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Abstract—Weakly-supervised temporal action localization aims
to localize actions in untrimmed videos with only video-level
action category labels. Most of previous methods ignore the in-
completeness issue of Class Activation Sequences (CAS), suffering
from trivial localization results. To solve this issue, we introduce
an adaptive mutual supervision framework (AMS) with two
branches, where the base branch adopts CAS to localize the most
discriminative action regions, while the supplementary branch
localizes the less discriminative action regions through a novel
adaptive sampler. The adaptive sampler dynamically updates the
input of the supplementary branch with a sampling weight se-
quence negatively correlated with the CAS from the base branch,
thereby prompting the supplementary branch to localize the
action regions underestimated by the base branch. To promote
mutual enhancement between these two branches, we construct
mutual location supervision. Each branch leverages location
pseudo-labels generated from the other branch as localization
supervision. By alternately optimizing the two branches in multi-
ple iterations, we progressively complete action regions. Extensive
experiments on THUMOS14 and ActivityNet1.2 demonstrate that
the proposed AMS method significantly outperforms the state-
of-the-art methods.

Index Terms—Temporal action localization, weak supervision,
adaptive sampling strategy, mutual location supervision.

I. INTRODUCTION

TEMPORAL action localization, which localizes actions
from untrimmed videos, plays an important role in video

understanding. Although several studies [1]–[7] have shown
promising results on strongly-supervised temporal action lo-
calization, the annotations in the form of precise action bound-
aries are both time-consuming and noisy. Weakly-supervised
temporal action localization (WTAL), which handles the same
problem but only requires video-level action category labels,
has recently received increasing attention [8]–[15].

To date in the studies, there are two main frameworks
in the WTAL task. The classification-based framework [8]–
[10], [12] adopts the idea of multiple instance learning (MIL),
i.e., first training an action classifier by video-level category
labels, then thresholding the class activation sequence (CAS)
of the classifier to obtain action proposals; see Fig. 1 (a). This
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Fig. 1: Framework comparison in WTAL. ‘Class’ is classi-
fication supervision, ‘CAS’ is class activation sequence, and
arrows denote the propagation direction. (a): Classification-
based framework [8]–[10] thresholds CAS for localization.
(b): Self-training-based framework [16]–[18] relies on loca-
tion pseudo-labels generated from CAS. Both of these frame-
works ignore the incompleteness issue of CAS, suffering from
trivial localization results. (c): Adaptive mutual supervision
framework. Red is our two key contributions.

framework only optimizes the classification objective. On the
other hand, regarding the CAS as a noisy location cue, the self-
training-based framework [16]–[18] iteratively thresholds the
CAS of the current step to generate location pseudo-labels for
the next step, and progressively refines the action localization
results; see Fig. 1 (b).

The CAS generated from the classifier, indicating the class-
specific action probability of each snippet, becomes the key
to the localization performance of the above two frameworks.
However, CAS has an incompleteness issue, i.e., it only
covers the most discriminative regions that contribute most to
action classification [13]–[15]. Since there is a fundamental
difference in optimization objectives between classification
and localization, i.e., classification mainly relies on the most
discriminative action regions while localization requires min-
ing complete action regions, CAS is usually sparse and incom-
plete. As a result, the action proposals and the location pseudo-
labels produced from CAS are both low-quality, causing trivial
localization results in these two frameworks.

To solve the incompleteness issue, this paper considers a
novel adaptive mutual supervision framework (AMS) with two
branches that are collaborative and complementary. The base
branch adopts the CAS to localize the most discriminative
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action regions, which is similar to above two frameworks.
While the supplementary branch localizes the less discrimina-
tive action regions to complete localization results of the whole
framework. To achieve collaboration and complementarity, we
propose two core designs: an adaptive sampler and mutual
location supervision; see Fig. 1 (c).

The design rationale of the adaptive sampler is to select the
less discriminative regions underestimated by the base branch
as inputs for the supplementary branch, so that the supple-
mentary branch can focus on these challenging action regions.
Concretely, we feed the original video into the base branch,
while leverage the adaptive sampler to probabilistically select
video snippets for the supplementary branch. Since the CAS
of the base branch mainly localizes the most discriminative
action regions, the sampling probability sequence is designed
to be dynamic and negatively correlated with the CAS from
the base branch. That is, we over-sample the snippets with low
CAS values while under-sample those with high CAS values.
As a result, the inputs of the supplementary branch mainly
consist of the snippets corresponding to the low CAS regions
of the base branch, which prompts the supplementary branch
to purposefully mine less discriminative action regions, and
thus completes detected action information.

To further promote mutual enhancement between the base
branch and the supplementary branch, we are motivated to
design mutual location supervision, which forces each branch
to explicitly optimize the localization objective with location
pseudo-labels from the other branch. Specifically, both the
two branches use video-level category labels as classifica-
tion supervision; meanwhile, each branch leverages location
pseudo-labels generated from the CAS of the other branch
as localization supervision. For optimization, we alternately
freeze one branch and train the other branch. In this process,
the localization results of each branch are taken as the localiza-
tion objective of the other branch, so that the complementary
action regions of the two branches are combined to make the
localization supervision more complete and precise.

