors for the eval-

uation of output quality of underwater image enhancement,

including Michaelson-like contrast map, salient local binary

patterns, and color autocorrelograms.

1) Michaelson-like contrast map (MLC)

Due to backward scattering of light, underwater images

suffer serious contrast degradation. However, normal contrast

measures are not able to quantify the contrast of underwater

images under the low luminance conditions. Based on the

properties of the human visual system (HVS), Panneta et. al.

introduced the Parameterized Logarithmic Image Processing

(PLIP) operations that could overcome the problem of low

luminance conditions.

Let an RGB image denoted as I, and I be gray-scaled as

Igray = (Ir+Ig+Ib)/3. For any pixel x ∈ Igray , Ω(x) is the

3×3 window by both-side symmetric padding, and Imax(x) =
maxy∈Ω(x) Igray(y), Imin = miny∈Ω(x) Igray(y). We define

the Michaelson-like contrast map (MLC) at each pixel position

x as follows:

MLC(x) =
Imax(x)ΘImin(x)

Imax(x)⊕ Imin(x)
∗ log(

Imax(x)ΘImin(x)

Imax(x)⊕ Imin(x)
),

(3)

where the symbols Θ, ⊕ and ∗ represent the PLIP operations

that are detailed below. First, the following gray-scale tone

function is used to process the original image as absorption

filters:

g(x) =M − Igray(x), (4)

where M represents the maximum of absorption of the human

eye and is set to be 1026 according to [54]. Then, the

operations Θ, ⊕ and ∗ are defined as follows:

p⊕ q = p+ q −
pq

γ(M)
, (5)

pΘq =
p− q

k(M)− q
, (6)

p ∗ q = φ−1(φ(p)φ(q)), (7)

φ(p) = −λ(M) lnβ(1−
f

λ(M)
), (8)

φ−1(p) = −λ(M){1− [exp(−
f

λ(M)
)]

1
β }, (9)

where ⊕ is denoted as PLIP subtraction, Θ as PLIP addition,

∗ as PLIP multiplication, p, q are the gray-scale tone pixel

intensity values, f is the corresponding original gray-scale

image intensity value, β is a constant, and γ(M), k(M), λ(M)
are arbitrary functions of M . According to the analysis of

Panneta et. al. [54], The parameter and functions are set as

γ(M) = k(M) = λ(M) = 1026 and β = 2.

2) Salient local binary patterns (SLBP)

The local binary patterns (LBP) operator is adopted to

describe the texture information of images. The LBP method

was first proposed by Ojala et.al. [55]. Let I be a gray-

scale image, ΩP
R(x) is the P -neighbourhood centered at pixel

x = (ix, jx) with a radius R. For arbitrary point p = (ip, jp)
can be expressed as:

ip = ⌊ix +R cos(2π
P − p+ 2

P
)⌉, (10)

jp = ⌊jx −R sin(2π
P − p+ 2

P
)⌉, (11)
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Fig. 5. Illustration of the HVS-based attributes. Top row from left to right: original underwater image and results of five image enhancement algorithms used
in the UEIQA dataset [27]. Second row shows the Michaelson-like contrast (MLC) maps. Third row shows the salient local binary patterns (SLBP) maps.

where p ∈ {0, 1, ···, P−1}, and ⌊m⌉ means the nearest integer

of m. Define a detection function by the following formula:

σ(u, v) =

{

1, if u− v ≥ 0,

0, otherwise.
(12)

The LBP is computed in the P -neighbourhood with the

center x = (ix, jx) and radius R by the following equation:

LP
R(x) =

P−1
∑

p=0

σ(I(ip, jp), I(ix, jx))2
p. (13)

From this definition, a feature vector (histogram) is yielded.

