Abstract:
In this paper, we propose a novel calibration-free cross-camera target association algorithm that aims to relate local visual data of the same object across cameras with ...Show MoreMetadata
Abstract:
In this paper, we propose a novel calibration-free cross-camera target association algorithm that aims to relate local visual data of the same object across cameras with overlapping FOVs. Unlike other methods using object's own characteristics, our approach makes full use of the interactions between objects and explores their spatiotemporal consistency in projection transformation to associate cameras. It has wider applicability in deployed overlapping multi-camera systems with unknown or rarely available calibration data, especially if there is a large perspective gap between cameras. Specifically, we first extract trajectory intersection which is one of the typical object-object interactive behaviors from each camera for feature vector construction. Then, based on the consistency of object-object interactions, we propose a multi-camera spatiotemporal alignment method via wide-domain cross-correlation analysis. It realizes time synchronization and spatial calibration of the multi-camera system simultaneously. After that, we introduce a cross-camera target association approach using aligned object-object interactions. The local data of the same target are successfully associated across cameras without any additional calibration. Extensive experimental evaluations on different databases verify the effectiveness and robustness of our proposed method.
Published in: IEEE Transactions on Multimedia ( Volume: 25)