To optimize the whole framework, we apply multiple iter-
ations, since one single iteration brings limited improvement
to excavate less discriminative action regions. In each iter-
ation, the adaptive sampler differentiates the inputs of the
two branches, so that they purposefully focus on different
action regions. Then, mutual location supervision obtains more
complete location supervision by pushing the CASs of the two
branches to be consistent. In the next iteration, the consistent
CASs in turn force the adaptive sampler to further update the
inputs of the supplementary branch, thereby exploring more
missing action regions. Consequently, the adaptive sampler
and mutual location supervision jointly contribute to more
complete results in the progressive iterations.

In summary, our contributions are as follows.
1) We introduce an adaptive mutual supervision framework

(AMS) for weakly-supervised temporal action localiza-
tion. AMS contains a base branch and a supplementary
branch, both of which generate location pseudo-labels for
progressive iterative refinement.

2) We design a novel adaptive sampler, which encourages
the supplementary branch to further detect the underesti-

mated action regions of the base branch, thus making the
localization results more complete.

3) We propose a novel mutual location supervision, which
forces each branch to use location pseudo-labels obtained
from the other branch, promoting mutual enhancement.

4) We verify the effectiveness of AMS on two widely used
benchmarks, THUMOS14 [19] and ActivityNet1.2 [20].
Our AMS method outperforms previous state-of-the-art
methods, both quantitatively and qualitatively.

We organize the rest of this paper as follows. For a better un-
derstanding of our motivation on adaptive mutual supervision,
we review the related work in Section II. In Section III, we
propose the novel strategies about adaptive sampler and mutual
location supervision. Section IV validates the proposed method
by comparing it with existing methods. We further perform
extensive ablation studies to reveal the effectiveness of each
component. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

This section reviews previous works that motivate the pro-
posed method. We can divide those works into three groups:
strongly-supervised temporal action localization, weakly-
supervised temporal action localization, and adaptive sampling
strategy. We next review the previous works respectively.

A. Strongly-Supervised Temporal Action Localization

Strongly-supervised temporal action localization relies on
precise boundary labels and action category labels to localize
action instances. The popular solutions can be summarized as
the top-down framework and the bottom-up framework. The
top-down framework [1], [4], [5], [21]–[29] first pre-defines
massive anchors according to the prior knowledge of action
distribution; then adopts fixed-length sliding windows to gen-
erate initial proposals; finally utilizes a boundary adjustment
module to refine results. Typically, TURN [5] and TAL-Net [1]
explored the effect of contextual information and the dilated
temporal convolution on localization performance, respec-
tively. The bottom-up framework [2], [3], [6], [7], [30]–[34]
first predicts actionness or boundary probabilities for all video
snippets, then groups the obtained start points and end points
to produce proposals. Typically, BMN [3] listed all possible
proposal groups, and ranked each proposal by evaluating the
IoU between the proposal and the ground truth. BUMR [30]
proposed to construct constraints between the action, start, and
end curves to reduce invalid proposal groups. BC-GNN [31]
introduced graph convolution operations [35] to group the
most suitable start and end points. G-TAD [32] modeled each
video as a graph based on temporal and semantic relationships
to enhance the continuity between snippet features. In general,
the top-down framework completely discovers most action
instances with few omissions, while the bottom-up framework
flexibly adjusts the boundary and produces more precise
predictions. For better performance, CTAP [36], MGG [37],
AFNet [38], and A2Net [39] further designed four fusion
methods to combine these two frameworks in a supplementary
manner. PBRNet [40] proposed a coarse-to-fine strategy to
progressively refine boundaries in an end-to-end fashion. To
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better model the relationship between action proposals, P-
GCN [41] and RAM [42] utilized the graph convolution and
self-attention mechanism to construct non-local networks for
better feature embedding, respectively.

However, all these strongly-supervised methods demand
precise action location annotations, which is time-consuming
and less practical in real-world scenarios. To reduce the
annotation cost, this work aims to study the same problem
in the weakly-supervised setting.

B. Weakly-Supervised Temporal Action Localization
Weakly-supervised temporal action localization (WTAL)

only requires video-level action category labels for training. In-
spired by Class Activation Map [43] in object detection, early
methods [8], [10], [44] usually adopted the classification-based
framework. That is, use the video-level category labels to train
an action classifier; calculate Class Activation Sequence (CAS)
based on the parameters of the classifier; post-process CAS for
final action proposals.

Due to the objective difference between classification and
localization, the CAS generated from the classifier has a
serious incompleteness issue: it only contains local and sparse
action regions. To solve this issue, SSE [45], CPMN [14],
WO [13], and A2CL-PT [46] introduced the erase strategies,
which cascade multiple classifiers, erase the most discrim-
inative regions detected by the previous classifier in turn,
and input the remaining regions for the latter classifier, thus
gradually detecting less discriminative regions. CMCS [15]
trained multiple classifiers in parallel, which are used to detect
different action regions. Since the CAS also has some false-
positive activation and action-context confusion, BM [47]
and BaSNet [9] proposed two background modeling methods.
DGAM [11] explored separating context and action via Con-
ditional Variational Auto-Encoder. In terms of post-processing
CAS, Autoloc [12] and KT-MGFN [48] designed the outer-
inner contrastive loss to replace the simple threshold operation.
CleanNet [49] further proposed the action proposal evaluator
for an effective boundary adjustment.