For example, when R = 1, P = 8, and LP
R(x) ∈ [0, 255], a

256-dimensional feature vector is formed. To reduce the di-

mension of the output feature vector, Ojala et.al. [55] improved

LBP into the “uniform LBP” method that defined as

L̃P
R(x) =















P−1
∑

p=0

σ(I(ip, jp), I(ix, jx)), if Υ ≤ 2,

P + 1, otherwise,

(14)

where

Υ =

P−1
∑

p=1

|σ(I(ip, jp), I(ix, jx))− σ(I(ip−1, jp−1), I(ix, jx))|

+ |σ(I(ip, jp), I(ix, jx))− σ(I(i0, j0), I(ix, jx))|.
(15)

For an input image, the LBP feature well captures local

texture information. However, the local spatial information

is not equally visible to the human visual system (HVS)

[56]. It is well known that visual attention plays a significant

role in image quality assessment [57]–[60]. To incorporate

visual attention, we calculate a saliency map (using the model

proposed by Vikram et. al. [56]) of the input image and use it

to weight the corresponding LBP map. The saliency weighted

LBP is called salient local binary patterns map (SLBP) [56].

Let SM denote the saliency map, SM is the [0, 1]-normalized

saliency map, and LBP = (LP
R(x))x∈I is the LBP map of

the input image I . The salient local binary patterns (SLBP) is

defined pixel-wise as

SLBP (x) = SM(x)LP
R(x). (16)

Fig. 5 illustrates the feature maps, including Michaelson-like

contrast (MLC) map and salient local binary patterns (SLBP)

map.

3) Color autocorrelogram (CAC)

Color correction/equalization plays an important role in

underwater image enhancement algorithms. For our goal of

assessing output quality of image enhancement, it would be

beneficial for the IQA metric to include colour perception-

related attributes that account for the behaviour of the human

visual system. We adopt the color autocorrelogram index [61],

which has proven superior in capturing the spatial correlation

of colors in an image.

Let Iin denote an index image of I with size m × n, we

quantify the colors of Iin into m colors c1, c2, · · ·, cm. Let

Iin(x) denote the color of pixel x and define the color level

set Iciin ≜ {x|Iin(x) = ci} for i = 1, 2, ...,m. Besides, the

distance of different pixels x1 and x2 is measured by using

the L∞-norm, i.e., dist(x1,x2) = ||x1 − x2||∞ ≜ max{|x1 −
x2|, |y1− y2|} for pixels x1(x1, y1) and x2(x2, y2). Then, the

color correlogram of image Iin at color piont (ci, cj) is defined

as the following formula:

Mk
ci,cj = Pr({x1 ∈ Iciin,x2 ∈ I

cj
in|dist(x1,x2) = k}), (17)

where i, j ∈ {1, 2, · · ·,m}, k ∈ {1, 2, · · ·, d} with a fixed

priori distance d, and Pr(Ri,j) denotes the probability of the

random event Ri,j = {x1 ∈ Iciin,x2 ∈ I
cj
in|dist(x1,x2) = k}.

The overall color correlogram M of image Iin is defined as

a m×md matrix, i.e., M = [{M1
ci,cj}m×m, {M2

ci,cj}m×m, · ·

·, {Md
ci,cj}m×m]. Specially, the color autocorrelogram of im-

age Iin that only captures spatial correlation of identical color

ci is formulated as follows:

Mk
ci,ci = Pr({x1,x2 ∈ Iciin|dist(x1,x2) = k}), (18)
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Fig. 6. The schematic overview of the proposed underwater image quality-aware feature (UWIQF). TM, MLCM, SM, LBP indicate transmission medium,
Michaelson-like contrast map, saliency map and local binary patterns. HSV and RGB indicate HSV colorspace and RGB colorspace.

where i ∈ {1, 2, · · ·,m}. Then, the overall color autocorrelo-

gram CAC of image Iin is defined as a md vector, i.e.,

CAC = (M1
c1,c1 , · · ·,M

1
cm,cm , · · ·,M

d
c1,c1 , · · ·,M

d
cm,cm). (19)

In order to improve the efficiency of CAC algorithm, the

probability definition in equation (18) can be transformed into

the following counting problem:

Sk
ci,ci = |{x1,x2 ∈ Iciin|dist(x1,x2) = k}|, (20)

where |·| denotes the cardinality of a set. The overall simplified

color autocorrelogram CACs of image Iin is defined as:

CACs = (S1
c1,c1 , · · ·, S

1
cm,cm , · · ·, S

d
c1,c1 , · · ·, S

d
cm,cm). (21)

To enhance the feature robustness [62], we compute the au-

tocorrelogram on both RGB colorspace (conventionally used,

i.e., RGB-CACs) and HSV colorspace (perceptually uniform,

i.e., HSV-CACs).

