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Abstract—Recently, various view synthesis distortion estima-
tion models have been studied to better serve for 3-D video
coding. However, they can hardly model the relationship quan-
titatively among different levels of depth changes, texture de-
generation, and the view synthesis distortion (VSD), which is
crucial for rate-distortion optimization and rate allocation. In this
paper, an auto-weighted layer representation based view synthesis
distortion estimation model is developed. Firstly, the sub-VSD (S-
VSD) is defined according to the level of depth changes and their
associated texture degeneration. After that, a set of theoretical
derivations demonstrate that the VSD can be approximately
decomposed into the S-VSDs multiplied by their associated
weights. To obtain the S-VSDs, a layer-based representation of S-
VSD is developed, where all the pixels with the same level of depth
changes are represented with a layer to enable efficient S-VSD
calculation at the layer level. Meanwhile, a nonlinear mapping
function is learnt to accurately represent the relationship between
the VSD and S-VSDs, automatically providing weights for S-
VSDs during the VSD estimation. To learn such function, a
dataset of VSD and its associated S-VSDs are built. Experimental
results show that the VSD can be accurately estimated with the
weights learnt by the nonlinear mapping function once its associ-
ated S-VSDs are available. The proposed method outperforms the
relevant state-of-the-art methods in both accuracy and efficiency.
The dataset and source code of the proposed method will be
available at https://github.com/jianjin008/.

Index Terms—3-D video, view synthesis distortion (VSD),
depth coding, depth-image-based rendering (DIBR)

I. INTRODUCTION

A. Motivation

In recent years, 3-D video technology has been popular

due to its fresh viewing experiences, e.g., special immersion,
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Fig. 1. Illustration of lossy compression caused texture degradation with
different levels of position shifting distortion. (a) and (b) are synthesized by
original reference views and decoded reference views, respectively. The green
patches located on the main bodies of person and cylinder hardly have depth
boundaries, where only small depth changes caused by compression exist and
lead to small position shifting in (b1) and (b2). The red patches have lots of
depth boundaries around the fingers and cylinder. Compression causes large
depth changes around depth boundaries, leading to large position shifting, e.g.,
finger misalignment and cylinder boundary erosion in (b3) and (b4). Besides,
texture changes in the decoded texture reference views are propagated to the
virtual view under the direction of changed depth, causing texture degradation
from (b1) to (b4).

high interactivity, and large degree of freedom. In the 3-

D video system, the multiview view plus depth (MVD) [1]

representation is the main data format. The MVD records the

color and depth information of the same physical scene from

different views. With the MVD format data, arbitrary virtual

views can be synthesized via a depth-image-based rendering

(DIBR) technique [2], [19]. Commonly, the performance of 3-

D video system is mainly measured by the distortion/quality

[30]–[32] of the synthesized virtual view. Hence, the view

synthesis distortion (VSD) estimation is crucial, especially for

the 3-D video applications. For instance, the estimated VSD

[10] is generally used for rate-distortion optimization [3], rate

allocation [4], the design of the error resilience techniques [6],

etc.

The main reason for the VSD is the changes/errors in the

reference texture and depth videos due to lossy compression

http://arxiv.org/abs/2201.02420v1
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or transmission errors. During the view synthesis process,

texture changes may cause VSD in the luminance/chrominance

level, namely texture degradation. However, depth changes

may cause complex geometric VSD. Moreover, different levels

of depth changes lead to different levels of geometric VSD. In

1-D parallel model, the geometric VSD commonly refers to

position shifting [7]. Besides, texture degradation propagating

from decoded reference views to their corresponding virtual

views is also directed by the changes of depth. After integrat-

ing texture degradation with the position shifting, the texture

degradation with different levels of position shifting can be

regarded as different kinds of sub-VSD (S-VSD) and forms

the final VSD.

As shown in Fig. 1, (a) and (b) are synthesized by original

reference views (uncompressed in texture and depth reference

views) and decoded reference views (compressed by H.264

with QP pair (45, 48) in texture and depth reference views),

respectively. Some magnification patches of local distortion

are exhibited in (a1)-(a4) and (b1)-(b4). The VSD in the

green/red patches mainly belongs to the texture degradation

with small/large position shifting, as shown in (b1-b2)/(b3-

b4), where the shifting is mainly due to the depth changes

caused by lossy compression. As the green patches locate

on the bodies of person and cylinder, their original depth is

smooth. Even after compressed, the level of depth changes in

green patches is low, which only causes non-obvious position

shifting. After integrating with the texture degradation, only

texture degradation is obviously observed in the green patches.

However, the VSD in the red patches mainly belongs to the

texture degradation with large position shifting, such as the

misaligned fingers in (b3) and the erosion around the boundary

of cylinder in (b4). Since obvious depth boundaries exist

around the hand and cylinder, lossy compression makes these

boundaries smooth and brings large level of depth changes.

This leads to the significant position shifting effects in the red

patches. After texture degradation propagation, obvious texture

degradation together with position shifting can be observed in

the green patches. All these distortion, including that in (b1)-

(b4), forms the final VSD in (b).

Inspired from above, after taking the texture distortion into

account, different levels of depth changes can be used to

represent different kinds of S-VSD, which can be further

used to predict the VSD. On the one hand, it can benefit the

optimization of 3-D video coding [29] by figuring out the exact

contribution of each kind of S-VSD to the VSD. On the other

hand, it can also help us design an optimal depth codec [28]

by increasing or decreasing different levels of depth changes

to bring in the smallest VSD. To our best knowledge, existed

methods, such as the methods to be reviewed in subsection

I-C-2), cannot represent the relationship between the S-VSD

and VSD accurately, which is the key challenge in this work.

B. Our contributions

In this paper, we propose an auto-weighted layer repre-

sentation based view synthesis distortion estimation model.

This is the first work utilizing learning-based approach to

mine the accurate relationships among the degeneration of

texture, changes of depth, and the VSD, especially for the

relationship between the VSD and its associated S-VSDs. This

provides us a methodology to predict the VSD by utilizing its

associated S-VSDs. It can be used for optimizing the design of

3-D video coding, especially for the depth coding. The main

contributions are summarized as follows.

• This is the first work to relate different levels of depth

changes together with their texture degeneration to the

view synthesis distortion (VSD), which is crucial for

various 3-D video applications, such as aforementioned

3-D video coding, depth coding, etc.