Considering that all the above methods localize with only
classification supervision, some recent studies [16]–[18] intro-
duced the self-training-based framework, to provide explicit
localization supervision for better localization. Its common
practice is to empirically set thresholds on the CAS of
the current step, and generate pseudo-labels as the location
supervision of the next step; then perform several iterations
to directly optimize the localization objective and progres-
sively refine the pseudo-labels. Specifically, Refineloc [16] was
the first to introduce location pseudo-labels for the WTAL
task, and explored various pseudo-label generation strategies.
EM-MIL [18] utilized class-specific CAS and class-agnostic
attention as pseudo-labels, then formulated the WTAL task
as an expectation-maximization problem for optimization.
TSCN [17] predicted pseudo-labels based on RGB and flow
data respectively, then late fused these two pseudo-labels to
alleviate false-positive results. Overall, our AMS framework
differs from these studies from the following two aspects: (i)
We design an adaptive sampler to encourage the supplemen-
tary branch to further detect the underestimated action regions

of the base branch, which effectively completes the localiza-
tion results of the whole framework; while the previous studies
ignore the incompleteness of CAS, and only rely on low-
quality pseudo-labels for iterative refinement; (ii) we construct
mutual location supervision between two branches; while the
previous studies use a single branch, whose generated location
pseudo-labels provide self supervision.

C. Adaptive Sampling Strategy

The role of the adaptive sampling strategy is to enlarge the
local area of the image or video, thus forcing the model to
focus more on some specific details. It has wide applications
in fine-grained recognition, image retargeting, and small ob-
ject detection. Concretely, in fine-grained image recognition,
SSampler [50] proposed to sample based on saliency maps for
data augmentation. S3N [51] leveraged class response maps as
guidelines for sampling, and achieved considerable improve-
ments. For faster action recognition, SCSampler [52] selected
a small subset of salient snippets to replace the entire video
through a lightweight sampler. For better video representation,
based on the importance of video frames, Coarse-Fine [53]
performs dynamic sampling to form different abstractions of
time resolution. In image retargeting, EBID [54] and NCV [55]
used the adaptive sampling strategy to formulate the task as the
energy minimization and finite element problem. Inspired by
the above studies, this paper adopts a novel adaptive sampler
to differentiate the inputs of the two branches, so that they can
localize different action regions. To the best of our knowledge,
this is the first attempt to introduce the adaptive sampling
strategy to the WTAL task.

III. ADAPTIVE MUTUAL SUPERVISION

In this section, we propose the adaptive mutual supervision
framework (AMS); see the framework pipeline in Fig. 2. We
first the formulate weakly-supervised temporal action local-
ization problem; then, present the adaptive sampler and the
mutual location supervision strategy; and finally, we introduce
the training and testing details.

A. Problem Formulation

Suppose that we are given N untrimmed videos {vi}Ni=1 and
their corresponding video-level category labels {yi}Ni=1, where
yi is a C-dimensional binary vector (C is the total number of
action categories), with yki =1 if the i-th video contains the k-
th action category, and yki =0 otherwise. Note that each video
may contain multiple action categories and multiple action
instances. Our goal is to predict the temporal locations of these
action categories in the video, in terms of a set of quadruples
{(s, e, c, p)}, where s, e, c, p represent the start time, the
end time, the action category and the localization score of
the action proposal, respectively.

Following recent methods [9]–[11], [15], for each video, we
sample T consecutive snippets to make sure all videos have
the same length. Then, we adopt a pre-trained feature extractor
to obtain the original feature Forig ∈ RT×D for each video,
where D is the feature dimension of each snippet.
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Fig. 2: Framework pipeline. The pre-trained feature extractor extracts the original video features, and the backbone network
predicts video category probabilities and CAS. The base branch is fed with the original video features to localize the most
discriminative action regions. Then, based on the CAS of the base branch, the adaptive sampler selects the less discriminative
snippet features as the inputs for the supplementary branch, which forces the supplementary branch to further detect the
underestimated action regions of the base branch. Finally, each branch generates location pseudo-labels from CAS, and provides
mutual location supervision during multiple training iterations.

B. Overall Framework

The proposed AMS framework contains the base branch
and the supplementary branch with identical backbones. Each
backbone predicts the video category probability and respec-
tive CAS. The base branch is fed the original video feature to
localize the most discriminative action regions from CAS. To
strengthen collaboration and complementarity between the two
branches so that the whole framework contains more complete
action information, we encourage the supplementary branch to
localizes the less discriminative action regions through a novel
adaptive sampler. The sampler adaptively updates the inputs
of the supplementary branch with a sampling weight sequence
negatively correlated with the CAS of the base branch, i.e.,
over-sample in the low CAS regions while under-sample in
the high CAS regions. Hence, the supplementary branch is
encouraged to further excavate the action regions underes-
timated by the base branch, making the localization results
more complete. To further promote mutual enhancement and
explicitly optimize the localization objective, we construct
mutual location supervision between the two branches. Each
branch uses location pseudo-labels generated from the CAS
of the other branch as localization supervision. We alternately
freeze one branch and optimize the other branch, so that the
complementary action information of the two branches can be
combined to make the location supervision more complete and
precise. In multiple iterations, our AMS framework progres-
sively refines the localization results.