C. Overall metric

To generate an overall IQA metric, individual features are

formulated to vector representations, and combined to yield a

predictor using the random forest regression algorithm.

1) Feature vectors

We have generated features representing underwater physics

attribute, i.e., transmission medium (TM) map; and HVS-based

attributes i.e., Michaelson-like contrast (MLC), Salient local

binary patterns (SLBP), and simplified color autocorrelograms

(RGB-CACs,HSV-CACs). Now, we transform these features

into feature vectors for subsequent processes. Since the local

binary patterns (LBP) operator is a powerful visual descriptor,

we use this method to construct feature vectors for certain

feature maps as extracted in this paper. For the TM and MLC

feature maps, the transformation process is performed using

the equations (12)-(15), where an LBP map is first calculated

and then converted to a 10-dimensional feature vector. This

process yields two feature vectors, HTM and HMLC. For

the SLBP feature map, we follow the approach taken in

[56], which improves the robustness of a feature vector when

saliency weighting is applied for LBP. The implementation is

detailed as below.

The histogram/feature vector of SLBP (i. e., HSLBP) is

defined as

HP
SLBP,R = {fPR (0), fPR (1), · · ·, fPR (P + 1)}, (22)

where the frequency of HP
SLBP,R at each bin is defined as:

fPR (p) =
∑

x∈I

SM(x)δ(L̃P
R(x), p), (23)

where p ∈ {0, · · ·, P + 1}, and the δ-function is defined as

δ(u, v) =

{

1, if u = v,

0, otherwise.
(24)
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Moreover, in order to keep the uniform property of ex-

tracted features, the simplified color autocorrelograms of

RGB-CACs,HSV-CACs are transformed into two histograms

of 10 bins each. This forms two 10-dimensional feature vec-

tors HRGB−CACs
and HHSV−CACs

. After individual feature

vectors are yielded, they are each normalised to represent the

probability density function of the feature. These resulting

vectors are combined to form an underwater image quality-

aware feature (UWIQF) vector:

[HTM|HMLC|HSLBP|HRGB−CACs
|HHSV−CACs

]. (25)

Fig. 6 illustrates the schematic overview of the proposed

underwater image quality-aware feature (UWIQF).

2) Image quality metric

The UWIQF is used to build a metric for the assessment

of quality of underwater image enhancement. Due to the

high-dimensional and multi-modal feature space, we use the

learning-based random forest regression method to establish

the relationship between the UWIQF feature and the perceived

image quality (i.e., MOS). Let L = {(UWIQFn,MOSn)|i =
1, · · ·, N} denote the training set, Θ is a probability space, and

Θ1, · · ·,ΘM ∈ Θ are random variables in the same probability

space. Assume that a set of M random regression tree models

{ψL,Θm
|m = 1, · · ·,M} trained on the same dataset L with

different random seed Θm. A random forest regression model

ψL,Θ1,···,ΘM
integrates the set of M random regression tree

models by averaging, yielding a ensemble model [63]:

ψL,Θ1,···,ΘM
(UWIQF) =

1

M

M
∑

m=1

ψL,Θm
(UWIQF), (26)

The training error of the random forest regression model

ψL,Θ1,···,ΘM
can be computed as follows:

Errtrain =
1

N

N
∑

n=1

(ψL,Θ1,···,ΘM
(UWIQFn)− MOSn)

2

=
1

N

N
∑

n=1

(
1

M

M
∑

m=1

ψL,Θm
(UWIQFn)− MOSn)

2

(27)

The hyperparameters (Θ1, · · ·,ΘM ) are trained by mini-

mizing the above error of the ensemble model ψL,Θ1,···,ΘM
.