• Sub view synthesis distortion (S-VSD) is first defined

according to the level of depth changes and its associated

texture degeneration in this paper. Besides, an elaborate

derivation is given to demonstrate that the VSD can be de-

composed into different kinds of S-VSD approximately.

• To accurately represent the relationship between VSD

and its associated S-VSDs, a nonlinear mapping function

between the VSD and S-VSDs is learnt based on our

built dataset, which is the first dataset for mining the

relationship between the VSD and S-VSDs.

• To calculate the S-VSD efficiently, a layer-based rep-

resentation method is proposed and further optimized,

where all the pixels with the same level of the depth

changes (i.e., the S-VSD) will be represented with a layer.

It enables the S-VSD calculation perform at the layer

level.

Compared with the existed VSD estimation methods, the

well-learnt nonlinear mapping function is able to accurately

represent the relationship between the VSD and S-VSDs.

Meanwhile, the proposed layer-based representation enables

the VSD estimation performed at the layer level without

spending additional calculation on partly performing the view

synthesis process at the pixel level to make the proposed

method more efficient.

C. Related work

1) View synthesis: In this paper, View synthesis mainly

refer to the DIBR based view synthesis, which commonly

contains two steps, namely warping and blending.

During the warping step, forward warping, warping compe-

tition, and rounding operation are performed accordingly. The

goal of warping step is to warp the pixels in the reference

views to the warped views. Assume that a pixel in the original

reference view with location (i, jk) is warped to a new location

(i, j) in the warped view. The subscript k is used to index

the left (k = 0) or right (k = 1) view. This process can be

formulated as

φk = j − jk =

[

fBkD(i, jk)

255

(

1

Znear

−
1

Zfar

)

+
fBk

Zfar

]

= Φ(D(i, jk)),

(1)

where φk denotes the disparity of pixel (i, jk) with depth

value D(i, jk). [·] is the rounding operation. Bk denotes the

baseline between cameras and f is the focal length of cameras.

[Znear, Zfar] is the depth range of the physical scene. In Eq. (1),
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disparity φk can be regarded as the function of depth value

D(i, jk), which is denoted as Φ(D(i, jk)) for simplification.

After warping step, there will be lots of dis-occlusions in the

warped views, since the occlusion parts in the reference views

become visible. To fill the dis-occlusions, the blending step is

carried out by merging the two warped views into a virtual

one. Besides, three blending strategies need to be followed

according to three different cases during blending step: i) if

current pixel in the virtual view is visible in both two warped

views, a weighted average of these two values is used; ii) if it

is only visible in one of the warped views, this value will be

directly used; iii) otherwise, an inpainting value will be used.

2) View synthesis distortion estimation: Commonly, there

are two typical VSD estimation methods to estimate lossy

compression caused view synthesis distortion and transmis-

sion error (package loss) caused view synthesis distortion,

respectively. Kim et al. [8] first developed a camera and video

parameters based quality metric to quantify the effect of lossy

coding of depth maps on synthesized view quality. After that,

Yuan et al. [3] proposed a concise distortion model by analyz-

ing the impacts of the compression distortion of texture images

and depth maps on the quality of the virtual views. Meanwhile,

Zhang et al. [10] proposed a view synthesis distortion model

by taking the regions characteristics into account for depth

video coding. Based on this, Fang et al. [17] relate errors in

the depth images to the synthesis quality by taking texture

image characteristics and the warping step of view synthesis

into account. However, the warping step is used for relating

the distortion of depth to the synthesized view at the frame

level, which limits its accuracy on the VSD estimation. To

make more accurate prediction of the VSD, Yuan et al. [5]

utilize the warping step of view synthesis to simulate the error

prorogation from distorted depth to the virtual synthesized

view at the pixel level, which directly measures the quality

of the virtual view by partly carrying out view synthesis.

However, the blend and inpainting steps in view synthesis are

still not considered due to their complicated operations. Jin

et al. [11] proposed a pixel-level VSD estimation, where the

warping and blending steps are partly taken into account to

build a more accurate relations between the distorted depth

together with the texture and VSD, achieving the state-of-

the-art result. However, compared with the pixel-level VSD

estimation methods in [5] and [11], the frame-level one in

[17] is more efficient, when pixel-level parallel processing

is not considered. Meanwhile, Pan et al. [12] developed a

depth distortion range, in which depth changes brought no

geometrical distortions.

To model the transmission error caused distortion, Zhou et

al. [13] first derived a Channel distortion model for multi-

view video transmission over lossy packet-switched networks,

which can estimate the channel caused distortion at the frame

level. Then, a quadratic model is proposed by Cheung et al.

[14], which first relates the disparity errors caused by packet

loss in the depth maps to the distortion contribution in the

synthesized view. After that, Gao et al. [6] developed an

end-to-end 3-D video transmission oriented VSD estimation

model for 3-D video coding to improve error resilience. To

accurately model the error propagation process during view

synthesis, Zhang et al. [15] proposed a depth-value-based

graphical (DVGM) model. By taking the transmission error

into account, it can accurately estimate the transmission caused

view synthesis distortion. To further speed up DVGM, Jin

et al. [16] proposed a depth-bin based graphical model for

VSD estimation, which is more efficient without sacrificing

accuracy.

As reviewed above, all these methods are trying to predict

the VSD by modeling frame-level depth distortion or pixel-

level depth distortion without considering the exact contribu-

tion of different levels of depth changes for the VSD. Besides,

to build the relations between the distorted reference views to

the virtual synthesized view, all these VSD methods partly

integrate the view synthesis process into their approaches,

e.g. the warping step. This will lead to two drawbacks: 1) It

cannot achieve accurate prediction of the VSD by partly using

view synthesis (e.g., warping step) for building the relationship

between the distorted texture together with depth and the VSD,

since the blending step of the view synthesis also affects

the view synthesis results. While the nonlinear operations of

blending step (warping competition, inpainting operation, etc.)

make it hardly formulated in such VSD estimation methods.

2) Even through part of view synthesis is performed in such

methods, the calculation is based on pixel-level, namely each

pixel will perform the view synthesis process partly. This

reduces their efficiency in some degree. To overcome these

drawbacks, we firstly learn the nonlinear mapping function

based on our dataset to exploit an exact relationship between

different levels of depth changes together with their associated

distorted texture (the S-VSDs) and the VSD. Then, we propose

an efficient layer-based representation method, which enables

the VSD estimation performed at the layer level.