In either the base or supplementary branch, we input video
features into a backbone network h(·) to predict the category
probability and CAS. The backbone network is implemented
by a multi-layer perceptron. For the base branch, its backbone
network can be formalized as follows:

Mbase, ŷbase = hbase(Forig, φbase), (1)

where Mbase ∈ RT×C denotes CAS, indicating the probability
distribution of each video snippet belonging to all action
categories. ŷbase ∈ RC means the predicted video category
probability. φbase is trainable parameters of the backbone
network. In our framework, the input of the base branch is the
original feature Forig. While the input of the supplementary
branch is selected based on the output CAS of the base branch
through the adaptive sampler S(·, ·); that is,

Fsupp = S(Forig, Mbase), (2)

where Fsupp ∈ RT×D. The design details of the sampler are
introduced in Section III-C. Formally, the backbone network
of the supplementary branch is formalized as follows:

M̆supp, ŷsupp = hsupp(Fsupp, φsupp), (3)

where ŷsupp ∈ RC means the predicted category probability,
φsupp is the trainable parameters, the output CAS M̆supp ∈
RT×C . To align the temporal distribution with the CAS of the
base branch, we also perform temporal alignment on M̆supp

and obtain Msupp; see details in Section III-C3.

C. Adaptive Sampler

1) Sampling Weight Sequence: Here we propose the im-
plementation details of the adaptive sampler S(·, ·). To solve
the incompleteness issue of CAS generated by the classifier,
we desire to strengthen complementarity between the two
branches. To achieve this, we design a novel adaptive sampler
to differentiate the inputs of the two branches. Specifically, we
input the original video features into the base branch, while
dynamically select snippet features for the supplementary
branch via the adaptive sampler. The whole process is divided
into two parts as shown in Fig. 3.

Similar to previous studies [13], [45], [46], the CAS of the
base branch tends to focus on the most discriminative action
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Fig. 3: Illustration of the adaptive sampler. (a): Sampling
Weight Sequence. First calculate the sampling weight se-
quence w negatively correlated with the aggregated CAS m,
then up-sample w to get the interpolated weight sequence
w̃. (b): Sampling Operation. First cumulate w̃ to get its
cumulative distribution function G(t); then uniformly sample
T points on the cumulation axis, and map them to G(t);
finally, map the points on G(t) to the time axis, and obtain
the sampling timestamp set K. Sample the interpolated original
features F̃orig to generate Fsupp for the supplementary branch.

regions. To make the supplementary branch purposefully local-
ize the less discriminative action regions underestimated by the
base branch, we need to calculate the class-agnostic sampling
weight sequence, based on the CAS of the base branch. Since
CAS is a class-specific action probability sequence, to generate
the class-agnostic sequence, it is necessary to aggregate all
action information of category channels in CAS. Specifically,
given the CAS of the base branch Mbase ∈ RT×C , we only
keep the channels of ground truth categories, then perform the
maximum operation on these channels in the temporal dimen-
sion. We also empirically compare the maximum, average, and
random operations in Table V. Formally, the aggregated CAS
is denoted as m = {mt} ∈ RT .

According to the meaning of CAS [10], [12], the aggregated
CAS m indicates the action confidences of all snippets in the
temporal dimension. In other words, a higher value of mt

indicates a higher confidence of existing an action at the t-th
snippet. Considering the incompleteness issue of CAS, there
might exist some missing actions (less discriminative actions)
in the low-value regions of the aggregated CAS. Therefore, we
aim to make the supplementary branch focus more on the low-
value regions while less on the high-value regions. And the
sampling weight sequence is hence designed to be negatively
correlated with the aggregated CAS:

w = {wt} = max(m)−m + η ∈ RT , (4)

where η means a sampling adjustment value, max(·) is the
maximum operations. Each element in the sampling weight
sequence w represents the probability that the corresponding
snippet will be selected by the sampling operation. A lower
value of the aggregated CAS mt corresponds to a higher

probability of wt, which indicates that the t-th snippet with
lower action confidence determined by the base branch is more
likely to be sampled. With such a sampling weight sequence,
we can naturally over-sample the snippets in the low-value
regions of the aggregated CAS while under-sample in the
corresponding high-value regions.

2) Sampling Operation: In this section, we perform the
sampling operation to generate the inputs for the supplemen-
tary branch. Since the original features only contain T snip-
pets, to achieve more fine-grained sampling in the temporal
dimension, we first up-sample them by linear interpolation,
and then, based on the sampling weight sequence, adaptively
select T snippet features from the interpolated original features
to form the inputs for the supplementary branch. The interpo-
lated original features are denoted as F̃orig ∈ RHT×D, where
H is the interpolation factor. To match the temporal length,
we also calculate the interpolated sampling weight sequence,
which is denoted as w̃ ∈ RHT .