Moreover, the ambiguity decomposition of Errtrain guarantees

that the performance of random forest model is better than

a single regression tree [64]. Assume (Θ̃1, · · ·, Θ̃M ) are the

trained model parameters, in the prediction stage, for any test

quality-aware feature UWIQF, the predicted image quality is

given by the following formula:

ψ
L,Θ̃1,···,Θ̃M

(UWIQF) =
1

M

M
∑

m=1

ψ
L,Θ̃m

(UWIQF). (28)

This gives an UnderWater image Enhancement Quality Metric

(UWEQM).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we detail the implementation of the proposed

UWEQM algorithm. We also analyse the selection of optical

prior based models for the underwater physics attribute, and

contribution of individual IQA features. Moreover, the per-

formance of the proposed UWEQM metric is compared to

state-of-the-art metrics on the UEIQA database to show its

superiority.

A. Experimental setup

In this subsection, we present the experimental setups of our

proposed UWEQM algorithm that include evaluation criteria,

alternative IQA metrics for comparative analysis and model

implementation.

1) Evaluation criteria

To evaluate the performance of an IQA metric, the corre-

lation and/or difference between the metric outputs and sub-

jective mean opinion scores (MOSs) must be calculated. Four

measures are commonly used including the Pearson linear cor-

relation coefficient (PLCC), root mean square error (RMSE),

Spearman rank order correlation coefficient (SROCC), and

Kendall’s rank order correlation coefficient (KROCC) [29]:

PLCC =

∑K
i=1(xi − x̄)(yi − ȳ)

√

∑K
i=1[(xi − x̄)(yi − ȳ)]2

, (29)

RMSE =

√

√

√

√

1

K

K
∑

i=1

(xi − yi)2, (30)

SROCC =

∑K
i=1(R(xi)−R(x))(R(yi)−R(y))

√

∑K
i=1(R(xi)−R(x))2

√

∑K
i=1(R(yi)−R(y))2

,

(31)

KROCC =
2[N(concordant pairs)−N(discordant pairs)]

K(K − 1)
,

(32)

where K is the number of test images, xi and yi indicate

the metric score and subjective MOS of the i-th test image,

respectively, x̄ and ȳ are the mean values, R(·) denotes the

rank, and N(·) represents the amount of variable values. To

account for the non-linear behaviour of subjective scoring,

a logistic non-linear regression is commonly used to fit the

metric scores to subjective MOSs [46]:

f(xc) = β1[
1

2
−

1

1 + exp[β2(xc − β3)]
] + β4xc + β5, (33)

where xc represents the metric score, and the parameters

are estimated using the MATLAB’s nlinfit function. PLCC

and RMSE are computed between f(xc) and MOSs, whereas

SROCC and KROCC are computed between xc and MOSs.

The closer the values of PLCC, SROCC and KROCC to 1 and

the value of RMSE to 0, the better the performance of an IQA

metric.

2) Alternative IQA metrics for comparative analysis

We compare our proposed UWEQM metric with 11 state-

of-the-art IQA metrics including BRISQUE [35], NIQE [34],

BLIINDS II [47], SSEQ [48], LPC [49], UICM [50], UISM

[50], UIConM [50], UIQM [50], UCIQE [40] and UEIQM

[27]. UEIQM is a simple proof-of-concept IQA metric pro-

posed in our recent work [27]. The UEIQM metric is built



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE II
PERFORMANCE OF SIX VARIANTS OF UWEQM USING DIFFERENT TM FEATURE VECTORS HTM DERIVED FROM DIFFERENT OPTICAL PRIOR BASED