The outline of the rest of our paper is as follows. First,

the proposed model is presented in Section II. Then, the

layer-based representation method is developed in Section

III. Section IV presents experimental results and Section V

concludes this paper.

II. THE PROPOSED MODEL

In this section, we first define the total view synthesis

distortion (VSD) and the sub view synthesis distortion (S-

VSD) abstractly. To better understand the S-VSD, an analysis

on the S-VSD is given in detail. After that, a set of theoretical

derivations is given according to view synthesis process, from

which we demonstrate that the VSD can be decomposed

into the S-VSDs by their associated weights approximately.

Finally, a nonlinear mapping function represented with neural

networks is used to learn the weights between the VSD and

its associated S-VSDs.

A. Definition of the VSD and S-VSD

In this paper, the view synthesis distortion of the virtual

view (i.e., VSD) is formulated with the Mean Square Error

(MSE) over the entire frame of synthesized view as used in

[17], where

MSE =
1

W ·H
·
W−1
∑

i=0

H−1
∑

j=0

(

T (i, j)− T̃ (i, j)
)2

, (2)
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where W and H denote the width and height of the virtual

view. T (i, j) and T̃ (i, j) are the color values of two pixels

in two different virtual views, which are synthesized with the

original reference views and decoded views. Besides, these

two pixels have the same location (i, j) in their own virtual

views.

As mentioned in Eq. (1), depth changes may lead to dis-

parity changes. Assume that a pixel in the decoded reference

view with location (i, j̃k) is warped to (i, j) in the warped

view. Then, we have

φ̃k = j − j̃k = Φ(D̃(i, j̃k)). (3)

Besides, depth changes with different levels may cause dis-

parities changes with different levels, namely warped position

shifting with different levels. Here, the depth changes from

D(i, jk) to D̃(i, j̃k) caused warped position shifting distortion

is measured with ∆φk , and

∆φk = jk − j̃k = φ̃k − φk = Φ(D̃(i, j̃k))− Φ(D(i, jk)).
(4)

Therefore, the warped position shifting distortion of a pixel can

be functioned by the levels of depth changes from D(i, jk) to

D̃(i, j̃k). After integrating with texture information distortion,

the sub view synthesis distortion (S-VSD) in this paper is

defined as

Lk,∆φk
=

1

Ck,∆φk

∑

(i,jk)∈sk,∆φk
(i,j̃k)∈s̃k,∆φk

(

T
r
k (i, jk)− T̃

r
k (i, j̃k)

)2

=
1

Ck,∆φk

∑

(i,j)∈Sk,∆φk

(

T
r
k (i, j − φk)− T̃

r
k (i, j − φ̃k)

)2

=
1

Ck,∆φk

∑

(i,j)∈Sk,∆φk

(

T
r
k (i, j − φk)− T̃

r
k (i, j − φk −∆φk)

)2

,

(5)

where Lk,∆φk
denotes a certain S-VSD of all the pixels

(i, j) that are with the same level of depth changes (mea-

sured with ∆φk) in the left (k = 0) or right (k = 1)

warped views, and their locations are collected with set

Sk,∆φk
. Ck,∆φk

denotes the cardinality of Sk,∆φk
. Their

associated pixels in the original and decoded reference views

are (i, jk) and (i, j̃k), and their locations are collected with

set sk,∆φk
and s̃k,∆φk

, respectively. T r
k (i, jk) and T̃ r

k (i, j̃k)
are the texture value of pixel (i, jk) and (i, j̃k). It should be

noticed that the whole frame collected with set Sk can be

divided into several Sk,∆φk
according to ∆φk, and we have

Sk = Sk,−3σ ∪ Sk,−3σ+1 ∪ · · · ∪ Sk,3σ and Ck = W · H .

Besides, the intersection of any two sets of Sk,∆φk
is empty,

i.e., Sk,p ∩ Sk,q = ∅,where p 6= q and p, q ∈ [−3σ, 3σ].
As the lossy compression (source coding) caused depth

distortion can be approximately regarded as a zero-mean white

noise, the three-sigma rule is used to confirm the available

number of ∆φk, namely ∆φk ∈ [−3σ, 3σ].

B. An detailed analysis of the S-VSD

To better understand S-VSD, an analysis of the S-VSD is

given based on an example in this subsection. Assume that

there are three different levels of depth changes, caused by the

lossy compression in the left and right depth reference views.

Therefore, six S-VSDs need to be calculated for each of the

VSD. Here, only three S-VSDs in the left view are involved

for simplify, namely L0,−1, L0,0, and L0,1. The other three

S-VSDs (L1,−1, L1,0, and L1,1) in the right view are similar.

As shown in Fig. 2, pixels with the same warped position

shifting distortion are masked with the same color points in

original and decoded reference views. Pixels with ∆φk = −1
and ∆φk = 1 are highlighted with blue and red points,

respectively. The rest are pixels with ∆φk = 0, which means

no warped position shifting distortion exists in these pixels.

Set sr0,−1 is used to collect locations of the blue points in

the original reference view, which has a horizontal interval

[6, 12]. Then, these pixels are warped to the interval [2, 8] in

the original warped view, their locations are collected with

set sw0,−1. As lossy compression makes the depth values of

these pixels changed, the pixels in set s̃r0,−1 in the decoded

reference view are mistakenly warped to a new interval [3, 9]
in the decoded warped view. Their locations are collected

with set s̃w0,−1. Assume all the pixels of these two sets are

eventually exhibited in the virtual views. By fusing these

two sets with a union operation, we can obtain set S0,−1,

namely S0,−1 = sw0,−1 ∪ s̃w0,−1. The complementary parts

are highlighted with the dark points. Finally, we can easily

locate their associated sets s0,−1 and s̃0,−1 in the original and

decoded reference views by backward warping [18] pixels in

the S0,−1. Therefore, the S-VSD L0,−1 can be regarded as the

Mean Square Error over the pixels of these two sets physically.

Likewise, the definitions for other S-VSDs in the left view are

similar..

It should be noticed that the purpose of union operation is

to ensure the distorted pixels could be fully counted during

the S-VSD calculation. Besides, depending on the fact in the

backward warping that the missing depth value of a certain

pixel is assigned with its adjacent pixel’s depth value, we

assign the depth values of the dark points with their adjacent

pixels in the sets during inverse warping process.