Next, we detail the sampling timestamps and the sampling
features in turn, as shown in Fig. 3 (b).
Sampling Timestamps. Following the inverse transforma-
tion theory [56], we adopt a cumulation-mapping manner to
adaptively select T snippet features. Concretely, regarding the
interpolated weight sequence w̃ as a probability mass function,
we first cumulate it along the temporal dimension to obtain
the cumulative distribution function G(t):

G(t) =

t∑
τ=1

w̃τdτ. (5)

Intuitively, G(t) corresponds to the black curve in Fig. 3 (b).
Its role is to map the sampling probability of HT snippets
uniformly distributed in the temporal dimension, in proportion
to the interval length of the cumulation axis. A larger sampling
probability wt indicates a longer interval on the cumulation
axis. Hence, sampling T timestamps on the time axis based on
the interpolated weight sequence w̃ is equivalent to uniformly
sample T points on the cumulation axis.

To achieve the sampling goal, we first uniformly sample
T points on the cumulation axis; then, map these points to
the cumulative distribution function G(t); next, we map the
points on G(t) to the time axis; and finally, the corresponding
T timestamps on the time axis constitute a candidate sampling
timestamp set, denoted as K.
Sampling Features. Afterward, based on the sampling times-
tamp set K, we obtain the input features of the supplementary
branch from the interpolated original features F̃orig:

Fsupp = K n F̃orig ∈ RT×D, (6)

where n denotes the index operation, that is, chronologically
take out the features corresponding to T sampling timestamps.
Accordingly, Fsupp is mainly composed of the features cor-
responding to the low-CAS value regions of the base branch.
Intuitively, the efficacy of adaptive sampler can be interpreted
as slowing down the video in the low-CAS regions of the base
branch while speeding up the video in the high-CAS regions.
The supplementary branch is thus prompted to focus more
on less discriminative regions, and further excavates missing
actions to complete localization results.
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3) Temporal Alignment: Since the input features of the
supplementary branch are under-sampled or over-sampled in
the temporal dimension, they have a non-uniform temporal
distribution. Hence, the temporal distribution of the corre-
sponding CAS also becomes non-uniform, which does not
match the uniform distribution of the CAS from the base
branch. To ensure the localization results of the two branches
have the same temporal distribution, we need to make temporal
alignment between these two CASs.

For this purpose, we uniformize the temporal distribution
for the CAS of the supplementary branch. Concretely, for
each timestamp in the uniform distribution, we search the two
nearest timestamps on the CAS of the supplementary branch.
After that, we can obtain the temporal alignment results by
performing linear interpolation between these two CAS values.
We denote the temporal alignment operation as A, hence the
above process is formalized as:

Msupp = A(M̆supp) ∈ RT×C , (7)

where M̆supp is the output CAS of the backbone network from
the supplementary branch, Msupp is its aligned CAS.

4) Discussion: Note that in the proposed adaptive sampler,
if the sampling weights of high CAS regions are fixed at
0%, and the others are 100%, our sampling strategy will
become similar to the existing erase operation [13], [14], [45],
[46]. The proposed adaptive sampler outperforms the erase
operation from two aspects. (i) Our sampling probability is
soft, while the erase probability is binary. This means that
we always retain some action regions determined by the base
branch, which act as action anchors for the supplementary
branch to avoid paying attention to the background; while the
erase operation removes all action regions found previously,
usually misleading the model to the background. (ii) Our
sampling strategy slows down the less discriminative action
regions and speeds up the most discriminative regions, while
the erase operation only erases the most discriminative action
regions. This means that the inputs generated by our strategy
are more fine-grained in the temporal dimension and more
purposeful for less discriminative actions, which can lead to
better localization results.

D. Mutual Location Supervision

To promote mutual enhancement and explicitly optimize the
localization objective, we further construct mutual location
supervision between the base branch and the supplementary
branch. Different from the self-training-based strategy [16]–
[18], we force the two branches to provide location pseudo-
labels for each other, and progressively refine the localization
results in multiple iterations.

1) Location Pseudo-labels: After making temporal align-
ment for the two branches, we encourage them to generate
location pseudo-labels from CAS. Since CAS stands for the
action confidence probability, a higher value of CAS means a
higher confidence of existing an action. To avoid low-quality
labels and eliminate uncertainty, we threshold CAS through a
hyperparameter α to generate binary pseudo-labels, i.e., if the
CAS value of a snippet for any ground truth category is greater

than α, the snippet is regarded as a positive action example;
otherwise, it is considered as a negative action example. The
location pseudo-labels can be formulated as:

mk
t =

{
1, if mk

t > α and yk = 1,

0, otherwise,
(8)

where mk
t is the CAS value of the t-th snippet and the k-th

category channel, mk
t is the corresponding pseudo-label.