UNDERWATER IMAGE RESTORATION MODELS. RESULTS ARE BASED ON THE UEIQA DATABASE

Criteria

Model
UWEQMDCP UWEQMUDCP UWEQMMIP UWEQMMIP/UDCP UWEQMIBLAP UWEQMULAP

PLCC 0.8774 0.8764 0.8922 0.8590 0.8794 0.8759

SROCC 0.8698 0.8602 0.8816 0.8520 0.8740 0.8705

KROCC 0.6998 0.6834 0.7137 0.6759 6976 0.6948

RMSE 1.1262 1.1250 1.0534 1.1851 1.1075 1.1095

TABLE III
PERFORMANCE OF UWEQM VARIANT MODELS BASED ON SINGLE

FEATURE OR A COMBINED VECTOR OF MULTIPLE SUB-FEATURES.
RESULTS ARE BASED ON THE UEIQA DATABASE

Model

Criteria
PLCC SROCC KROCC RMSE

HTM 0.7950 0.7791 0.6034 1.2925

HMLC 0.8183 0.8092 0.6208 1.2761

HSLBP 0.6636 0.6463 0.4738 1.6926

HRGB−CACs
0.7040 0.6746 0.5086 1.5792

HHSV−CACs
0.5662 0.5443 0.3912 1.8739

HRGB−CACs
, HHSV−CACs

0.7319 0.7067 0.5226 1.5370

HTM,HMLC 0.8219 0.8072 0.6431 1.2561

HTM,HSLBP 0.8190 0.8062 0.6431 1.3010

HMLC,HSLBP 0.8344 0.8266 0.6466 1.2351

HTM,

HRGB−CACs
, HHSV−CACs

0.8134 0.7932 0.6106 1.3262

HMLC,

HRGB−CACs
, HHSV−CACs

0.8040 0.7880 0.6222 1.3283

HSLBP,

HRGB−CACs
, HHSV−CACs

0.7451 0.7189 0.5333 1.5205

HTM, HMLC,

HRGB−CACs
, HHSV−CACs

0.8570 0.8451 0.6647 1.1832

HTM,HSLBP,

HRGB−CACs
, HHSV−CACs

0.8154 0.7978 0.6113 1.3275

HTM, HMLC,

HSLBP

0.8645 0.8586 0.6801 1.1591

HMLC,HSLBP,

HRGB−CACs
, HHSV−CACs

0.8228 0.8178 0.6302 1.3041

Proposed UWEQM 0.8922 0.8816 0.7137 1.0534

by combining three simple off-the-shelf features represent-

ing color, sharpness, and contrast. Note all metrics are no-

reference (NR) models, so they are suitable for our target

application of assessing output quality of underwater image

enhancement.

3) Model implementation - k-fold cross-validation

To fairly evaluate the proposed UWEQM metric and its

generalizability, we adopt a standard k-fold cross-validation.

To this end, the benchmark UEIQA database is randomly

partitioned into k (k=5 in our experiment) equal sized non-

overlapped subsets; and one subset is used for testing and the

other subsets are used for training. The cross-validation pro-

cess is iterated 5 times, with each of the 5 subsets used exactly

once as the testing set. The 5-time test results are averaged to

yield a single estimation. Also, to reduce variability, multiple

(i.e., 100 rounds in our experiment) rounds of cross-validation

are performed using different random partitions, and the results

are averaged over all rounds to give a final estimation of the

IQA metric’s predictive performance.

B. Selection of underwater physics attribute

As mentioned in Section III.A, the transmission medium

(TM) represents the underwater physics attribute that is de-

rived from a optical prior based underwater image restoration

model. Based on the six state-of-the-art models in Table I,

six different TM maps can be estimated, resulting in six

alternatives of feature vector HTM. Now, we investigate which

TM estimation gives the best performance to our proposed

UWEQM metric on the UEIQA database. To this end, six vari-

ants of UWEQM are created using different TM feature vec-

tors, including UWEQMDCP, UWEQMUDCP, UWEQMMIP,

UWEQMMIP/UDCP, UWEQMIBLAP, and UWEQMULAP. In

Table II, we list the performance of UWEQM variants on the

UEIQA database. It can be seen that the UWEQMMIP yields

the best performance; however, other UWEQM variants also

produce comparable results. This suggests that MIP could be

the most suitable optical prior for the images of the UEIQA

database, where the depth of objects is about 3−4m in water.

