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Semi-Supervised Authentically Distorted Image
Quality Assessment with Consistency-Preserving
Dual-Branch Convolutional Neural Network

Guanghui Yue, Member, IEEE, Di Cheng, Leida Li, Member, IEEE, Tianwei Zhou,
Hantao Liu, Member, IEEE, and Tianfu Wang

Abstract—Recently, convolutional neural networks (CNNs)
have provided a favoured prospect for authentically distorted
image quality assessment (IQA). For good performance, most
existing CNN-based methods rely on a large amount of labeled
data for training, which is time-consuming and cumbersome to
collect. By simultaneously exploiting few labeled data and many
unlabeled data, we make a pioneering attempt to propose a
semi-supervised framework (termed SSLIQA) with consistency-
preserving dual-branch CNN for authentically distorted IQA
in this paper. The proposed SSLIQA introduces a consistency-
preserving strategy and transfers two Kinds of consistency
knowledge from the teacher branch to the student branch.
Concretely, SSLIQA utilizes the sample prediction consistency
to train the student to mimic output activations of individual
examples represented by the teacher. Considering that subjects
often refer to previous analogous cases to make scoring deci-
sions, SSLIQA computes the semantic relation among different
samples in a batch and encourages the consistency of sample
semantic relation between two branches to explore extra quality-
related information. Benefiting from the consistency-preserving
strategy, we can exploit numerous unlabeled data to improve
network’s effectiveness and generalization. Experimental results
on three authentically distorted IQA databases show that the
proposed SSLIQA is stably effective under different student-
teacher combinations and different labeled-to-unlabeled data
ratios. In addition, it points out a new way on how to achieve
higher performance with a smaller network.

Index Terms—Image quality assessment, authentical distortion,
consistency-preserving, semi-supervised.
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OWADAYS, digital images are ubiquitous in almost

every aspect of daily life due to the popularity of portable
digital cameras and rapid development of social media. On a
routine day, several billion images are uploaded and shared
on social media platforms such as Google, Flicker, Twitter,
Facebook, Instagram, etc. However, the real-world images
captured by inferior devices and naive photographers can
undergo multiple distortions, e.g., noise corruption, diverse
blurs, under-/over-exposure, compression artifacts, bringing
negative visual quality to the viewing audiences [1]. Therefore,
to maintain the quality of service, it is highly in-demand to
design effective quality assessment methods for real-world
captured images with authentic distortions [2].

Since no pristine information is available, the authentically
distorted image quality assessment (IQA) can only be operated
in a no-reference (NR) manner. In the past decades, tremen-
dous efforts have been devoted to designing NR-IQA methods
[3]-[8]. Generally speaking, existing NR-IQA methods can be
roughly categorized as conventional NR-IQA and convolution-
al neural network (CNN) based NR-IQA.

Conventional NR-IQA proposes to summarize the distortion
characteristics with handcrafted features and to map them to
a quality score. Early works applied a two-stage paradigm
that extracted statistical features to identify distortion first,
followed by distortion-specific quality integration [9]-[11].
Later, more general methods were reported to comprehensively
evaluate images degraded by different kinds of distortion-
s. Such methods empirically selected features from diverse
aspects, such as natural scene statistic (NSS) [12], structure
and luminance analyses [13], gradient variation [14], code-
book construction [15], and free energy modeling [16], to
distinguish the distorted images from the high-quality ones
without distortion identification. Despite remarkable successes
achieved, the aforementioned methods were accomplished in
evaluating synthesized distortions, yet showed limited ability
in representing the essence of complex authentic distortions.
Recently, several attempts were made to simplify the authentic
distortions to a group of hybrid synthesized distortions and
explored effective features to represent them [17], [18]. For
more favoured performance, extensive features were required
to capture the distortions in an all-rounded way [19]. Although
these attempts have successfully promoted the research of
authentically distorted IQA to a certain extent, the performance
grows slowly, exposing the limitation of representing authentic
distortions by handcrafted features.



Compared with the conventional NR-IQA, CNN-based NR-
IQA is conducive to obtaining better performance due to the
strong ability in learning and fusing discriminative features
[20]-[23]. In spite of this, this kind of methods requires a
great amount of labeled images for stable and satisfactory
performance. Unfortunately, existing IQA databases are com-
monly small-scale, which is propitious for properly training an
IQA model. To address such a challenge, a pioneering work
conducted by Kang et al. divided the image into multiple small
pathes and directly labeled them with the quality score of the
whole image [20]. In this way, the training set was greatly
expanded. Inspired by this, more works were conducted by
either redesigning the network structure, changing the patch
weighting strategy, or utilizing the proxy label [21], [24]-[26].
It has been widely acknowledged that both local and glob-
al information are important for achieving a comprehensive
visual quality [27]-[30]. Only utilizing local pathes as the
network’s inputs will lose the global information. To tackle
this issue, subsequent scholars implemented the cropping and
resizing operations on the whole image to support larger
inputs for the network [31]-[33]. Inspired by [34], efforts were
made to split the complex authentic distortion into several
simple synthesized distortions and to label the generated image
with relative quality [35]. Through controlling the distortion
degree, a large image sets could be generated to train the
network by using the relative image quality. However, the
distortion decomposion was subjective and highly dependent
on designer’s experience.

Overall, CNN-based NR-IQA methods receive growing
favor from scholars with advantages of less experience depen-
dence and automatic quality-related feature extraction/fusion.
They evade the limitations of conventional NR-IQA methods
and gradually become the promising alternatives for authen-
tically distorted IQA. Nevertheless, such methods are data-
hungry. How to felicitously address the conflict between the
small scale of IQA databases and the large scale of training
data required is still under discussion. Current solutions are not
ideal. On the one hand, since the authentic distortions are not
uniformly distributed in the spatial domain, it is unsuitable to
arrange each local patch with the same quality as the whole
image. Also, it is impossible to obtain the proxy labels via
full-reference (FR) IQA methods as there is no high-quality
counterparts of authentically distorted images. On the other
hand, since the authentic distortions are usually complex, it is
hard to completely model the authentic distortions by a group
of synthesized ones. Utilizing the synthesized images may lead
to the learned model sub-optimal as there are some differences
between the synthesized images and real-world authentically
distorted images.

In this study, we propose a novel semi-supervised frame-
work, termed SSLIQA, for authentically distorted IQA. Our
SSLIQA follows an asymmetric parallel dual-branch structure
and trains the network in a semi-supervised learning manner
by preserving the consistency between two branches. It has
two kinds of advantages compared with previous works and
handles the challenges in the authentically distorted IQA task
well. First, benefiting from the consistency-preserving strategy,
it can simultaneously exploit few labeled data and many

unlabeled data with real-world authentic distortions to train the
network, thereby improving the network’s effectiveness and
generalization. This avoids the drawbacks raised by using the
synthesized images for training in previous works. One high-
light in the consistency-preserving strategy is that, inspired by
the subjective scoring behaviors, we introduce a batch-level
consistency loss to consider the semantic relation between
images within each batch. Such a loss is rarely reported
in previous IQA methods and contributes to improving the
performance, as discussed in Section IV-D3. Second, thanks
to the asymmetric parallel dual-branch structure, the small-
size student branch can mimic the behaviors of the large-size
teacher branch well. In this way, we only require the small-size
student in the inference stage and achieve higher performance
with a smaller network. Generally, a smaller IQA network with
higher performance is more favoured for the computationally
limited platforms. However, such a problem has been rarely
discussed in previous works. Extensive experiments on three
public authentically distorted IQA databases demonstrate the
superiority of the proposed SSLIQA against twelve state-of-
the-art NR-IQA methods. The contributions of this study are
summarized below.

o To cope with the challenge of limited labeled data, we
propose a pioneering semi-supervised NR-IQA frame-
work with dual branches to exploit images with and
without human annotations for evaluating the quality of
authentically distorted images. With the assistance of
unlabeled images, the proposed framework can achieve
higher prediction accuracy and generalization compared
to the competing methods.

« In view of the subjective scoring behaviors, we propose a
consistency-preserving strategy to transfer quality-related
knowledge from the teacher branch to the student branch
by explicitly encouraging both sample-level and batch-
level consistencies between two branches. The sample-
level consistency enforces the student to mimic output
activations of individual examples represented by the
teacher. The batch-level consistency matches the sample
semantic relation in a given batch between two branches
to explore extra quality-related information.

« We propose a new asymmetric parallel structure by incor-
porating a large teacher branch and a small student branch
in a NR-IQA framework. Through collaborative training
of two branches, the performance of student is improved
and approaches to that of teacher. Contrary to current NR-
IQA methods that usually ignore the amount of network
parameters but blindly chase better performance, our
solution provides us a new way on how to achieve higher
performance with a smaller network.