C. A theoretical derivation: from VSD to S-VSDs

To relate the pixel in the virtual view with its associated

pixels in the original and decoded reference views, we also

take the inverse process into account as in [11]. First, we relate

the pixel in the virtual view to its associated pixels in the

warped views by taking the blending strategies into account.

T (i, j) in Eq. (2) can be rewritten as

T (i, j) =















u0 · Tw
0 (i, j) + u1 · Tw

1 (i, j)
Tw
0 (i, j)

Tw
1 (i, j)

Inpainting

, (6)

where Tw
0 (i, j) and Tw

1 (i, j) denote the color values of pix-

els in the original left and right warped views. u0 and u1

(u0 ∈ (0, 1), u1 ∈ (0, 1)) are two weights for the left and

right warped views, which are determined by the locations of

cameras array. The first item represents that the pixel (i, j)
in the virtual view is visible in both warped views case.

The second and third items represent that only one of the
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(a) Original Left Reference View (b) Original Left Warped View

(f) Reconstructed Left Warped View(e) Reconstructed Left Reference View 

(c) Original Left Warped View

(g) Reconstructed Left Warped View

(d) Original Left Reference View

(h) Reconstructed Left Reference View
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82 14 24

93 13 23 92 13 23

92 13 23 136 18 29

125 19 30

Fig. 2. Illustration of the analysis on S-VSDs during view synthesis.

warped views can be visible. The last item is to formulate the

inpainting case.

Similarly, T̃ (i, j) can be rewritten as

T̃ (i, j) =















u0 · T̃w
0 (i, j) + u1 · T̃w

1 (i, j)

T̃w
0 (i, j)

T̃w
1 (i, j)

Inpainting

. (7)

where T̃w
0 (i, j) and T̃w

1 (i, j) denote the color values of pixels

in the decoded left and right warped views.

Then, we make an approximate computation. As the last

case is infrequent, which occupies around 1% of the all these

four cases as mentioned in [19]. Therefore, T (i, j) can be

approximately rewritten as

T (i, j) ≈ v0 · T
w
0 (i, j) + v1 · T

w
1 (i, j), (8)

where v0 and v1 (v0 ∈ [0, 1], v1 ∈ [0, 1]) are two weights for

the left and right warped views. Similarly, we have

T̃ (i, j) ≈ v0 · T̃
w
0 (i, j) + v1 · T̃

w
1 (i, j). (9)

After that, we relate these pixels in the warped views to

their associated pixels in the reference views by considering of

the warping step during view synthesis. Likewise, we assume

pixels with position (i, j) in the original left and right warped

views are warped from pixels with position (i, jk) in the

original left (k = 0) or right (k = 1) reference views. We

have

Tw
k (i, j) = T r

k (i, jk), (10)

where T r
k (i, jk) denotes the color value of pixel (i, jk) in the

original left (k = 0) or right (k = 1) reference views. Its

associated disparity φk can be represented by Eq. (1).

Similarly, we assume pixels with position (i, j) in the

decoded warped views is warped from pixel with position

(i, j̃k) in the decoded reference views due to its distorted depth

values φ̃(i, j̃k). We have

T̃w
k (i, j) = T̃ r

k (i, j̃k), (11)

where T̃ r
k (i, j̃k) denotes the color value of pixel (i, jk) in the

decoded left (k = 0) or right (k = 1) reference view. Its

associated disparities φ̃k can be represented by Eq. (3).

Therefore, Tw
k (i, j) and T̃w

k (i, j) can be rewritten as

Tw
k (i, j) = T r

k (i, jk) = T r
k (i, j − φk) (12)

and

T̃w
k (i, j) = T̃ r

k (i, j̃k) = T̃ r
k (i, j − φ̃k). (13)

By substituting Eq. (12) and Eq. (13) into Eq. (8) and Eq. (9),

respectively, we obtain

T (i, j) ≈ v0 · T
r
0 (i, j − φ0) + v1 · T

r
1 (i, j − φ1) (14)

and

T̃ (i, j) ≈ v0 · T̃
r
0 (i, j − φ̃0) + v1 · T̃

r
1 (i, j − φ̃1). (15)

Eq. (14) and Eq. (15) relate the pixel in the virtual view to

its associated pixels in the reference views. Finally, Eq. (2) is

rewritten as Eq. (16).

For the Eq. (5), it can be rewritten as

∑

(i,j)∈Sk,∆φk

(

T r
k (i, j − φk)− T̃ r

k (i, j − φk −∆φk)
)2

= Ck,∆φk
· Lk,∆φk

.

(17)

As aforementioned that the intersection of any two sets of

Sk,∆φk
is empty and Sk = Sk,−3σ ∪ Sk,−3σ+1 ∪ · · · ∪ Sk,3σ ,

we have

∑

(i,j)∈Sk

(

T r
k (i, j − φk)− T̃ r

k (i, j − φk −∆φk)
)2

= Ck,−3σ · Lk,−3σ + Ck,−3σ+1 · Lk,−3σ+1 + · · ·

+ Ck,3σ · Lk,3σ.

(18)
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MSE ≈
1

W ·H
·
W−1
∑

i=0

H−1
∑

j=0

(

v0 · (T
r
0 (i, j − φ0)− T̃ r

0 (i, j − φ̃0)) + v1 · (T
r
1 (i, j − φ1)− T̃ r

1 (i, j − φ̃1))
)2

=
1

W ·H
·

1
∑

k=0

W−1
∑

i=0

H−1
∑

j=0

(

vk · (T r
k (i, j − φk)− T̃ r

k (i, j − φ̃k))
)2

≈
v2k

W ·H
·

1
∑

k=0

W−1
∑

i=0

H−1
∑

j=0

(

T r
k (i, j − Φ(D(i, jk))) − T̃ r

k (i, j − Φ(D(i, j̃k)))
)2

=
v2k

W ·H
·

1
∑

k=0

W−1
∑

i=0

H−1
∑

j=0

(

T r
k (i, j − φk)− T̃ r

k (i, j − φk −∆φk)
)2

, where ∆φk ∈ [−3σ, 3σ].