Hence the UWEQMMIP is directly denoted as UWEQM in the

following of this paper. It should be noted that the selection

of underwater physics attribute can adapt to specific imaging

conditions, and the procedure can be used to find the feature

that better suits the specific IQA problem or application.
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TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED UWEQM METRIC TO THE STATE-OF-THE-ART NO-REFERENCE IQA METRICS ON UEIQA DATABASE

Criteria BRISQUE NIQE BLIINDS II SSEQ LPC UICM UISM UIConM UIQM UCIQE UEIQM UWEQM

PLCC 0.4148 0.3999 0.1718 0.1789 0.7591 0.7082 0.5204 0.7813 0.5230 0.6159 0.8055 0.8922

SROCC 0.4024 0.2366 0.2708 0.1764 0.7583 0.6947 0.4930 0.7720 0.2886 0.5691 0.7657 0.8816

KROCC 0.2737 0.1662 0.1948 0.1051 0.5659 0.4969 0.3429 0.5819 0.1832 0.4101 0.5806 0.7137

RMSE 1.9200 2.1998 2.0779 2.2058 1.4595 1.5829 1.9145 1.3994 1.7977 1.6617 1.2508 1.0534

C. Analysis of individual features

Since five different IQA features (i.e., HTM, HMLC,

HSLBP, HRGB−CACs
, and HHSV−CACs

) are extracted to

form the overall UWIQF vector of the proposed UWEQM

metric, it is worth investigating how well individual sub-

features or different combinations of sub-features can predict

the ground truth image quality. To this end, we simply replace

UWEQM metric’s UWIQF vector by a single sub-feature

or a combined vector of multiple sub-features; and re-run

the experiments as described above. Table III illustrates the

performance of these UWEQM variants. It can be seen that in

general the variant models based on multiple sub-features tend

to give better performance than the variant models based on

single sub-feature. Our final metric (i.e., proposed UWEQM)

based on all sub-features yields the best performance.

D. Performance comparison to state-of-the-art IQA metrics

We compare the proposed UWEQM metric to the state-

of-the-art no-reference (NR) IQA metrics, including general-

propose metrics (i.e., BRISQUE, NIQE, BLIINDS II, SSEQ

and LPC) and underwater-specific metrics (i.e., UICM, UISM,

UIConM, UIQM, UCIQE and UEIQM). For metrics that are

not machine learning-based, the results are produced by cal-

culating a metric on the entire UEIQA database. The learning-

based metrics (i.e., BRISQUE, BLIINDS II, SSEQ, UEIQM)

are evaluated using the 5-fold cross-validation method as

described in Section IV.A. Fig. 7 shows the scatter plot of

MOS versus the predictions of our proposed UWEQM metric.

The results of metric performance in terms of PLCC,

SROCC, KROCC and RMSE are listed in Table IV, with the

best performance for each evaluation criterion highlighted in

boldface. It can be seen that most general-purpose metrics,

BRISQUE, NIQE, BLIINDS II and SSEQ fail in predicting

the output quality of underwater image enhancement. These

metrics are based on natural scene statistics and do not

contain visual descriptors for the characterises of underwater

environment, such as light attenuation, light scattering, and

specific artifacts. LPC metric addresses the sharpness measure

using multi-scale local phase coherence in the wavelet trans-

form domain. Since sharpness/contrast is an important image

quality aspect of underwater images, the LPC metric pro-

duces relatively better performance than other general-purpose

metrics. For the underwater-specific metrics, UISM, UIQM,

UCIQE metrics are unable to accurately predict the quality of

underwater images undergoing enhancement algorithms. These

models contain underwater-specific visual features; however,

they simply combine these features and, hence cannot deal
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Fig. 7. Scatter plot of MOS versus our proposed UWEQM metric on the
UEIQA database. The curved line shows the nonlinear logistic fit.