The remainder of this article is organized as follows. Section
II briefly reviews the related works in NR-IQA. Section III de-
tails the proposed SSLIQA for authentically distorted images.
Section IV introduces the experiments in detail, including the
experimental settings, results and discussions. Finally, Section
V draws the concluding remarks of this study.



II. RELATED WORK
A. Conventional NR-IQA Methods

In the past decades, how to design effective NR-IQA meth-
ods has been widely discussed by the IQA community. Several
efforts have been made and many conventional NR-IQA meth-
ods have been proposed [4], [5]. One basic consensus among
these methods is to effectively analyze and represent the
characteristics of diverse distortions by handcrafted features
and to make the final decision about image quality based on
these features.

Generally, conventional NR-IQA methods can be divided
into specific-purpose and general-purpose methods. The for-
mer knows the distortion type in advance, and puts forward
some features that can represent the distortion intensity. For
instance, Li et al. [36] utilized the Tchebichef moments to
score the the blocking artifacts. Considering that the blurriness
usually degrades the edge information, Wang et al. [37] fitted
the distribution of image gradient magnitudes to model the
properties of blurred images. Yue et al. [38] introduced a blur-
riness assessment metric via analysis of the local binary pattern
features. Driven by the observation that the contrast change
usually brings under-/over-exposure, utilizing the entropy to
measure the local or global information is widely used in the
contrast change IQA task [39]-[41].

The general-purpose methods aim to evaluate various dis-
tortions in a unified way, which brings great challenges for
quality-aware feature selection. In recent literature, it has been
widely acknowledged that the synthesized distortions can be
reflected by the destruction from NSS. In early works, NSS
features were extracted from diverse transform domains, such
as the discrete cosine transform domain [10], [42] and the
wavelet transform domain [43]. To avoid the computational
burden costed in domain transformation, later works tended
to extract NSS features in the spatial domain [12], [44].
Since authentic distortions are more complex than synthesized
distortions, mining NSS features from more domains, e.g.,
color space, gradient space, would be conducive to achieving
higher performance [19]. Apart from NSS features, scholars
also attempted to construct visual codebooks to store quality-
aware features. For example, Ye et al. [45] exploited a large
amount of local patches to construct the codebook by means
of unsupervised learning. In the inference stage, the quality of
query image could be directly obtained without assuming any
specific types of distortions. Similarity, Jiang et al. [15] simul-
taneously constructed two visual dictionaries by keeping the
relationship between local patches and its qualities, yielding a
better prediction accuracy.

In summary, conventional NR-IQA methods have proven
effective in evaluating synthetically distorted images. The
effectiveness of such works highly depends on the selection
of the handcrafted features. However, their further implemen-
tation in authentically distorted IQA is restricted by many
obstacles. On the one hand, since authentic distortions are
quite complex, it is hard to completely represent the distortion
characteristics by limited handcrafted features derived from
specific prior knowledge. On the other hand, blindly expanding
the number of extracted features will increase the training

difficulties during IQA model generation and be easy to lead
to over-fitting. To this end, it is highly desired to propose more
advanced methods with high accuracy but less experience
dependence.

B. CNN-Based NR-IQA Methods

In recent years, CNN-based methods have shown greater
advantages than conventional NR-IQA methods and gradually
become promising alternatives for tackling the challenging
NR-IQA task [21]. How to cope with the insufficient labeled
data for network training is one of the key challenges that
hinder the further development of CNN-based methods.

One straightforward idea is directly dividing the image into
multiple patches and labeling each patch with the quality of
the whole image [20]. Obviously, such an idea ignores the
fact that the image quality varies in different regions. In view
of this, Kim et al. [46] applied FR-IQA methods to form
proxy labels for local patches, and integrated the obtained local
scores to generate the whole image quality. Different from
[46], Bosse et al. [47] proposed a deeper network and utilized
a weighting strategy to integrate local scores. Similarly, Jiang
et al. [48] proposed to fuse the local scores with an adaptive
weighting method by considering the effect of image patch
contents. Considering that not all image patches are useful
for training the CNN model, they also proposed a strategy to
select effective patches by calculating the Euclidean distance
between subjective score of the whole image and predicted
scores of patches [49]. Since distortion easily damages the
image structure information, Pan et al. [24] also utilized
the gradient information as the network’s input apart from
the local patches. In view of that different distortions affect
the image appearance differently, Jiang et al. [50] took the
distortion classification task as an auxiliary task of quality
prediction to improve network’s representation ability for more
accurate prediction. Although dividing the image into blocks
can effectively increase the number of training samples, it
inevitably leads to the loss of global information.

Later works applied the network with large input as the fea-
ture extractor to explore both local and global information [2].
To expand the number of training samples, the original image
was randomly cropped many times. For example, Golestaneh
et al. [33] randomly selected 50 patches with the size of
224x%224 from an image and took the mean value of all 50
patches’ prediction scores as the image’s prediction score. To
obtain accurate IQA performance, they considered the relative
distance information between the images within each batch
during network training. In addition, the resizing operation was
also adopted for global information preservation. For instance,
Wu et al. [31] unified the input of network as 300 x 300
and generated a great number of training data by annotating
the synthesized distorted images with FR-IQA methods. Con-
sidering that the effectiveness of such an annotation strategy
is restricted by the FR-IQA methods selected, Liu et al.
[34] applied the natural order of the relative quality to train
the network. The relative quality can be easily obtained by
processing one image with different distortion levels. Given
that ranking the samples from specific distortion types is



beneficial for obtaining effective representations for the IQA
task, Sun et al. [51] learned a new network using a large
number of synthesized distorted images, named GraphlQA, in
which each synthesized distortion is represented as a graph.
Before predicting the quality of an image with authentic
distortions, the learned network should be finetuned on an
authentically distorted image database. Nonetheless, these
methods mainly work effectively when the query images are
with the similar distortions as the training data. In practice, au-
thentically distorted images contain quite complex distortions.
It is inappropriate to mimic their characteristics by a simple
distortion. In view of this, Ou er al. [35] split the authentic
distortions into a group of synthesized ones and generated
many synthesized data for training the IQA network.

In summary, the conflict between small-scale labeled data
available and large-scale data required for training remains
the focus of discussion in designing CNN-based NR-IQA
methods. Although many data enhancement solutions have
been proposed, they are unsuitable for tackling the data insuf-
ficiency issue in authentically distorted IQA. On the one hand,
as the authentically distorted image does not have pristine
reference, we cannot utilize existing FR-IQA methods to
generate the proxy label. On the other hand, since the authentic
distortions are usually complex, it is hard to completely model
the authentic distortions by a group of synthesized ones.
Therefore, how to design a more advanced framework that
can effectively solve the authentically distorted IQA task with
limited labeled data becomes our main concern. In this paper,
we propose a new framework by using few label data and
many unlabeled data for network training. Different from the
recently reported fully-supervised GraphlQA, the proposed
framework is based on semi-supervised learning. In addition,
it does not require any prior knowledge of distortion types
and only train the network in one stage without finetuning. To
effectively use the unlabeled data, the proposed framework
has two parallel branches and computes both sample-level
and batch-level consistencies between two branches. During
the calculation of batch-level consistency, we consider the
semantic similarity between the images in each batch and
compute the difference between similarity matrices of two
branches. This is quite different from the strategy introduced
by Golestaneh et al. [33], which used the triplet loss to help the
network learn the relative ranking between the images within
each batch.

III. THE PROPOSED SSLIQA METHOD

In this section, we introduce the proposed semi-supervised
quality assessment framework (i.e., SSLIQA) for authenti-
cally distorted images in detail. Since our SSLIQA exploits
images with and without human annotations, we first show
the problem setting and describe the framework of SSLIQA
in an overview. Then, we detail the proposed consistency-
preserving strategy, including the sample-level consistency and
batch-level consistency between the teacher and the student.
Finally, we present the loss function and introduce how to
simultaneously use labeled and unlabeled data for training.

A. Problem Setting and Framework

Let DI = {:I:i,yi}ij\gl denote the IQA database consisting
of N labeled images, where x; and y; are the i-th image
and its corresponding subjective quality score, respectively.
Supervised CNN-based NR-IQA aims to train a network (i.e.,
find a mapping function f(z;) parameterized by O ) to predict
the quality score y; for approximating y;. To fully train the
network with limited labeled data, existing methods usually
transfer (x;, y;) into {x; j, yi,k}kNil via various operations like
cropping, flipping, and distortion synthesis, thereby increasing
the labeled data IVy, times. For diverse operations, the label y;
is set as either the quality score (i.e., y;) of the whole image or
the proxy value from the existing FR-IQA methods. However,
neither approach is suitable to the authentically distorted IQA
task, as discussed in Section II-B.