(16)

MSE ≈
1

W ·H
·

1
∑

k=0

v2k (Ck,−3σ · Lk,−3σ + Ck,−3σ+1 · Lk,−3σ+1 + · · ·+ Ck,3σ · Lk,3σ)

=
v20 · C0,−3σ

W ·H
· L0,−3σ +

v20 · C0,−3σ+1

W ·H
· L0,−3σ+1 + ...+

v20 · C0,3σ

W ·H
· L0,3σ+

v21 · C1,−3σ

W ·H
· L1,−3σ +

v21 · C1,−3σ+1

W ·H
· L1,−3σ+1 + ...+

v21 · C1,3σ

W ·H
· L1,3σ.

(20)

MSE = Ψ(L0,−3σ, L0,−3σ+1, · · · , L0,3σ, L1,−3σ, L1,−3σ+1, · · · , L1,3σ). (21)

As Ck = W ·H , then we obtain

∑

(i,j)∈Sk

(

T r
k (i, j − φk)− T̃ r

k (i, j − φk −∆φk)
)2

=

W−1
∑

i=0

H−1
∑

j=0

(

T r
k (i, j − φk)− T̃ r

k (i, j − φk −∆φk)
)2

.

(19)

By plugging Eq. (18) and Eq. (19) into Eq. (16), we have

Eq. (20). Based on the observation of Eq. (20), the VSD

can be decomposed into S-VSDs (Lk,∆φk
) by their associated

weights approximately. To obtain the exact weights between

the VSD and its associated S-VSDs, a nonlinear mapping

function represented with neural networks is used instead of

the linear one to well learn the non-linear relation between

the VSD and S-VSDs due to a nonlinear mapping represented

with neural networks is employed instead of a linear one to

well learn the non-linear relation between the VSD and S-

VSDs. This is due to the non-linear operations existed in view

synthesis, e.g., hole filling, inpainting, warping competition

and so on. Then, we have Eq. (21), where the VSD is regarded

as a non-linear mapping function of S-VSDs via a functional

relation Ψ(·). This also gives us a theoretical proof that the

VSD can be predicted using its associated S-VSDs once the

functional relation Ψ(·) is obtained.

D. Learning a non-linear mapping function: Ψ(·)

To make the prediction from S-VSDs closely approximate

to the actual VSD, we formulate an optimization program as

follows

min
Ψ

N
∑

n=1

f (Ψ (Lk,∆φk,n) ,MSEn) , (22)

where n is the index of sample, and N training sam-

ples are involved. Lk,∆φk,n denotes a serious S-VSDs (i.e.,

L0,−3σ,n, · · · , L0,3σ,n, L1,−3σ,n, · · · , L1,3σ,n) of sample n,

which can be obtained by our layer-based representation

method, which is introduced in Section III. Their associated

actual VSD (i.e., MSEn) can be directly obtained by calcu-

lating the mean square error between the n pair of virtual

views, which are synthesized by their corresponding original

reference views and decoded reference views. f(·, ·) is used

to measure the approximation between two terms. With such

a learnt nonlinear mapping function Ψ(·), once another series

of S-VSDs are given, their associated VSD can be accurately

predicted correspondingly.

In particular, to obtain such a nonlinear function Ψ(·), we

employ XGBoost [20], a scalable end-to-end tree boosting

system. Specifically, by introducing M tress to our model,

the optimization program in Eq. (22) can be rewritten as

min
Ψm

m=1,··· ,M

N
∑

n=1

g

(

M
∑

m=1

(Ψm (Lk,∆φk,n)),MSEn

)

+

M
∑

m=1

Ω(Ψm),

(23)

where g(·, ·) represents the training error of nth sample, and

we adopt the mean square error. The second term measures
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Fig. 3. Illustration of the framework of our proposed layer-based representation method.

Fig. 4. Illustration of layered representation.

the complexity of our tree, where Ω(Ψm) is the complexity

of mth tree.

Of note, minimizing the tree complexity facilitates the

generalization ability of our algorithm, while minimizing the

prediction error can guarantee the accuracy of our model. The

parameters setting of XGBoost will be given in subsection

IV-A.

III. LAYER-BASED REPRESENTATION

After analyzing the S-VSD, a layer-based representation

method is first developed to generate the S-VSD in this section.

Then, an optimization of the layer-based representation is

made to reduce its complexity and speedup the S-VSDs

generation. The details will be presented as follows.

A. Methodology

It is similar that the layer-based representation method is

performed on the left and right views. For simplify, only its

application on the left views is carefully elaborated in the fol-

lowing parts. The framework of the layer-based representation

is shown in Fig. 3 (a).

1) Disparity Conversion: The depth images are input at

first, which contains the left original and decoded depth images

D0 and D̃0. Then, φ(D0) and φ(D̃0) are obtained by plugging

D0 and D̃0 into Eq. (1), respectively.

2) Disparity Difference: A pixel-wise subtraction operation

is carried out to obtain the difference between φ(D0) and

φ(D̃0). Then, we have the disparity difference image ∆φ0.

3) Layered Representation: Pixels with the same value in

∆φ0 are masked with the same color and collected with

a pair of layers l0,∆φ0 , l̃0,∆φ0 in D0 and D̃0, respectively.

We use different colors to mask pixels with different values,

which are further represented with different layers. Then,

sets sr0,−3σ, ... , sr0,3σ and s̃r0,−3σ , ... , s̃r0,3σ are easily

obtained by visiting their corresponding layers l0,∆φ0 , l̃0,∆φ0 .

An example with assumption σ = 1 is shown in Fig. 4, pixels

with ∆φ0 = −1, 0, 1 are masked with blue, gray, and red

colors, which are represented with three layers in D0 and

D̃0, respectively, i.e., l0,−1, l0,0, l0,1, and l̃0,−1, l̃0,0, l̃0,1, which

contains sets sr0,−1, s
r
0,0, s

r
0,1, and s̃r0,−1, s̃

r
0,0, s̃

r
0,1. It should be

noticed that all the following operations are performed at the

layer level.

4) Forward Warping: The layered pixels in D0 and D̃0 are

forward warped to the original and decoded warped views

according to the disparity images φ(D0) and φ(D̃0). Sets

sw0,−3σ, ... , sw0,3σ and s̃w0,−3σ, ... , s̃w0,3σ are obtained and

represented with different pairs of layers.