with the complex interactive relationships between these fea-

tures for the determination of the overall image quality. The

other metrics, UICM, UIConM and UEIQM adopt a more

sophisticated way for integrating IQA-aware features, and

therefore significantly outperform the UISM, UIQM, UCIQE

metrics. In particular, it should be noted that the UEIQM and

UIConM metrics give the best and second-best performance

among the exiting metrics. This might be due to the fact

that both metrics contain a good measure of contrast under

low-luminance conditions, which is one of the most relevant

features for underwater image quality assessment. This tends

to suggest that the development of reliable underwater IQA

metrics should focus on identifying and quantifying relevant

underwater-specific image features as well as finding ways to

express the complex relationships between these features in

determining the perceived quality. Our proposed metric fol-

lows such concept and hence outperforms all existing metrics

in predicting output quality of underwater image enhancement.

The F-test (as used in [65]) is adopted to test the statistical

significance between each existing metric and our proposed

UWEQM metric. The value of the F-test is the ratio of the

standard deviations of normalized results (normalized by the

non-linear logistic regression model) of the selected metric and

our proposed metric. The F-test critical region is defined by

the F-distribution with the (N-1,N-1) freedom degree and the

significance level of 0.05, where N is the number of the test

images. The two metrics in question are statistically distinct if

the F-test value is in the critical region. The pairwise (i.e.,
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TABLE V
PERFORMANCE COMPARISON OF THE PROPOSED UWEQM METRIC TO THE STATE-OF-THE-ART DEEP LEARNING-BASED NR IQA METRICS. RESULTS

ARE BASED ON THE UEIQA DATABASE

Criteria

Model
VGG CNN BIECON DIQaM RankIQA GraphIQA UWEQM

PLCC 0.7721 0.1693 0.0628 0.3761 0.8040 0.7842 0.8922

SROCC 0.7763 0.1411 0.0362 0.2415 0.7976 0.7876 0.8816

KROCC 0.6001 0.0963 0.0282 0.1673 0.6184 0.5993 0.7137

RMSE 1.3683 2.1234 2.2121 1.9963 1.2803 1.3352 1.0534

(a) UWEQM=2.7105 (b) UWEQM=4.3660 (c) UWEQM=4.0727 (d) UWEQM=2.5222 (e) UWEQM=3.4942

(f) UWEQM=3.0175 (g) UWEQM=4.0247 (h) UWEQM=4.3961 (i) UWEQM=2.8627 (j) UWEQM=3.8534

(k) UWEQM=3.6573 (l) UWEQM=3.3139 (m) UWEQM=5.2017 (n) UWEQM=2.8862 (o) UWEQM=3.9843

Fig. 8. An example to demonstrate the generalization ability of our proposed UWEQM metric. (a) an original underwater image; (b)-(o) results of underwater
enhancement algorithms that are not used in the UEIQA database, including HE, CLAHE, GC, ICM, UCM, RD, HVSMIF, DCP, UDCP, GB-UDCP, IBLA,
RGHS, RoWS, ULAP, respectively. In terms of the output quality, subjective quality could be visually assessed by the readers, and objective quality is predicted
by our UWEQM metric.

a selected metric versus our proposed metric) significance

testing results show that the proposed UWEQM is significantly

superior to any other metric in comparison.