In this study, inspired by the fact that vast amounts of
unlabeled data with authentic distortions can be easily collect-
ed, we consider a more encouraging and practically feasible
semi-supervised learning manner, i.e., training NR-IQA model
using labeled data as well as unlabeled data. The unlabeled
data are expected to provide extra knowledge of distortion
representation and content understanding, targeting at better
training the network and further improving the network per-
formance in terms of both effectiveness and generalization.
Let DY = {z; }jV:Ul denote the unlabeled set consisting of Ny
unlabeled images. Now the problem becomes how to find a
mapping function f(z) with the participation of both labeled
set DL and unlabeled set DY.

Fig. 1 shows the overall framework of the proposed
SSLIQA, where the NR-IQA task is completed in an end-
to-end manner. Specifically, SSLIQA holds an asymmetric
parallel dual-branch structure, consisting of a teacher branch
and a student branch. In each branch, we set a feature encoder,
which is built upon the pre-trained CNN model (e.g., AlexNet
[52], ResNet [53]), followed by a quality regressor. The
encoder aims to generate the quality-related features, based
on which the regressor is able to predict the quality. In the
training stage, the data x = (27, zV) are first fed into two
branches simultaneously, where ¥ and zU are the labeled
data and unlabeled data, respectively. For z%, the supervised
objective £ (k € {t,s}) is used to separately enforce each
branch to learn quality-related features in the encoder. For
both 2 and zY, a sample-level consistency £V is applied to
align the predictions from two branches. Second, for an input
mini-batch with B samples, we compute the semantic relation
among different samples at each branch and apply a batch-
level consistency Lg to align sample semantic relations from
two branches for exploring extra quality-related information.
Finally, by collaboratively exploiting 2* and zY, we are able
to learn a satisfactory NR-IQA network with the constraints
of Lf, LSS, ﬁg, and Lg. Note that, in contrast to ﬁts and LSS,
LY and LY are unsupervised loss as no human annotations is
required during calculation. In the inference stage, the quality
score of a query image can be obtained by feeding it into the
student branch.

One of the highlights of our SSLIQA is the asymmetric
network structure. As shown in Fig. 1, the feature encoder
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(i.e., backbone) is different between two branches. There are
three aspects of motivation behind this. First, since authentic
distortions are not easily synthesized to obtain quality ranking
information, it is inappropriate to compare the relative quality
between two branches with the same backbone, as suggested
by [34]. Second, since the backbone of each branch is pre-
trained on ImageNet, it would learn more semantic information
for classification, instead of quality-related information, to
make the network converge quickly if we set a symmetric
parallel structure. Third, a smaller IQA network with higher
performance is more favoured in practice as most portable
smart devices with digital cameras are with limited compu-
tational ability. By setting an asymmetric parallel structure,
we can boost the performance of the small student branch
to approach to that of the large teacher branch, and only
utilize the well-trained student branch to test a query image for
reducing the computational requirements. More importantly,
this strategy makes our network very flexible to be extended
by changing the backbone of the teacher branch, as discussed
in Section IV-D.

B. Consistency-Preserving Strategy

As discussed in Section III-A, the core idea of our proposed
SSLIQA is to enforce the consistency between two branches.
In this way, images with and without human annotations can
be exploited for training a NR-IQA network. After carefully
considering the subjective scoring behaviors, we propose a
consistency-preserving strategy, which consists of a sample-
level consistency and a batch-level consistency, to better tackle
the IQA task in this study. In what follows, we will introduce
each kind of consistency in detail.

1) Sample-Level Consistency: Recent progress on semi-
supervised learning shows that encouraging the prediction

consistency of teacher and student would boost the student’s
performance [54]. This intuitively inspires us to compute the
distance (e.g., mean absolute error) between outputs of teacher
and student in our SSLIQA. One derived question is what
kind of output we should choose. In existing literature, NR-
IQA methods, especially the one designed for synthetically
distorted images, usually take a single scalar quality score as
the ground truth to train the network based on the assumption
that viewers usually reach a consensus on the visual quality
of one image. By doing so, the trained network can only feed
back the image quality with a scalar value. Although intuitive,
a single scalar value usually fails to completely reveal the real
quality of one authentically distorted image.

During the subjective experiment, an authentically distorted
image will probably confuse reviewers due to its complex
distortions, thereby receiving divergent opinion scores from
different viewers. To illustrate this, we show two examples
selected from the KonlQ-10K database [55] in Fig. 2, where
the left side displays two images with the similar mean opinion
scores (MOSs), and the right side presents their corresponding
histogram of subjective rating scores from different viewers.
As can be seen, compared with the rating scores of the second
image, those of the first image are more divergent, almost
spanning all the five scales. This indicates that the rating score
distribution (RSD) contains more scoring information (e.g.,
scoring uncertainty) than a single scale quality score. With
this observation, we propose to use the RSD as the output of
each branch. For one image, we have two outputs from the
proposed SSLIQA. The sample-level consistency £ can be
defined as:

1 & 1 &
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where B and BY denote the number of labeled data and the
number of unlabeled data in a mini-batch, respectively. 37 €
RY>P and 3% € RY™P (x € {i,5}) respectively indicate the
output of teacher and the output of student, where P refers
to the maximum scoring scale. By minimizing £V during the
training process, the network would enforce the student to
mimic output activations of individual examples represented
by the teacher.
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Fig. 2. Examples from the KonlQ-10K database. They have similar MOSs
(1.804 vs. 1.848), but are with different rating score distributions.

2) Batch-Level Consistency: Recall from the recent study
on subjective quality assessment of authentically distorted
images [55]-[57], we often refer to previous analogous cases
(either similar in contents or similar in distortions) to make
scoring decisions for the current image. In addition, the scoring
decisions are also affected by the image content, which helps
the viewers understand the connection between image and
distortion [58]. Based on these observations, we propose
to model such scoring behaviors in the proposed NR-IQA
network. Concretely, we take the output F' € RE*HXW of
the last convolutional layer of the backbone as the semantic
information, where C' is the channel number, and H and W
are the spatial dimension of the feature map. For samples in
a mini-batch, we first compute the semantic relation among
a triplet of samples along each branch in an angle-wise way.
Taking the student branch as an example, the semantic relation
Y (Sm, Sn, Sh) can be calculated as:

Y(Sm, Sn, Sh) = €OS L8mSpnSh = (dmn, dhn)y  (2)

where s s
dm,n = u» (3)
l|$m — snll2
Sp — S
dpp = ———, 4
lsn — snll2

where s, = F2 € RE*1X1 denotes the semantic feature of
the -th sample z,, (v € {m,n,h}) in a mini-batch. C; is
the channel number of the semantic feature obtained from the
student branch. Here, we transfer F5 € RCs*HsxWs into F3
by using the global averaging pooling operation to reduce the
computational complexity. According to Egs. (2)-(4), we can
also obtain the semantic relation (¢, Ly, ts) of the teacher
branch. Thanks to the angle-wise similarity used in Eq. (2),
we can subtly tackle the dimension mismatch problem between
semantic features from two branches.

In the asymmetric parallel network, encouraging the seman-
tic relation consistency is conducive to learning more robust
quality-related feature representation under different encoders.
With this assumption, we apply a batch-level consistency £V,
defined as:
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where X3 = {(@, Tn, Tn)|m # n # h} is a set of 3-tuples
of distinct samples. Sy, (+) is the smooth L1 loss [59]. During
network training, we simply use all possible tuples from
samples in a given mini-batch. One advantages of utilizing
batch-level consistency is that we do not need to provide any
human annotations for supervision, as shown by Eq. (5). By
exploiting more unlabeled data, the batch-level consistency can
better train the student to form the same semantic relation with
that of the teacher, promoting extracting additional semantic
information for performance improvement.

C. Loss Function

The proposed SSLIQA aims to simultaneously exploit la-
beled and unlabeled data to train a model for effectively solv-
ing the authentically distorted IQA task. As shown in Fig. 1,
SSLIQA adopts an asymmetric parallel dual-branch structure.
For each branch, we utilize the labeled data to optimize it for
the quality-related feature extraction. Specifically, given the
mini-batch with B% samples, the supervised loss L° is the
linear combination of two components:

B~ B~
1 ) ) 1 ) )
£85 =2 Y o=y I3+ 5z Dol —v'l3. ©
i=1 i=1

cs cs
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where y* € R is the ground truth (i.e., the rating score
distribution) of the 4-th images. The first item £; and second
item L2 are mean square error losses calculated from the
teacher branch and the student branch, respectively.