5) Fusion: Merge each sw0,∆φ0
and s̃w0,∆φ0

(where ∆φ0 ∈
[−3σ, 3σ]) by a union operation and obtain S0,−3σ, ... , S0,3σ,

namely S0,∆φ0 = sw0,∆φ0
∪ s̃w0,∆φ0

(where ∆φ0 ∈ [−3σ, 3σ]).
6) Inverse Warping: Inversely warp the S0,∆φ0 back to the

original and decoded left reference view, and generate their

associated sets s0,∆φ0 and s̃0,∆φ0 , which are presented with

different pairs of layers.

7) MSE: Pixels with locations s0,∆φ0 in T0 and s̃0,∆φ0 in

T̃0 are used to calculate the L0,∆φ0 via a layer level MSE

calculation, which is similar with that used in Eq. (5).

B. Optimization

As analyzed in Fig. 2, pixels with sr0,−1 in (a) are firstly

warped to sw0,−1 in (b). Due to lossy compression of the depth

image, pixels with the same location in (e) are mistakenly
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TABLE I
DETAILS OF TEST SEQUENCES

Sequences Resolutions Views Frames QP Pairs (texture, depth)

BookArrival [22] 1024*768 9 (8,10) 1th to 25th (15, 24), (20, 29), (25, 34), (30, 39), (35, 42),(40, 45),(45, 48)

Kendo [23] 1024*768 2 (1,3) 1th to 25th (15, 24), (20, 29), (25, 34), (30, 39), (35, 42),(40, 45),(45, 48)

Balloons [23] 1024*768 2 (1,3) 1th to 25th (15, 24), (20, 29), (25, 34), (30, 39), (35, 42),(40, 45),(45, 48)

NewsPaper [24] 1024*768 3 (2,4) 1th to 25th (15, 24), (20, 29), (25, 34), (30, 39), (35, 42),(40, 45),(45, 48)

PoznanStreet [25] 1920*1080 4.5 (4,5) 1th to 25th (15, 24), (20, 29), (25, 34), (30, 39), (35, 42),(40, 45),(45, 48)

PoznanHall2 [25] 1920*1080 6.5 (6,7) 1th to 25th (15, 24), (20, 29), (25, 34), (30, 39), (35, 42),(40, 45),(45, 48)

UndoDancer [26] 1920*1080 3 (1,5) 1th to 25th (15, 24), (20, 29), (25, 34), (30, 39), (35, 42),(40, 45),(45, 48)

GT-Fly [27] 1920*1080 7 (5,9) 1th to 25th (15, 24), (20, 29), (25, 34), (30, 39), (35, 42),(40, 45),(45, 48)

warped to s̃w0,−1 (f). From the (b) to (f), this process could be

regarded as a left-shift-operation from sw0,−1 to s̃w0,−1, the shift-

interval is one full pixel precision. To make sure that all these

changed pixels are counted during our S-VSD calculations,

dark points are complemented. Besides, these complemented

pixels have the same depth value with their neighboring pixels.

Thus, after inverse warping, the pixels with s0,−1 in (d) can

be regarded as a right extension of the pixels with sr0,−1 in (a),

and the extended-interval is one full pixel precision. Similarly,

the pixels with s̃0,−1 in (h) can be treated as a left extension

of the pixels with s̃r0,−1 in (e), and the extended-interval is one

full pixel precision as well. According the observation above,

the complicated forward warping, union operation, and inverse

warping processes can be replaced by an extension process,

which is a layer-level fusion operation. The optimized layer-

based representation framework is shown in Fig. 3 (b).

1) For the left view, the extension process can be performed

as follows: If ∆φ0 < 0, the s0,∆φ0 in the T0 can be generated

by a right extension operation applied on the sr0,∆φ0
, with

|∆φ0| full pixel precision extended-interval; The s̃0,∆φ0 in the

T̃0 can be generated by a right extension operation applied on

the s̃r0,∆φ0
, with |∆φ0| full pixel precision extended-interval;

If ∆φ0 > 0, the s0,∆φ0 in the T0 can be generated by a left

extension operation applied on the sr0,∆φ0
, with |∆φ0| full

pixel precision extended-interval; The s̃0,∆φ0 in the T̃0 can be

generated by a left extension operation applied on the s̃r0,∆φ0
,

with |∆φ0| full pixel precision extended-interval; Otherwise,

the rest of the pixels in T0 and T̃0 are the s0,∆φ0 and s̃0,∆φ0 .

2) For the right view, the extension process is opposite:

If ∆φ1 < 0, the s1,∆φ1 in the T1 can be generated by a left

extension operation applied on the sr1,∆φ1
, with |∆φ1| full

pixel precision extended-interval; The s̃1,∆φ1 in the T̃1 can be

generated by a left extension operation applied on the s̃r1,∆φ1
,

with |∆φ1| full pixel precision extended-interval; If ∆φ1 > 0,

the s1,∆φ1 in the T1 can be generated by a right extension

operation applied on the sr1,∆φ1
, with |∆φ1| full pixel precision

extended-interval; The s̃1,∆φ1 in the T̃1 can be generated by

a right extension operation applied on the s̃r1,∆φ1
, with |∆φ1|

full pixel precision extended-interval; Otherwise, the rest of

the pixels in T1 and T̃1 are the s1,∆φ1 and s̃1,∆φ1 .

Therefore, instead performing the complicated forward

warping, union operation, and inverse warping processes, a

fusion-like operation is achieved at the layer level to generate

the S-VSDs, which makes it more efficient.

IV. EXPERIMENTAL RESULTS

In this paper, three state-of-the-art methods, namely Yuan

[5], Fang [17], and Jin [11], are chosen as the anchors in our

comparisons. The training and testing data are firstly generated

by calculating the VSD and its associated S-VSDs with the

traditional MSE calculation and the proposed layer-based

representation, respectively. After that, two main experiments

are conducted, which contains: i) accuracy comparisons and

ii) efficiency comparisons.

A. Training and testing data generation

Here, 8 test sequences from the Common Test Conditions

(CTC) of the JCT-3V [21] are used. There are left and right

reference views for each sequence. For each of left or right

reference view, there are texture and its associated depth

videos. The first 25 frames of reference views are compressed

with 7 QP pairs, which are further used to synthesize the

virtual view. Therefore, There are 32 (8×4) original videos

(original left texture video, original left depth video, origi-

nal right texture video, and original right depth video) and

224 (8×4×7) compressed videos. The details of these test

sequences are exhibited in TABLE I, which includes the

sequences resolutions, view positions (where x(y, z) denotes

that the xth view is synthesized with the yth and zth views),

the index of used frames, and recommended QP pairs for

texture and depth videos.