2) Optimization Process: To promote mutual enhancement
between these two branches, we construct mutual location
supervision, that is, force each branch to leverage the loca-
tion pseudo-labels from the other branch as the localization
objective. The optimization process is achieved by alternately
freezing one branch and training the other branch. Specifically,
in Phase zero, we train the base branch with only video-level
category labels, to generate initial location pseudo-labels. In
Phase one, we freeze the base branch, and produce the inputs
for the supplementary branch through the adaptive sampler;
then optimize the supplementary branch with category labels
and location pseudo-labels from the base branch; finally, up-
date pseudo-labels based on the CAS from the supplementary
branch. And in Phase two, we optimize the base branch with
category labels and the updated location pseudo-labels from
the supplementary branch.

To optimize the whole framework, we apply multiple itera-
tions, since one single iteration brings limited improvement to
mine less discriminative action regions. In each iteration, the
adaptive sampler differentiates the inputs of the two branches,
so that they purposefully focus on different action regions.
Then, the mutual location supervision obtains more complete
location supervision by pushing the CASs of the two branches
to be consistent. In the next iteration, the consistent CASs
force the adaptive sampler to further update the inputs of the
supplementary branch in turn, so that more missing action
regions can be explored. Consequently, the adaptive sampler
and mutual location supervision jointly contribute to more
complete results in progressive iterations.

3) Loss Function: For localization, following [2], [3], [30],
we calculate the weighted cross-entropy loss between location
pseudo-labels and the output CAS:

Llocal =
1

C

C∑
k=1

(
1

T+

∑
t∈Λ+

H(mk
t ,m

k
t ) +

1

T−

∑
t∈Λ−

H(mk
t ,m

k
t ))

(9)
where C is the number of action categories, mk

t ∈ [0, 1] is
the output CAS of the t-th snippet and the k-th category
channel, mk

t ∈ {0, 1} is the location pseudo-label from the
other branch, H is the regular cross-entropy loss, Λ+ and Λ−

denote the positive and negative sample sets, T+ and T− are
the number of positive and negative samples.

For classification, we calculate the cross-entropy loss be-
tween the action category label y = [y1, ..., yC ]T and the
predicted category probability ŷ ∈ RC :

Lclass =
1

C

C∑
k=1

H(ŷk, yk), (10)
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where ŷ is calculated by aggregating CAS with top-k mean
technique [9], [10], [57]. For better classification, we combine
the classification loss Lclass with the Co-Activity Similarity
loss in WTALC [10], as the basic loss Lbasic of each branch.

Finally, during the training of the whole framework, we
combine the basic loss and the localization loss to optimize
the base branch or the supplementary branch:

Ltotal = Lbasic + λLlocal, (11)

where λ denotes a balance hyperparameter.

E. Inference

The AMS framework is separately optimized with RGB and
flow features, and the final localization results are generated in
a late-fusion fashion. During inference, for an input video, we
fuse the two CASs from RGB and flow modes, then average
the CASs of the two branches as the final predicted CAS
Mfinal ∈ RT×C . The process is given by:

Mfinal =
1

2
(Mbase

flow + Msupp
flow + βMbase

rgb + βMsupp
rgb ), (12)

where β is a fusion hyperparameter. After that, we aggregate
Mfinal to derive the video-level action category probabilities.
For classification, we only select the classes whose category
probabilities are above the classification threshold θcls. For
the remaining categories, we directly threshold Mfinal with
the localization threshold θloc, then concatenate consecutive
candidate snippets as action proposals {(sj , ej , cj , pj)}oj=1,
where o is the number of proposals, sj , ej , cj , pj represent
the start time, the end time, the action category, and the
localization score of the j-th action proposal, respectively. The
action category cj of the j-th proposal is the action category of
the corresponding video. And the localization score pj of the
j-th proposal is calculated by the maximum value of Mfinal

within the proposal interval [sj , ej ].

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate
the effectiveness of our AMS method and reveal the effect
of each component. We first detail the experimental settings
and network architectures, then report the corresponding ex-
perimental results. Based on two widely used datasets, i.e.,
THUMOS14 [19] and ActivityNet [20], our AMS method sig-
nificantly outperforms previous state-of-the-art methods both
quantitatively and qualitatively. Besides that, both adaptive
sampler and mutual location supervision strategy have a great
effect on the localization performance.

A. Dataset and Evaluation

THUMOS14 [19]. There are 413 untrimmed videos in 20
categories, and each video contains an average of 15 action
instances. The model is trained on 200 validation videos, and
evaluated on 213 test videos. This dataset is widely used and
challenging, because the video lengths vary widely and the
actions occur very frequently.
ActivityNet1.2 [20]. The dataset contains 9682 videos be-
longing to 100 categories, which are divided into 4619 videos

for training, 2383 videos for validation, and 2480 videos for
testing. Since the ground-truth action intervals of test videos
are not available, we train the model on the training set and
evaluate on the validation set. Almost all videos contain only
a single action category, and action regions take up more than
half of the duration in most videos.
Evaluation Metrics. Following the convention, we evaluate
our method with the standard mean Average Precision (mAP)
at different thresholds of temporal intersection over union (T-
IoU). Note that a proposal is regarded as positive only if both
the predicted category is correct and T-IoU exceeds the set
threshold. Besides, each ground-truth action instance can only
match one action proposal. The mAP is calculated from the
evaluation code provided by the corresponding datasets.