To transfer quality-related knowledge, we propose a
consistency-preserving strategy that explicitly encourages
both sample-level and batch-level consistencies between two
branches, as discussed in Section III-B. Since this strategy
does not require any human labels for training, images with
and without human annotations can all participate in network
training. Concretely, the unsupervised loss LY linearly com-
bines the sample-level consistency £V and the batch-level
consistency L£Y:

£V =Y+ 8- Ly, @)

where 3 is a hyperparameter to balance £Y and £{. In this
study, we empirically set it as 100. Finally, the total loss of
the proposed SSLIQA is given by:

L=L+)-LY, (®)

where ) is the trade-off weight between the supervised loss

L5 and unsupervised loss £U. In this study, we apply a
2

Sigmoid warming up function, ie., A(t) = e~/ 1o



control the value of trade-off weight A\. Here, ¢ and 1" denote
the current epoch and the maximum epoch, respectively. It
is clear that, the A value would gradually ramp-up from 0
to 1 during network training. Such a design could guarantee
that the training loss would not be dominated by £U at the
beginning of network training when the consistency targets for
unlabeled data are unreliable.

IV. EXPERIMENTS AND RESULTS
A. Experimental Settings

1) Databases: In this study, we choose three authentically
distorted IQA databases for evaluating and comparing the
performance of our method and others, including KonlQ-
10K [55], LIVE-C [57], and NNID [56]. KonIQ-10K includes
10,073 authentically distorted images with the spatial resolu-
tion of 1024x768. The images have balanced distributions of
content, sharpness and brightness, covering complex authen-
tic distortions involved in real-world photography. For each
image, it provides more than 120 ratings, and the subjective
quality score is reported in the form of MOS as well as
RSD. The MOS values fall into the range of [1, 5]. LIVE-C
consists of 1,162 authentically distorted images. Each image
is collected by a mobile device without introducing any
synthesized distortions beyond those occurring during capture,
processing, and storage. The MOS value of each image ranges
from 0 to 100. NNID is a natural night-time IQA database,
containing a total of 2,240 images with 448 different image
contents. Each image is captured by one of three photographic
equipment at night, and its quality is reported in the form of
MOS with the range of [0,1]. Since only KonIQ-10K provides
the RSD, we mainly conduct experiments on it and use the
remainder two database in the cross-validation experiments.
Details of these databases are briefly summarized in Table I.

TABLE I
SUMMARY OF AUTHENTICALLY DISTORTED IQA DATABASES RELATING
TO SCENE, IMAGE NUMBER, SUBJECTIVE SCORE TYPE AND SCORE

RANGE.
Database | Scene Number Score Type Score Range
KonlQ-10K | daytime & nighttime 10,073 MOS & RSD [1,5]
LIVE-C daytime & nighttime 1,162 MOS [0,100]
NNID nighttime 2,240 MOS [0,1]

2) Evaluation Criteria: Four commonly adopted and wide-
ly acknowledged criteria by the IQA community are employed,
including Pearson Linear Correlation Coefficient (PLCC), S-
pearman Rank-order Correlation Coefficient (SRCC), Kendall
Rank-order Correlation Coefficient (KRCC), and Root Mean
Squared Error (RMSE). Among them, PLCC and RMSE are
used for measuring the prediction accuracy, while SRCC and
KRCC are used for evaluating the prediction monotonicity
[56], [60]. Generally, a superior IQA method has higher values
of PLCC, SRCC, and KRCC, and a smaller value of RMSE.

B. Implementation Details

In our SSLIQA, we adopt the AlexNet [52] and ResNet101
[53] pre-trained on ImageNet as the backbone (i.e., feature

extractor) of the student branch and teacher branch, respec-
tively. For the output of each backbone, we utilize the global
average pooling to shrink its dimension and feed the resulted
features into the quality regressor, which consists of a group
of fully connected (FC) layers. Specifically, we respectively
set four and two FC layers for the teacher and student as their
backbones provide outputs with different dimensions. After
the last FC layer, a Softmax function is applied to generate
the predicted quality 7 € R'* P,

We implement the proposed SSLIQA on the Pytorch library,
and conduct the experiments on a workstation equipped with
two Intel XEON 4210R CPUs and one NVIDIA RTX3090
GPU. The network is trained by using the Adam optimizer.
The learning rate is initialized as 2e-4 and decayed with a 0.5
after every two epochs. We totally train 10 epoches for the NR-
IQA task, and the ramp-up epoch T is set as 10. The batch
size is set to 64, including 16 labeled images and 48 unlabeled
images. Following the data enhancement strategies in previous
works [33], we randomly flip the image along the horizontal
direction. Meanwhile, we resize the image into 512x384 and
randomly crop 10 sub-images with the resolution of 224 x224.
In the inference stage, 10 sub-images are randomly selected
from a query image. For each sub-image, its quality score can
be obtained by only feeding it into the student branch. By
averaging 10 scores obtained, we can finally get the quality
score of the query image.

C. Performance Comparison

In this subsection, we first compare our SSLIQA with
two categories of recently reported NR-IQA methods. The
first category contains four conventional NR-IQA methods,
including NIQE [44], BRISQUE [12], GWH-GLBP [18], and
SSEQ [11]. The second category contains seven CNN-based
NR-IQA methods, including CNNIQA [20], WaDIQaM [47],
PAQ-2-PIQ [61], NSSADNN [62], MetalQA [22], MB-CNN
[24], GraphIQA [51], and one Transformer-based NR-IQA
method, namely MUSIQ-single [63]. For our SSLIQA, we
randomly partition the KonlQ-10K database into training and
testing sets by selecting 8,000 and 2,000 images, respectively.
Two thirds of images in the training set discards their labels
and serves as the unlabeled data during network training.
In other words, we have 2,000 labeled images and 6,000
unlabeled images. The performance of our SSLIQA is reported
on the testing set. For each competing method (except NIQE),
we retrain the NR-IQA model on the 2,000 labeled images and
test it on the testing set. Since NIQE is an opinion-unaware
method, we directly test it on the testing set. Following the
common practice in NR-IQA [24], we repeat the random
split procedure 10 times, and take the median value of each
evaluation criterion as the result.

Table II summarizes the experimental results on the KonlQ-
10K database in terms of four evaluation criteria. From the
table, we can see that: 1) The general performance of conven-
tional NR-IQA methods is fairly unsatisfactory. Among the
four methods, BRISQUE performs the best, but only achieves
0.581, 0.541, 0.373, and 0.447 in PLCC, SRCC, KRCC, and
RMSE, respectively. NIQE obtains the worst results, in which



TABLE II
PERFORMANCE COMPARISONS ON THE KONIQ-10K DATABASE.
FOR CONVENIENCE, THE BEST RESULT OF EACH EVALUATION
CRITERION IS HIGHLIGHTED IN BOLDFACE.

Methods PLCC SRCC KRCC RMSE
E < | NIQE [#4] 0300 0276 0.186 0524
£ S | BRISQUE [12] 0581 0541 0373 0447
S o | GWH-GLBP [18] | 0557 0502 0344 0.459
& % | sSEQ[11] 0326 0303 0206 0.518
CNNIQA [20] 0654 0635 0446 0449
WaDIQaM [47] 0665 0.644 0459 0411
- PAQ-2-PIQ [61] 0728 0718 0524 0369
2 & | NSSADNN [62] 0595 0549 0382 0464
2 % | Metwla 2] 0.860 0.826 0.635 0279
Z Z | MB-CNN [24] 0.609 0.600 0416 0465
GraphIQA [51] 0862 0.845 0.652 0280
MUSIQ-single [63] | 0.858 0.835 0.643  0.283
SSLIQA (Ours) 0.867 0841 0.652 0274

both PLCC and SRCC are hard to reach 0.3. 2) Compared with
conventional NR-IQA methods, CNN-based methods are more
powerful in tackling the authentically distorted IQA task. For
instance, NSSADNN, although performing the worst among
the seven methods, still holds a comparable performance a-
gainst BRISQUE. MetalQA gets favoured results with a PLCC
of 0.860, a SRCC of 0.826, a KRCC of 0.635, and a RMSE of
0.279. Nevertheless, there is still much room for performance
improvement. 3) In contrast to these competing methods, the
proposed SSLIQA holds considerable performance advantages
and exhibits superior effectiveness. Specifically, it respectively
achieves 0.867 in PLCC, 0.841 in SRCC, 0.652 in KRCC, and
0.274 in RMSE, and accordingly surpasses MetalQA 0.7%,
1.5%, 1.7%, and 0.5% on these evaluation criteria. Meanwhile,
it outperforms the runner-up (GraphIQA) 0.5% in PLCC and
0.6 % in RMSE, while is slightly inferior to it in SRCC.
These indicate that our SSLIQA is more competent for the
authentically IQA task.