V. DISCUSSION

A current trend in IQA research is to develop deep learning-

based IQA metrics. However, the challenge lies in the fact that

deep learning-based models heavily rely on large-scale anno-

tated data, and that creating “large” IQA databases is nontrivial

as reliable image quality scores must be derived from fully-

controlled psychophysical experiments [66]. Some approaches

have been attempted to exploit deep learning techniques in

IQA metrics [67]–[72], e.g., data augmentation methods are

applied to improve sample efficiency, and transfer learning and

domain adaptation are adopted to boost learning ability. We

compare the performance of our proposed UWEQM metric

to the state-of-the-art deep learning-based IQA metrics (note

only NR IQA metrics that have their open source code made

publicly available are included to ensure a fair comparison),

including VGG [67], CNN [70], BIECON [68], DIQaM [69],

RankIQA [71], GraphIQA [72]. It can be seen from Table

V that our proposed UWEQM gives the best performance,

which demonstrates the effectiveness of the proposed approach

that takes into account both underwater physics and human

visual system attributes. This, however, does not mean deep

learning is not a good alternative approach. To facilitate the

development of deep learning-based IQA, more psychophysi-

cal experiments should be conducted to provide more ground

truth IQA data, and advanced methods should be developed to

enhance learning capabilities of the model. Our future work

will focus on developing a deep learning-based model for

assessing the output quality of underwater image enhancement.

The generalization ability is critical for an IQA metric.

First, in the development of our proposed UWEQM metric,

we consider the attributes that are general representations for

the output quality of underwater image enhancement. These

attributes include underwater-specific physics and human vi-

sual system properties for contrast, texture, color and atten-

tion. Second, in training our metric on the UEIQA database,

the k-fold cross-validation is used to tune model parameters

and ensure there is no data leakage. The training and test

subsets per run (i.e., one 5-fold trial) do not overlap, and

the data splitting is randomly iterated 100 times (i.e., 100

5-fold trials) to eliminate the performance bias. Third, it

would be beneficial to conduct cross-database evaluation to

measure the generalization capability of our metric. However,
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to the best of our knowledge, the UEIQA is so far the only

database that is made publicly available for the assessment of

output quality of underwater image enhancement. It should be

also noted that the UEIQA database contains results of five

image enhancement algorithms. Due to the innate limitation

of psychophysical experimentation, increasing the number of

enhancement algorithms would make an IQA database too

large hence compromise the reliability of the subjective data

[73]. Therefore, to facilitate cross-database evaluation, we en-

courage researchers to create new IQA databases with different

underwater image enhancement algorithms following the same

protocols for the subjective testing of the UEIQA database.

Nonetheless, we expect our proposed model to generalise and

adapt to new unseen data. To demonstrate this in a nutshell, we

applied fourteen image enhancement algorithms that are not

used in the UEIQA database to an original underwater image,

including Bi-HE (note a different algorithm to the HE used in

the UEIQA database) [74], CLAHE [75],, Gamma Correction

(GC) [76], Integrated Colour Model (ICM) [77], Unsupervised

Colour Correction Method (UCM) [78], Rayleigh Distribution

(RD) [79], HVS-based multi-scale underwater image fusion

(HVSMIF) [80], DCP [17], UDCP [18], Green-Blue channels

Underwater Dark Channel Prior (GB-UDCP) [24], IBLA [14],

Relative Global Histogram Stretching (RGHS) [81], Removal

of Water Scattering (RoWS) [82], and ULAP [52]. Fig. 8

illustrates the results of these image enhancement algorithms.

In terms of the output quality, subjective quality could be

visually assessed by the readers (note a proper subjective IQA

experiment could be treated in a separate contribution in the

future), and objective quality is predicted by our UWEQM

metric as shown in Fig 8. It can be seen that our proposed

IQA metric shows a good generalization ability in assessing

the output quality of underwater image enhancement.

VI. CONCLUSION

In this paper, we have presented an objective metric

UWEQM for the assessment of the output quality of un-

derwater images undergoing enhancement algorithms. Since

there is no reference image of “perfect” quality in the context

of image enhancement, we propose to consider the physics

prior information of underwater optical imaging and relevant

characteristics of the human visual system including contrast,

texture, attention and color. The proposed metric UWEQM

is validated against the ground truth image quality scores

and it outperforms other alternative metrics in the literature.

Moreover, our proposed UWEQM metric shows a good gen-

eralization ability for image quality assessment.
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