B. Implementation Details

Feature Extraction. Following previous methods [13]–[15],
to reduce the computational requirements, we extract the high-
level features of the input video in advance, and then train
the whole framework with these high-level features. Due to
the memory constraint, we first split the input video into
non-overlapping 16-frame snippets, then randomly sample T
consecutive snippets from each video, since the video lengths
vary greatly. T is set to 1000 on THUMOS14, and 400
on ActivityNet1.2. We leverage the TV-L1 algorithm [62]
to extract optical flow from RGB data; next, we use the
two-stream I3D architecture [63] pre-trained on the Kinetics
dataset [63] to extract RGB and flow features; and finally, we
can obtain the 1024-dimensional feature from RGB data or
flow data of each video snippet.
Backbone Network. In either the base branch or the supple-
mentary branch, the backbone network maps video features to
CAS and video category probabilities. Structurally, it cascades
a feature transformation module and a mapping module. The
former consists of a fully connected layer, followed by ReLU
activation and Dropout to fine-tune the video features from the
feature extractor. The latter contains two parallel fully con-
nected layers, followed by the softmax function respectively,
to predict video category probabilities and CAS.
Implementation. The proposed framework is implemented
with Pytorch [64], using Adam optimizer [65] with the learn-
ing rate of 10−4 to respectively optimize on THUMOS14
and ActivityNet1.2. For a fair comparison, we fix the pre-
trained parameters of the feature extractor without fine-tuning.
We train the framework for 20 epochs in Phase zero, then
alternately train the two branches every 5 epochs in Phase
one and Phase two. All hyperparameters are determined by
grid search: the balance hyperparameter λ = 1.0, the fusion
hyperparameter β = 0.15, the sampling adjustment value η
= 0.75, the interpolation factor H = 20, the classification
threshold θcls = 0.25. The threshold α for generating location
pseudo-labels is set equal to the localization threshold θloc,
which is calculated adaptively by 0.7× avg(M).

C. Comparison with State-of-the-Art Methods

Under multiple IoU thresholds, we compare the proposed
AMS method with existing methods from various levels of
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TABLE I: Comparison with the state-of-the-art methods on THUMOS14. AVG(0.1-0.5) and AVG(0.3-0.7) are the average mAP
from IoU 0.1 to 0.5 and from IoU 0.3 to 0.7, respectively. ‘Single’ denotes training with one single iteration. ‘Multiple’ denotes
training with multiple iterations. In general, the performance of the multiple iteration methods is better than that of the single
iteration methods. The proposed AMS method outperforms the state-of-the-art methods in the video-level weakly-supervised
setting, while performs comparably with several strongly-supervised methods.

Supervision Training Method mAP@IoU AVG
(0.1-0.5)

AVG
(0.3-0.7)0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strong -

SCNN [4] 47.7 43.5 36.3 28.7 19.0 10.3 5.3 35.0 19.9
TURN [5] 54.0 50.9 44.1 34.9 25.6 14.6 7.7 44.8 25.4
SSN [7] 66.0 59.4 51.9 41.0 29.8 19.6 10.7 49.6 30.6

A2Net [39] 61.1 60.2 58.6 54.1 45.5 32.5 17.2 55.9 41.6
TAL-Net [1] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3 41.3
BUMR [30] 58.2 56.8 53.9 50.7 45.4 38.0 28.5 53.0 43.3

Weak
Count-level - STARN [58] 68.8 60.0 48.7 34.7 23.0 11.7 6.2 47.0 24.9

3C-Net [59] 59.1 53.5 44.2 34.1 26.6 16.7 8.1 43.5 25.9

Weak
Video-level

Single

STPN [8] 45.3 38.8 31.1 23.5 16.2 9.8 5.1 31.0 17.1
CPMN [14] 47.1 41.6 32.8 24.7 16.1 10.1 5.5 32.5 17.8

WO [13] 57.6 48.9 38.9 29.3 20.5 - - 39.0 -
WTALC [10] 55.2 49.6 40.1 31.1 22.8 14.8 7.6 39.8 23.3
Autoloc [12] - - 35.8 29.0 21.2 13.4 5.8 - 21.0
Cleannet [49] - - 37.0 30.9 23.9 13.9 7.1 - 22.6
BaSNet [9] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 43.6 27.3
CMCS [15] 57.4 50.8 41.2 32.1 23.1 15.0 7.0 40.9 23.7

BM [47] 64.2 59.5 49.1 38.4 27.5 17.3 8.6 47.7 28.2
ASSG [60] 65.6 59.4 49.5 38.7 25.4 15.0 6.6 47.7 27.0

A2CL-PT [46] 61.2 56.1 48.1 39.0 30.1 19.2 10.6 50.7 29.4
DGAM [11] 60.0 54.2 44.8 38.2 28.8 19.8 11.4 45.2 28.6

Multiple

RefineLoc [16] - - 33.9 - 22.1 - 6.1 - -
TSCN [17] 63.4 57.6 47.8 37.7 28.7 19.4 10.2 47.0 28.8