Potential reasons about above results are given as follows.
First, the key points of conventional methods lie in the hand-
crafted features selected. Generally speaking, one straightfor-
ward way of existing methods is to explore effective features
via the analysis of structure, texture, naturalness, etc., as these
image attributes are usually changed with the introduction of
distortions. Empirically, statistical features (e.g., NSS, local
binary patterns) can, to some extent, measure the distortion
type or degree, because the synthetical distortions are regular
in the spatial and transform domains [12], [18]. However,
the authentic distortions are usually very complex. Traditional
handcrafted features are hard to fully quantify such distortions
even if we increase the number of features. Second, CNN-
based methods advantage in quality-related feature extraction
and fusion in an automatic way, instead of in an experience-
based approach. Therefore, it is acceptable that CNN-based
methods are more competent than conventional methods in the
authentically distorted IQA task. In spite of this, most existing
methods, e.g., CNNIQA, WaDIQaM, NSSADNN, and MB-
CNN, are plagued by global information negligence, which is
caused by dividing the image into small patches (with the size
of 32x32) to expand the training data. As a result, they only

obtain mediocre performance. In contrast, MetalQA preserves
the original size of the input image, achieving better results.
Last but not the least, to cope with the problem of insufficient
labeled data, our SSLIQA randomly crops the image multi-
ple times with a relative large size (224x224) to preserve
the global information. Moreover, SSLIQA simultaneously
exploits both labeled data and unlabeled data and trains the
IQA model in a semi-supervised manner. It is convenient to
mine extra knowledge of distortion representation and content
understanding from the unlabeled data, and to further improve
the network performance.

To demonstrate the experimental results more intuitively, we
show the scatter plots of MOSs versus predicted scores gen-
erated by the NR-IQA methods on the KonlQ-10K database
in Fig. 3. From Fig. 3, it is clear that the blue points by the
proposed method distribute around the red fitting curve more
closely than the other NR-IQA methods. This indicates that the
objective scores delivered by our method are more consistent
with subjective scores.

Generally, a good NR-IQA method should not only achieve
good performance on one database but also perform stably on
unseen databases. To investigate the generalization ability of
our SSLIQA, we further conduct a group of cross-validation
experiments. More concretely, we revisit the learned NR-IQA
models on the KonlQ-10K database with the default settings
described in Section IV-C, and directly test them on the LIVE-
C database and the NNID database without any fine-tuning,
respectively. Similar to the main experiments, we also resize
each testing image in NNID into 512x384 and randomly crop
10 sub-images with the resolution of 224 x224. Whereas, we
keep the original size of each image in LIVE-C. Obviously, the
prediction value of each testing sub-image will be within the
range of [1, 5] when using the IQA model learned on KonlQ-
10K. To calculate RMSE, we should map the prediction value
into the MOS range of the target database (i.e., LIVE-C or
NNID) using a nonlinear logistic function. According to the
recommendation of video quality experts group [64], we use
the four-parametric logistic function in this study. Since testing
image in NNID is cropped 10 times, its overall quality score
is calculated as the mean of prediction values of 10 sub-
images. Considering the low performance of conventional NR-
IQA methods, we do not investigate their generalization ability
here. Table III summarizes the comparison results. As can be
seen, similar to the results in Table II, SSLIQA and MetalQA
hold the leading advantages than other methods across two
datasets. More specifically, our SSLIQA obtains better results
than MetalQA in SRCC, KRCC, and RMSE on LIVE-C,
while is slightly inferior to MetalQA in all four evaluation
criteria on NNID. One possible reason about this is that
KonlQ-10K only has a small part of nighttime images, while
NNID consists of nighttime images. There is large domain
shift between the two databases, which hinders our method’s
understanding of nighttime images. To validate this argument,
we replace 1,000 daytime unlabeled images by 1,000 nighttime
unlabeled images while keep other images unchanged and
retrain our SSLIQA. In this way, more nighttime images are
included in the training stage. Experimental results show that
our SSLIQA has a better performance (PLCC=0.783, SRC-
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C=0.779, KRCC=0.580, RMSE=0.105) on the NNID database
than before. This indicates that our SSLIQA can improve its
effectiveness in evaluating nighttime images by using more
nighttime images during network training. Compared to our
SSLIQA, MetalQA adopts a strategy of learning to learn,
which more advantages in quickly adapting to new data with
such large domain shift. Therefore, MetalQA has an advantage
over our SSLIQA in achieving better performance on NNID.
Nevertheless, as shown by the results on LIVE-C, SSLIQA
still performs better than MetalQA when the testing set has
the similar domain as that of the training set. In addition, the
proposed SSLIQA is ahead of all other competing methods
on two databases in all evaluation criteria by a large margin.
These indicates the superiority of our SSLIQA against others
in generalization.

TABLE III
RESULTS OF CROSS-VALIDATION EXPERIMENTS ON THE LIVEC AND
NNID DATABASE. THE BEST RESULT OF EACH EVALUATION CRITERION IS
HIGHLIGHTED IN BOLDFACE.

MUSIQ-single

Methods LIVE-C NNID

PLCC SRCC KRCC RMSE|PLCC SRCC KRCC RMSE
CNNIQA [20] 0.513 0.485 0.333 17.601|0.597 0.584 0.420 0.136
WaDIQaM [47] 0.538 0.535 0.369 17.111{0.704 0.702 0.509 0.122
PAQ-2-PIQ [61] 0.528 0.506 0.345 16.954|/0.715 0.712 0.514 0.118
NSSADNN [62] |0.439 0.426 0.291 18.437(0.733 0.731 0.536 0.114
MetalQA [22] 0.706 0.676 0.482 14.377|0.784 0.781 0.583 0.105
MB-CNN [24] 0.481 0.459 0.313 17.915/0.553 0.548 0.386 0.140
GraphlQA [51] 0.619 0.591 0.414 15.948|0.728 0.727 0.529 0.116
MUSIQ-single [63](0.538 0.512 0.355 17.104|0.521 0.488 0.338 0.145
SSLIQA (Ours) 0.706 0.695 0.497 14.371/0.771 0.770 0.571 0.108

D. Ablation Study

As described in Section III, our SSLIQA follows an asym-
metric parallel dual-branch structure, and exploits both labeled

3 35 4 5 2 25 3 35 4

SSLIQA

Scatter plots of subjective scores (i.e., MOSs) versus objective scores predicted by NR-IQA methods on the KonIQ-10K database.

and unlabeled images to cope with the authentically distorted
NR-IQA task in a semi-supervised manner. Experimental
results in Section IV-C demonstrates its good performance in
effectiveness and generalization. In this subsection, we further
conduct ablation experiments to investigate the robustness of
our SSLIQA and to discuss the positive role of our network
design concept. All experiments are conducted on the KonlQ-
10K database with the same settings as the main experiment
described in Section IV-C.

1) Robustness Analysis under Different Student-Teacher
Combinations: Firstly, we fix the student branch as AlexNet
[52], and select diverse classical networks, e.g., Inception-
ResnetV2 [65], DenseNetl21 [66], and ResNet101 [53] as
the teacher branch, respectively. Both the regressors in the
student and the teacher consists of several FC layers. Here,
the regressor of the student is set to (256—5), where the
number denotes the amount of neural nodes in the associated
FC layer. Since the last block of these teachers provide outputs
with different dimensions, their regressors are respective-
ly set to (1536—512—256—5), (1024—512—256—5), and
(2048—1024—512—256—5). Table IV lists the results under
different student-teacher combinations. From the upper part of
the table, there exists obvious performance gap (approximately
4% in PLCC and SRCC) between the student (i.e., AlexNet)
and any of the remaining networks. This is mainly because
AlexNet has a simpler structure than others, thereby showing
limited power in the IQA task. In spite of this, when incorpo-
rating it with each of these networks (as the teacher) using our
semi-supervised learning strategy, we can obviously increase
its performance, as shown in the lower part of Table IV. Due to
the relatively good performance, we chose the combination of
AlexNet and ResNet101 as the result of our main experiment,
as shown in Table II.

Secondly, we select one recently reported NR-IQA network



TABLE IV
ABLATION EXPERIMENTS ON DIFFERENT STUDENT-TEACHER
COMBINATIONS. THE LOWER PART OF THIS TABLE SHOWS THE
STUDENT’S PERFORMANCE IN CASE OF INCORPORATING IT WITH
DIFFERENT TEACHERS. HERE, WE TAKE ALEXNET AS THE

STUDENT.
Baseline
Methods PLCC SRCC KRCC RMSE
AlexNet [52] 0.835 0.808 0.612 0.302
InceptionResnetV2 [65] 0.875 0.846 0.657 0.266
DenseNetl21 [66] 0.881 0.856 0.669 0.260
ResNet101 [53] 0.875 0.848 0.662 0.267
TReS [33] 0.879 0.861 0.676 0.262
Semi-supervised NR-IQA
Teachers PLCC SRCC KRCC RMSE
InceptionResnetV2 [65] 0.856 0.831 0.639 0.283
DenseNet121 [66] 0.864 0.839 0.650 0.276
ResNet101 [53] 0.867 0.841 0.652 0.274
TReS [33] 0.849 0.821 0.629 0.290

(TReS [33]) as the teacher to explore whether our method has
the potential to combine with the existing NR-IQA networks.
Here, we remove the relative ranking constraint of original
TReS as it could burden the semi-supervised learning. As
can be seen from the upper part of Table IV, compared
with other baselines, TReS obtains superior performance as it
considers both low-level spatial details and high-level semantic
concepts for distortion understanding, instead of only the high-
level semantic concepts. As shown in the last line, similar to
these classical networks, it also boosts the performance of the
student when playing the role of the teacher in the proposed
semi-supervised training strategy. An interesting observation is
that, although more obvious superiority is observed as a base-
line, TReS does not help the student (i.e., AlexNet) achieve
better performance compared to other networks after the semi-
supervised training. One potential reason is that TReS uses
the Transformer, which captures long-range dependencies and
global information, to extract features from the input image.
In contrast, AlexNet utilizes CNN, which mainly captures
local information due to the limited receptive field of the
convolution operation, to extract features from the input image.
Since the focuses of Transformer and CNN are different during
feature extraction, the CNN-based student may be hard to
fully mimic the behavior of the Transformer-based teacher.
Nevertheless, the teacher still contributes to improving the
student’s performance.