To obtain the training and testing data, the VSD (ground

truth) is firstly obtained by carrying out the MSE in Eq. (2)

between the the original synthesized views and compressed

synthesized views. They are synthesized with original ref-

erence views and compressed reference views, respectively.

Then, 1400 (8×7×25) VSD results are obtained. After that,

the proposed layer-based representation is conducted on the

original and compressed reference views to obtain the S-VSDs.

As aforementioned, three-sigma rule is used to confirm the

available number of ∆φk according to the depth distortion in

different frames. We obtain 937 S-VSDs with ∆φk = 1 and

463 S-VSDs with ∆φk = 3. Then, the VSD and its associated

S-VSDs are respectively divided into two parts, i.e., training

and testing data. The ratio between training and testing data

is 2:1. To be fair, the division is randomly performed three

times and we get three groups of training and testing data.

For each group of such data, we have 932 training data (624

training data with ∆φk = 1 and 308 training data with ∆φk =

3) and 468 testing data (313 testing data with ∆φk = 1 and 155

testing data with ∆φk = 3). The detailed settings and hyper
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TABLE II
THE COMPARISON OF FOUR METHODS IN TERMS OF THE PREDICTION OF MSE, PNSR, AND TIME COST.

∆φk (Frames) Method MSE ∆MSE PSNR (dB) ∆PSNR (dB) Time (s)

Test 1

∆φk = 1 (313)

GT 6.4743 / 41.4288 / /
Fang 7.6905 1.2162 40.3488 1.0800 0.6682

Yuan 10.2094 3.7351 39.4684 1.9603 32.7745
Jin 7.2745 0.8002 40.5898 0.8390 3.3692

Ours 6.3341 0.1402 41.4292 0.0004 1.3349

∆φk = 3 (155)

GT 29.2056 / 34.2465 / /
Fang 30.4578 1.2522 33.9720 0.2745 0.5815
Yuan 48.6340 19.4284 31.9915 2.2550 27.6567
Jin 29.6714 0.4657 34.0862 0.1603 3.0297

Ours 28.9729 0.2327 34.2446 0.0019 1.7949

Average (468)

GT 14.0029 / 39.0500 / /
Fang 15.2310 1.2281 38.2368 0.8132 0.6395

Yuan 22.9355 8.9326 36.9921 2.0579 31.0795
Jin 14.6923 0.6894 38.4358 0.6142 3.2568

Ours 13.8320 0.1708 39.0497 0.0003 1.4873

Test 2

∆φk = 1 (313)

GT 6.6590 / 41.3541 / /
Fang 7.9168 1.2577 40.2716 1.0825 0.6687
Yuan 10.5356 3.8766 39.3893 1.9649 32.9871
Jin 7.4636 0.8045 40.4954 0.8587 3.3976

Ours 6.5804 0.0786 41.3442 0.0100 1.3389

∆φk = 3 (155)

GT 29.5211 / 34.2191 / /
Fang 30.7591 1.2379 33.9340 0.2852 0.5794

Yuan 49.7187 20.1976 31.9193 2.2999 26.8840
Jin 30.0273 0.5062 34.0644 0.1548 3.0102

Ours 29.3131 0.2081 34.2078 0.0113 1.7700

Average (468)

GT 14.2309 / 38.9911 / /
Fang 15.4821 1.2512 38.1726 0.8184 0.6391

Yuan 23.5129 9.2820 36.9152 2.0758 30.9658
Jin 14.9366 0.7057 38.3655 0.6256 3.2693

Ours 14.1094 0.1215 38.9806 0.0104 1.4817

Test 3

∆φk = 1 (313)

GT 7.0173 / 41.1795 / /
Fang 8.2793 1.2619 40.1180 1.0614 0.6528

Yuan 11.1017 4.0844 39.2342 1.9453 31.7427
Jin 7.8104 0.7930 40.3350 0.8445 3.2600

Ours 6.9255 0.0918 41.1620 0.0175 1.3047

∆φk = 3 (155)

GT 30.7228 / 34.1629 / /
Fang 31.9127 1.1899 33.8774 0.2856 0.5771

Yuan 51.3203 20.5976 31.9013 2.2616 27.3320
Jin 31.1067 0.3839 34.0060 0.1570 2.9837

Ours 30.4047 0.3181 34.1480 0.0149 1.7749

Average (468)

GT 14.8685 / 38.8556 / /
Fang 16.1066 1.2381 38.0511 0.8045 0.6277
Yuan 24.4220 9.5535 36.8056 2.0500 30.2819
Jin 15.5260 0.6575 38.2388 0.6168 3.1685

Ours 14.7017 0.1668 38.8390 0.0166 1.4604

TABLE III
HYPER PARAMETERS SETTING OF XGBOOST

Entries Settings

booster gbtree
objective reg:gamma
gamma 0.1
max depth 16
lambda 3
subsample 0.7
colsample bytree 0.7
min child weight 3
silent 1
eta 0.1
seed 1000
nthread 4

parameters of XGBoost are shown in TABLE III. The training

data are fed in the XGBoost system to train the nonlinear

function Ψ(·). With the well learnt nonlinear function Ψ(·) and

the testing data S-VSDs, VSD can be accurately predicted. In

our experiments, three testing results are generated by training

and testing on three groups of data.

B. Accuracy comparison: MSE and PSNR

As shown in TABLE II, the best and the second best results

are highlighted with red and blue colors. Compared with three

anchors, the proposed method achieves the best predicted

results in both MSE and PSNR, i.e., achieving the smallest

∆MSE and ∆PSNR, where ∆ is the absolute value of the

difference between ground truth and predicted result.

Besides, we also compare the ground truth MSE and PSNR

with four predicted MSEs and PSNRs provided by four

different methods in all testing frames. As shown in Fig. 5,

the experiments are conducted on three groups of training and

testing data. Their results are shown in Fig. 5 (a), (b), and (c),

respectively. The proposed method achieves the closest results

with the ground truth in both MSE and PSNR.