TABLE V
ABLATION EXPERIMENTS ON DIFFERENT STUDENT-TEACHER
COMBINATIONS. THE LOWER PART OF THIS TABLE SHOWS
THE STUDENT’S PERFORMANCE IN CASE OF INCORPORATING
IT WITH THE TEACHER RESNET101.

Methods Baseline

PLCC SRCC KRCC RMSE
MobileNetV3 [67] 0.869  0.842 0.650 0.274
EfficientNetBO [68] | 0.883 0.856 0.669 0.259

Semi-supervised NR-IQA

Students PLCC SRCC KRCC RMSE
MobileNetV3 [67] | 0875 0856 0.667 0271
EfficientNetBO [68] | 0.888 0868  0.684 0255
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Finally, we further keep the teacher (ResNet101) unchanged
while replace the student (AlexNet) by two recently reported
lightweight networks (MobileNetV3 [67] and EfficientNetBO
[68]) to investigate whether the performance of our method
can be further improved. Table V shows the results. As seen,
the teacher still boosts the performance of the student. More-
over, compared the combination of AlexNet+ResNetl101, the
performance of our method can be improved when replacing
AlexNet by either of these two lightweight networks as the
student. Overall, our proposed SSLIQA has strong robustness
under different student-teacher combinations.

2) Robustness Analysis under Different Ratios of Labeled-
to-Unlabeled Data: Generally, unlabeled data could provide
extra information to boost the network learning. Here, we fur-
ther investigate the performance change of our SSLIQA under
different ratios of labeled-to-unlabeled data. The experimental
results are shown in Table VI. For convenient understanding,
we denote each SSLIQA method in the form of “student +
teacher”. Compared with the baseline results reported in the
first row of Table IV, there exists an obvious performance gain
no matter what proportion of unlabeled data is included. More-
over, it is clear that, overall, almost all four criteria increase
gradually with the increase of the number of unlabeled images.
These demonstrate that the unlabeled images play a positive
role in achieving good IQA performance, and our SSLIQA is
robust to different settings of labeled-to-unlabeled data.

3) Effectiveness of Sample-level Consistency and Batch-
level Consistency: As described in Section III-B, SSLIQA pro-
poses a consistency-preserving strategy, consisting of sample-
level consistency and batch-level consistency, to exploit un-
labeled data. Here, we make more in-depth investigations to
explore the performance variations when removing each of
them from SSLIQA. Table VII tabulates the experimental
results. For convenient expression, we denote these two opera-
tions as “w/o Sample-level Consistency” and “w/o Batch-level
Consistency”, respectively. Through comparing the results in
Table VI and Table VII, it obviously leads to a negative effect
no matter which module is removed. Compared with sample-
level consistency, batch-level consistency has greater influence
on the final results. For instance, there would be approximately
a 0.2% decrement of PLCC and a 0.2% decrement of SRCC
when removing the sample-level consistency, and be approx-
imately a 0.7% decrement of PLCC and a 0.8% decrement
of SRCC when removing the batch-level consistency regard-
ing the combination of AlexNet + InceptionResnetV2. This
indicates that both two kinds of consistency play a positive
role in the authentically distorted IQA task, and their natural
cooperation helps the proposed SSLIQA work well.

4) Benefits from the Asymmetric Parallel Dual-branch
Structure: In recent years, it has become a mainstream trend
to utilize the classical classification network as the backbone
of a NR-IQA model. For better performance, larger networks
are especially favoured and welcome. However, this would
increase the number of network parameters and put forward
greater requirements for hardware devices. In our daily life,
portable smart devices with digital cameras (e.g., phone, iPad)
are popular tools for capturing digital images. A smaller model
with higher performance is more desired in this situation. To



TABLE VI
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ABLATION EXPERIMENTS ON DIFFERENT ON RATIOS OF LABELED-TO-UNLABELED DATA. THE BEST RESULT OF EACH EVALUATION CRITERION IS

HIGHLIGHTED IN BOLDFACE.

Methods Labeled:Unlabeled = 1:1 Labeled:Unlabeled = 1:2 Labeled:Unlabeled = 1:3
PLCC SRCC KRCC RMSE | PLCC SRCC KRCC RMSE | PLCC SRCC KRCC RMSE
AlexNet + InceptionResnetV2 | 0.852  0.828 0.636 0.287 0.854  0.832 0.640 0.286 0.856  0.831 0.639 0.283
AlexNet + DenseNetl121 0859  0.834 0.643 0.280 0.864  0.839 0.649 0.277 0.864  0.839 0.650 0.276
AlexNet + TReS 0.844  0.813 0.620 0.295 0.847  0.817 0.627 0.291 0.849  0.821 0.629 0.292
AlexNet + ResNet101 0.860  0.836 0.646 0.279 0.863 0.837 0.648 0.278 0.867 0.841 0.652 0.274
TABLE VII TABLE VIII
ABLATION EXPERIMENTS ON THE CONSISTENCY-PRESERVING COMPARISONS IN PARAMETER QUANTITY AND PERFORMANCE
STRATEGY. INCREMENT (APLCC AND ASRCC). THE FIRST FOUR ROWS PRESENT

THE RESULTS OF THE ENTIRE NETWORK UNDER DIFFERENT STUDENT +

Methods w/o Sample-level Consistency TEACHER COMBINATIONS IN THE TRAINING STAGE, RESPECTIVELY. THE
PLCC SRCC KRCC RMSE LAST ROW SHOWS THE RESULTS OF THE STUDENT NETWORK

AlexNet + InceptionResnetV2 0.854 0.829 0.637 0.284 (ALEXNET) IN THE TESTING STAGE.

AlexNet + DenseNet121 0.863 0838 0.648 0.277 Methods Parameters Parameter Ratio APLCC ASRCC

AlexNet + TReS 0.844 0813 0620 0291 AlexNet + InceptionResnetv2| 57.7M 4.50% 2.50%  2.85%

AlexNet + ResNet101 0865 0843 0654 0274 AlexNet + DenseNet121 10.1M 3290%  347%  3.84%

Methods w/o Batch-level Consistency AlexNet + TReS 155.0M 1.60% 1.68% 1.61%
PLCC SRCC KRCC RMSE AlexNet + ResNet101 47.8M 5.50% 3.83% 4.09%

AlexNet + InceptionResnetV2 | 0.849  0.823  0.631 0.290 AlexNet 2.5M 100% - -

AlexNet + DenseNet121 0.853 0.827 0.635 0.286

AlexNet + TReS 0.856 0.831 0.639 0.285

AlexNet + ResNet101 0.856 0.830 0.638 0.284

illustrate the advantage of the proposed SSLIQA in model
size saving, we first respectively report its parameter numbers
under different teacher settings during the training stage and
the testing stage in Table VIII. As shown in the first column,
different from the training stage, the network has very few pa-
rameters during the testing stage. For instance, its parameters
are only 4.50% and 5.50% of AlexNet + InceptionResnetV2
and AlexNet + ResNetl01, respectively. This is because our
SSLIQA holds an asymmetric parallel dual-branch structure
and enforces the student (AlexNet) to mimic the behavior of
the teacher (i.e., InceptionResnetV2, DenseNet121, TReS, or
ResNet101) during the training stage. Under such a configu-
ration, our network has a relatively large parameter number.
After network training, however, only the small-size student
(i.e., AlexNet), is used in the testing stage, thereby reducing
the model parameters greatly. Next, we show the performance
increment brought by the proposed asymmetric dual-branch
framework. Compared with its baseline (i.e., AlexNet in Table
IV), the student’s performance is greatly improved (see the
last two columns of Table VIII) when incorporating it with
a teacher by utilizing our SSLIQA. For example, the PLCC
increment (APLCC) is more than 1.68% and the SRCC
increment (ASRCC) is more than 1.61% no matter which
teacher is selected. In brief, our SSLIQA provides us a new
solution on how to achieve higher IQA performance with a
smaller network.

V. CONCLUSION

In this paper, we propose a semi-supervised NR-IQA frame-
work, termed SSLIQA, for authentically distorted images.
SSLIQA adopts an asymmetric parallel dual-branch structure,
and its success lies in simultaneously exploiting both labeled

and unlabeled images with the assistance of a consistency-
preserving strategy. Concretely, such a strategy, inspired by
the subjective scoring behaviors, enforces the student to
mimic activations of the teacher, and helps to explore the
intrinsic relation between images. Extensive experiments and
ablation studies demonstrate that our SSLIQA is superior
to twelve state-of-the-art NR-IQA methods with considerable
effectiveness and generalization. Moreover, benefiting from the
consistency-preserving strategy and the asymmetric network
structure, our SSLIQA can effectively exploit the unlabeled
data to achieve higher IQA performance with a smaller net-
work. This points to an interesting avenue for future work.

REFERENCES

[1] Q. Jiang, Z. Peng, S. Yang, and F. Shao, “Authentically distorted image
quality assessment by learning from empirical score distributions,” IEEE
Signal Processing Letters, vol. 26, no. 12, pp. 1867-1871, 2019.

[2] L. Li, T. Song, J. Wu, W. Dong, J. Qian, and G. Shi, “Blind image
quality index for authentic distortions with local and global deep feature
aggregation,” IEEE Transactions on Circuits and Systems for Video
Technology, accepted, DOIL: 10.1109/TCSVT.2021.3112197, 2021.

[3] H. Liu, N. Klomp, and I. Heynderickx, “A no-reference metric for
perceived ringing artifacts in images,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 20, no. 4, pp. 529-539, 2009.

[4] W. Lin and C.-C. J. Kuo, “Perceptual visual quality metrics: A survey,”
Journal of Visual Communication and Image Representation, vol. 22,
no. 4, pp. 297-312, 2011.

[5] A. C. Bovik, “Automatic prediction of perceptual image and video
quality,” Proceedings of the IEEE, vol. 101, no. 9, pp. 2008-2024, 2013.

[6] W. Zhou, L. Yu, Y. Zhou, W. Qiu, M.-W. Wu, and T. Luo, “Local and
global feature learning for blind quality evaluation of screen content and
natural scene images,” IEEE Transactions on Image Processing, vol. 27,
no. 5, pp. 2086-2095, 2018.

[71 G. Yue, C. Hou, K. Gu, T. Zhou, and H. Liu, “No-reference quality
evaluator of transparently encrypted images,” IEEE Transactions on
Multimedia, vol. 21, no. 9, pp. 2184-2194, 2019.

[8] J. Xu, W. Zhou, and Z. Chen, “Blind omnidirectional image quality
assessment with viewport oriented graph convolutional networks,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 5, pp. 1724-1737, 2021.



[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. K. Moorthy and A. C. Bovik, “A two-step framework for constructing
blind image quality indices,” IEEE Signal Processing Letters, vol. 17,
no. 5, pp. 513-516, 2010.

M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image quality
assessment: A natural scene statistics approach in the dct domain,” /EEE
Transactions on Image Processing, vol. 21, no. 8, pp. 3339-3352, 2012.
L. Liu, B. Liu, H. Huang, and A. C. Bovik, “No-reference image quality
assessment based on spatial and spectral entropies,” Signal Processing:
Image Communication, vol. 29, no. 8, pp. 856-863, 2014.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image
quality assessment in the spatial domain,” IEEE Transactions on Image
Processing, vol. 21, no. 12, pp. 46954708, 2012.

Q. Li, W. Lin, J. Xu, and Y. Fang, “Blind image quality assessment
using statistical structural and luminance features,” IEEE Transactions
on Multimedia, vol. 18, no. 12, pp. 2457-2469, 2016.

W. Zhou, L. Yu, W. Qiu, Y. Zhou, and M. Wu, “Local gradient patterns
(Igp): An effective local-statistical-feature extraction scheme for no-
reference image quality assessment,” Information Sciences, vol. 397,
pp. 1-14, 2017.

Q. Jiang, F. Shao, W. Lin, K. Gu, G. Jiang, and H. Sun, “Optimizing mul-
tistage discriminative dictionaries for blind image quality assessment,”
IEEFE Transactions on Multimedia, vol. 20, no. 8, pp. 2035-2048, 2018.
K. Gu, G. Zhai, X. Yang, and W. Zhang, “Using free energy principle
for blind image quality assessment,” IEEE Transactions on Multimedia,
vol. 17, no. 1, pp. 50-63, 2015.

D. Jayaraman, A. Mittal, A. K. Moorthy, and A. C. Bovik, “Objective
quality assessment of multiply distorted images,” in 2012 Conference
Record of the Forty Sixth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR). 1EEE, 2012, pp. 1693-1697.

Q. Li, W. Lin, and Y. Fang, “No-reference quality assessment for
multiply-distorted images in gradient domain,” IEEE Signal Processing
Letters, vol. 23, no. 4, pp. 541-545, 2016.

D. Ghadiyaram and A. C. Bovik, “Perceptual quality prediction on
authentically distorted images using a bag of features approach,” Journal
of Vision, vol. 17, no. 1, pp. 32-32, 2017.

L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural networks
for no-reference image quality assessment,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp.
1733-1740.

J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang, and A. C.
Bovik, “Deep convolutional neural models for picture-quality prediction:
Challenges and solutions to data-driven image quality assessment,” IEEE
Signal Processing Magazine, vol. 34, no. 6, pp. 130-141, 2017.

H. Zhu, L. Li, J. Wu, W. Dong, and G. Shi, “Metaiqa: Deep meta-
learning for no-reference image quality assessment,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 14 143-14152.

W. Zhou, Q. Jiang, Y. Wang, Z. Chen, and W. Li, “Blind quality as-
sessment for image superresolution using deep two-stream convolutional
networks,” Information Sciences, vol. 528, pp. 205-218, 2020.

Z. Pan, F. Yuan, X. Wang, L. Xu, S. Xiao, and S. Kwong, “No-reference
image quality assessment via multi-branch convolutional neural net-
works,” IEEE Transactions on Artificial Intelligence, accepted, DOI:
10.1109/TAL1.2022.3146804, 2022.

S. Li, J. Xue, and Y. Han, “No-reference stereoscopic image quality
assessment based on local to global feature regression,” in 2019 IEEE
International Conference on Multimedia and Expo (ICME). IEEE,
2019, pp. 448-453.

L. Shen, X. Chen, Z. Pan, K. Fan, F. Li, and J. Lei, “No-reference
stereoscopic image quality assessment based on global and local content
characteristics,” Neurocomputing, vol. 424, pp. 132-142, 2021.

E. C. Larson and D. M. Chandler, “Most apparent distortion: full-
reference image quality assessment and the role of strategy,” Journal
of Electronic Imaging, vol. 19, no. 1, p. 011006, 2010.

S.-H. Bae and M. Kim, “A novel image quality assessment with globally
and locally consilient visual quality perception,” IEEE Transactions on
Image Processing, vol. 25, no. 5, pp. 2392-2406, 2016.

L. Li, Y. Zhou, K. Gu, W. Lin, and S. Wang, “Quality assessment of
dibr-synthesized images by measuring local geometric distortions and
global sharpness,” IEEE Transactions on Multimedia, vol. 20, no. 4, pp.
914-926, 2017.

G. Yue, C. Hou, K. Gu, T. Zhou, and G. Zhai, “Combining local and
global measures for dibr-synthesized image quality evaluation,” /IEEE
Transactions on Image Processing, vol. 28, no. 4, pp. 2075-2088, 2019.
J. Wu, J. Ma, F. Liang, W. Dong, G. Shi, and W. Lin, “End-to-end blind
image quality prediction with cascaded deep neural network,” IEEE
Transactions on Image Processing, vol. 29, pp. 7414-7426, 2020.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

12

G. Yue, C. Hou, W. Yan, L. K. Choi, T. Zhou, and Y. Hou, “Blind
quality assessment for screen content images via convolutional neural
network,” Digital Signal Processing, vol. 91, pp. 21-30, 2019.

S. A. Golestaneh, S. Dadsetan, and K. M. Kitani, “No-reference im-
age quality assessment via transformers, relative ranking, and self-
consistency,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2022, pp. 1220-1230.

X. Liu, J. Van De Weijer, and A. D. Bagdanov, “Rankiqa: Learning from
rankings for no-reference image quality assessment,” in Proceedings of
the IEEE International Conference on Computer Vision, 2017, pp. 1040—
1049.

F.-Z. Ou, Y.-G. Wang, J. Li, G. Zhu, and S. Kwong, “A novel rank learn-
ing based no-reference image quality assessment method,” IEEE Trans-
actions on Multimedia, accepted, DOI: 10.1109/TMM.2021.3114551,
2021.