All these experimental results demonstrate that the well-

learnt nonlinear mapping function can accurately represent

the relationship between the VSD and its associated S-VSDs,

which plays a critical role during view synthesis distortion

estimation/prediction. With such well-learnt nonlinear map-



10 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA.

0

20

40

60

80

100

120

140

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

2
5
7

2
6
5

2
7
3

2
8
1

2
8
9

2
9
7

3
0
5

3
1
3

3
2
1

3
2
9

3
3
7

3
4
5

3
5
3

3
6
1

3
6
9

3
7
7

3
8
5

3
9
3

4
0
1

4
0
9

4
1
7

4
2
5

4
3
3

4
4
1

4
4
9

4
5
7

4
6
5

M
S

E

Number of frames

GT

LB-VSDE

Fang

Yuan

PL-VSDE

26

31

36

41

46

51

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

2
5
7

2
6
5

2
7
3

2
8
1

2
8
9

2
9
7

3
0
5

3
1
3

3
2
1

3
2
9

3
3
7

3
4
5

3
5
3

3
6
1

3
6
9

3
7
7

3
8
5

3
9
3

4
0
1

4
0
9

4
1
7

4
2
5

4
3
3

4
4
1

4
4
9

4
5
7

4
6
5

P
S

N
R

Number of frame

GT

LB-VSDE

Fang

Yuan

PL-VSDE

0

20

40

60

80

100

120

140

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

2
5
7

2
6
5

2
7
3

2
8
1

2
8
9

2
9
7

3
0
5

3
1
3

3
2
1

3
2
9

3
3
7

3
4
5

3
5
3

3
6
1

3
6
9

3
7
7

3
8
5

3
9
3

4
0
1

4
0
9

4
1
7

4
2
5

4
3
3

4
4
1

4
4
9

4
5
7

4
6
5

M
S

E

Number of frames

GT

LB-VSDE

Fang

Yuan

PL-VSDE

26

31

36

41

46

51

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

2
5
7

2
6
5

2
7
3

2
8
1

2
8
9

2
9
7

3
0
5

3
1
3

3
2
1

3
2
9

3
3
7

3
4
5

3
5
3

3
6
1

3
6
9

3
7
7

3
8
5

3
9
3

4
0
1

4
0
9

4
1
7

4
2
5

4
3
3

4
4
1

4
4
9

4
5
7

4
6
5

P
S

N
R

Number of frame

GT

LB-VSDE

Fang

Yuan

PL-VSDE

0

20

40

60

80

100

120

140

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

2
5
7

2
6
5

2
7
3

2
8
1

2
8
9

2
9
7

3
0
5

3
1
3

3
2
1

3
2
9

3
3
7

3
4
5

3
5
3

3
6
1

3
6
9

3
7
7

3
8
5

3
9
3

4
0
1

4
0
9

4
1
7

4
2
5

4
3
3

4
4
1

4
4
9

4
5
7

4
6
5

M
S

E

Number of frames

GT

LB-VSDE

Fang

Yuan

PL-VSDE

26

31

36

41

46

51

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

2
5
7

2
6
5

2
7
3

2
8
1

2
8
9

2
9
7

3
0
5

3
1
3

3
2
1

3
2
9

3
3
7

3
4
5

3
5
3

3
6
1

3
6
9

3
7
7

3
8
5

3
9
3

4
0
1

4
0
9

4
1
7

4
2
5

4
3
3

4
4
1

4
4
9

4
5
7

4
6
5

P
S

N
R

Number of frame

GT

LB-VSDE

Fang

Yuan

PL-VSDE

(a)

(b) (c)

Fig. 5. The comparison between the ground truth MSE & PSNR and four predicted MSE & PSNR provided by four different methods. (a), (b), and (c) are
the results of three groups of training and testing data. The red patches are the magnification of local parts of the curve.

ping function, once the S-VSDs are given, their associated

VSD can be accurately predicted in this work. On the one

hand, it can facilitate the optimization of 3-D video coding by

figuring out the exact contribution of each kind of S-VSD to

the VSD. On the other hand, as the S-VSDs are represented by

different levels of depth changes, this can also help us design

an optimal depth codec by increasing or decreasing different

levels of depth changes to bring in the smallest VSD. To our

best knowledge, the existing methods as aforementioned in

subsection I-C can hardly achieve this.

C. Efficiency comparison: running time

In this subsection, the complexity of these four methods

are compared, where the entire frame of VSD prediction is

estimated. The average running time of all the 463 frames is

shown in TABLE II, where the unit is second (s). The running

time of the proposed methods listed in TABLE II involves

two parts. The first part is the running time of the S-VSDs

generation. The second part is the running time of the NLM

training and testing. The ratio of these two parts is 1000:1

during our test. According to the experimental results, the

proposed method is competitive to the state-of-the-art method

(e.g., Fang’s [17] method) in terms of efficiency.

Of note, the proposed method is friendly for parallel pro-

cessing. Each layer can be performed independently during

S-VSD calculation, e.g., by a separate thread of the CPU or

GPU. Besides, all these anchors except for Fang’s [17] method

are friendly for parallel processing. After taking the advantages

of paralleled design into account, our method outperforms the

state-of-the-art in terms of efficiency due to the advantages of

our layer-level operations during the S-VSD calculation.

V. CONCLUSION

In this paper, we have proposed an auto-weighted layer

representation based view synthesis distortion estimation for

3-D video coding. To achieve this, the level of depth changes

and their associated texture degeneration have been used to

define the sub view synthesis distortion (S-VSD). After that, a

set of theoretical derivations have demonstrated that the VSD

can be approximately decomposed into the S-VSDs multiplied

by their associated weights. We also have developed a layer-

based representation of the S-VSD, where all the pixels with

the same level of depth changes are represented with a layer

to enable efficient S-VSD calculation. Meanwhile, we have

learnt a nonlinear mapping function to better represent the

relationship between the VSD and S-VSDs based on our newly

built dataset. Experimental results have demonstrated that the
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proposed method outperforms relevant state-of-the-art VSD

estimation methods in both accuracy and efficiency. Besides,

unlike existing VSD estimation methods, we propose the first

work to relate different levels of depth changes to the VSD.

This allows many new applications can be developed for 3-

D video coding in our future work, such as optimizing 3-D

coding by figuring out the exact contribution of S-VSDs to

the VSD, building a more efficient deep codec by increasing

and decreasing different levels of depth changes to bring in

the smallest VSD, etc.
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