L. Li, H. Zhu, G. Yang, and J. Qian, “Referenceless measure of blocking
artifacts by tchebichef kernel analysis,” IEEE Signal Processing Letters,
vol. 21, no. 1, pp. 122-125, 2013.

S. Wang, C. Deng, B. Zhao, G.-B. Huang, and B. Wang, “Gradient-based
no-reference image blur assessment using extreme learning machine,”
Neurocomputing, vol. 174, pp. 310-321, 2016.

G. Yue, C. Hou, K. Gu, and N. Ling, “No reference image blurriness
assessment with local binary patterns,” Journal of Visual Communication
and Image Representation, vol. 49, pp. 382-391, 2017.

Y. Fang, K. Ma, Z. Wang, W. Lin, Z. Fang, and G. Zhai, “No-reference
quality assessment of contrast-distorted images based on natural scene
statistics,” IEEE Signal Processing Letters, vol. 22, no. 7, pp. 838-842,
2015.

K. Gu, W. Lin, G. Zhai, X. Yang, W. Zhang, and C. W. Chen,
“No-reference quality metric of contrast-distorted images based on
information maximization,” IEEE Transactions on Cybernetics, vol. 47,
no. 12, pp. 4559-4565, 2017.

H. Z. Nafchi and M. Cheriet, “Efficient no-reference quality assessment
and classification model for contrast distorted images,” IEEE Transac-
tions on Broadcasting, vol. 64, no. 2, pp. 518-523, 2018.

M. A. Saad, A. C. Bovik, and C. Charrier, “A dct statistics-based blind
image quality index,” IEEE Signal Processing Letters, vol. 17, no. 6,
pp. 583-586, 2010.

A. K. Moorthy and A. C. Bovik, “Blind image quality assessment:
From natural scene statistics to perceptual quality,” IEEE Transactions
on Image Processing, vol. 20, no. 12, pp. 3350-3364, 2011.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a completely
blind image quality analyzer,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 209-212, 2013.

P. Ye and D. Doermann, “No-reference image quality assessment using
visual codebooks,” IEEE Transactions on Image Processing, vol. 21,
no. 7, pp. 3129-3138, 2012.

J. Kim and S. Lee, “Fully deep blind image quality predictor,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 1, pp.
206-220, 2017.

S. Bosse, D. Maniry, K.-R. Miiller, T. Wiegand, and W. Samek,
“Deep neural networks for no-reference and full-reference image quality
assessment,” IEEE Transactions on Image Processing, vol. 27, no. 1, pp.
206-219, 2017.

X. Jiang, L. Shen, Q. Ding, L. Zheng, and P. An, “Screen content image
quality assessment based on convolutional neural networks,” Journal of
Visual Communication and Image Representation, vol. 67, p. 102745,
2020.

X. Jiang, L. Shen, G. Feng, L. Yu, and P. An, “An optimized cnn-based
quality assessment model for screen content image,” Signal Processing:
Image Communication, vol. 94, p. 116181, 2021.

X. Jiang, L. Shen, L. Yu, M. Jiang, and G. Feng, “No-reference
screen content image quality assessment based on multi-region features,”
Neurocomputing, vol. 386, pp. 3041, 2020.

S. Sun, T. Yu, J. Xu, W. Zhou, and Z. Chen, “Graphiqa: Learning
distortion graph representations for blind image quality assessmen-
t,” IEEE Transactions on Multimedia, accepted, DOI: 10.1109/TM-
M.2022.3152942, 2022.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Informa-
tion Processing Systems, vol. 25, 2012.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

S. Laine and T. Aila, “Temporal ensembling for semi-supervised learn-
ing,” in International Conference on Learning Representations, 2017.



[55] H. Lin, V. Hosu, and D. Saupe, “Konig-10k: Towards an ecologically
valid and large-scale iqa database,” arXiv preprint arXiv:1803.08489,
2018.

T. Xiang, Y. Yang, and S. Guo, “Blind night-time image quality
assessment: Subjective and objective approaches,” IEEE Transactions
on Multimedia, vol. 22, no. 5, pp. 1259-1272, 2020.

D. Ghadiyaram and A. C. Bovik, “Massive online crowdsourced study
of subjective and objective picture quality,” IEEE Transactions on Image
Processing, vol. 25, no. 1, pp. 372-387, 2016.

S. Su, Q. Yan, Y. Zhu, C. Zhang, X. Ge, J. Sun, and Y. Zhang,
“Blindly assess image quality in the wild guided by a self-adaptive hyper
network,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 3667-3676.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440-1448.

Y. Zhou, Y. Sun, L. Li, K. Gu, and Y. Fang, “Omnidirectional image
quality assessment by distortion discrimination assisted multi-stream
network,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 32, no. 4, pp. 1767-1777, 2022.

Z. Ying, H. Niu, P. Gupta, D. Mahajan, D. Ghadiyaram, and A. Bovik,
“From patches to pictures (paq-2-piq): Mapping the perceptual space
of picture quality,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 3575-3585.

B. Yan, B. Bare, and W. Tan, “Naturalness-aware deep no-reference
image quality assessment,” IEEE Transactions on Multimedia, vol. 21,
no. 10, pp. 2603-2615, 2019.

J. Ke, Q. Wang, Y. Wang, P. Milanfar, and F. Yang, “Musiq: Multi-
scale image quality transformer,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 5148-5157.
V. Q. E. Group et al., “Final report from the video quality experts group
on the validation of objective models of video quality assessment,” in
VQEG meeting, Ottawa, Canada, March, 2000, 2000.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on Artificial Intelligence, 2017, pp. 4278—
4284.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 4700-4708.
A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1314-1324.

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105-6114.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Guanghui Yue received the B.S. degree in com-

munication engineering from Tianjin University in
2014, and the Ph.D. degree in information and

f e 1 communication engineering from Tianjin University,
\ A Tianjin, China, in 2019. He was a joint Ph.D. student
—_— with the School of Computer Science and Engineer-
\v ) ing, Nanyang Technological University, Singapore,

from September 2017 to January 2019.

? He is currently an Assistant Professor with the

//// School of Biomedical Engineering, Health Science
Center, Shenzhen University. His research interests

include medical image analysis, bioelectrical signal processing, image quality

assessment, 3D image visual discomfort prediction, pattern recognition, and

machine learning.

Di Cheng received the B.S. degree in Electronic
Information Engineering from Wuhan University of
Science and Technology, Hubei Province, China, in
2020. Currently, he is pursuing the master’s degree
in biomedical engineering at Shenzhen University,
China. His research interests include image quality
assessment, medical image analysis, image restora-
tion, and deep learning.

13

Leida Li (M’14) received the B.S. and Ph.D. degrees
from Xidian University, Xian, China, in 2004 and
2009, respectively. In 2008, he was a Research
Assistant with the Department of Electronic Engi-
neering, National Kaohsiung University of Science
and Technology, Kaohsiung, Taiwan. From 2014
to 2015, he was a Visiting Research Fellow with
the Rapid-Rich Object Search Laboratory, School
of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore, where he was
a Senior Research Fellow from 2016 to 2017. He is
currently a Professor with the School of Information and Control Engineering,
China University of Mining and Technology, China, and also with the School
of Artificial Intelligence, Xidian University, China. His research interests in-
clude multimedia quality assessment, affective computing, information hiding,
and image forensics. He has served as an SPC for IJCAI 2019-2020, the
Session Chair for ICMR in 2019 and PCM in 2015, and the TPC for AAAI
in 2019, ACM MM 2019-2020, ACM MM-Asia in 2019, ACII in 2019,
and PCM in 2016. He is currently an Associate Editor of the Journal of
Visual Communication and Image Representation and the EURASIP Journal
on Image and Video Processing.

Tianwei Zhou received the B.S. degree in automa-
tion from Tianjin University in 2014 and the Ph.D.
degree in control science and engineering from Tian-
jin University, Tianjin, China, in 2019. She was a
joint Ph.D. student with the Department of Electrical
& Computer Engineering, National University of
Singapore from August 2017 to August 2018.

She is currently an Assistant Professor with the
College of Management, Shenzhen University. Her
current research interests include event-triggered
control, intelligent scheduling, image processing,
and medical image analysis.

Hantao Liu received the Ph.D. degree from the
Delft University of Technology, Delft, The Nether-
lands, in 2011. He is currently an Associate Pro-
fessor with the School of Computer Science and
Informatics, Cardiff University, Cardiff, U.K. He is
an Associate Editor of the IEEE Transactions on
Human Machine Systems and the IEEE Transactions
on Multimedia.

Tianfu Wang received the Ph.D. degree in biomed-
ical engineering from Sichuan University, Chengdu,
China, in 1997. He is currently a Professor with
Shenzhen University, Shenzhen, China. His current
research interests include ultrasound image analysis,
medical image processing, pattern recognition, and
medical imaging.