EM-ML [18] 59.1 52.7 45.5 36.8 30.5 22.7 16.4 44.9 30.4
AMS (Ours) 69.1 62.3 52.7 42.8 33.1 23.1 13.0 52.0 32.4

TABLE II: Comparison with the state-of-the-art methods on
ActivityNet1.2. AVG(0.5-0.95) denotes the average mAP at
IoU thresholds 0.5:0.05:0.95. ‘Single’ means training with one
single iteration. ‘Multiple’ means training with multiple iter-
ations. The proposed AMS method outperforms all previous
methods in terms of the average mAP, while surpasses most
methods at some IoU thresholds.

Supervision
(Training) Method mAP@IoU AVG

(0.5-0.95)0.5 0.75 0.95

Strong CDC [21] 45.3 26.0 0.2 23.8
SSN [7] 41.3 27.0 6.1 26.6

Weak
Video-level

(Single)

U-Nets [44] 7.4 3.2 0.7 3.6
Autoloc [12] 27.3 15.1 3.3 16.0

TSM [61] 28.3 17.0 3.5 17.1
WTALC [10] 37.0 12.7 4.5 18.0
Cleannet [49] 37.1 20.3 5.0 21.6
CMCS [15] 36.8 22.0 5.6 22.4
BaSNet [9] 38.5 24.2 5.6 24.3
DGAM [11] 41.0 23.5 5.3 24.4

Weak
Video-level
(Multiple)

EM-ML [18] 37.4 - - 20.3
RefineLoc [16] 38.0 20.8 4.9 22.2

TSCN [17] 37.6 23.7 5.7 23.6
AMS (Ours) 40.7 23.7 5.8 24.6

supervision settings. As introduced in Section I, existing
weakly-supervised temporal action localization methods can
be divided into two categories: classification-based framework

and self-training-based framework. The main difference is that
the latter requires multiple iterations for training compared to
the former. We thus abbreviate these two frameworks as the
‘single’ and ‘multiple’ groups. Since our AMS method also
uses pseudo-labels for multiple iterations, we put it into the
‘multiple’ group for a fair comparison.

Table I reports the comparison on THUMOS14. In terms
of performance, the multiple iteration methods are generally
better than the single iteration methods. And our AMS method
achieves a new state-of-the-art in the video-level weakly-
supervised setting. Compared to previous multiple iteration
methods, i.e., [16]–[18], our method obtains a performance
gain of more than 4.9% in terms of the average mAP from
IoU 0.1 to 0.5, while more than 2.0% in terms of the average
mAP from IoU 0.3 to 0.7. This proves the effectiveness of
our proposed framework, and means that our AMS method
produces more precise and complete localization. Moreover,
despite being trained in the weakly supervised setting, our
method performs comparably with several early strongly-
supervised methods [4], [5], [7].

Table II also reports the results on ActivityNet1.2. Gener-
ally speaking, our AMS method surpasses most of previous
methods under the same level of supervision. In terms of the
average mAP, our method outperforms all existing weakly-
supervised methods, and follows strongly-supervised SSN [7]
with the least gap. Note that, compared with THUMOS14,
ActivityNet has only one-tenth of action instances per video
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TABLE III: Contribution of three components, i.e., the branch number, the adaptive sampler, and location supervision on
THUMOS14. ‘Single’ means training with one single iteration. ‘Multiple’ means training with multiple iterations. AVG(0.1-
0.7) denotes the average mAP from IoU 0.1 to 0.7. There are two ways to provide location supervision: mutual location
supervision and self-training-based location supervision [16], [17], which are abbreviated as ‘mutual’ and ‘self’, respectively.
Both the adaptive sampler and mutual location supervision have great effects on the localization performance.

mAP@IoUTraining ID Branch
number

Adaptive
sampler

Location
supervision 0.1 0.2 0.3 0.4 0.5 0.6 0.7

AVG
(0.1-0.7)

Single
(A) one no no 62.1 53.7 43.1 33.3 24.7 15.6 8.1 34.4
(B) dual no no 62.4 54.1 43.5 33.4 24.9 15.8 8.1 34.6
(C) dual yes no 67.3 58.2 47.0 36.3 27.3 17.8 9.5 37.7

Multiple
(D) dual no self 65.2 57.4 47.1 37.4 29.4 19.3 10.6 38.0
(E) dual no mutual 65.8 58.1 47.7 37.9 29.8 19.7 10.9 38.6
(F) dual yes mutual 69.1 62.3 52.7 42.8 33.1 23.1 13.0 42.3

on average, and almost all videos contain only one action
category. Therefore, this dataset has a lower localization
requirement, just as emphasized in [1], [18], [60]. This lower
requirement might lead to the small gain of our method to
some extent. All in all, the great performance on the two
datasets indicates the effectiveness of our method.

D. Ablation Studies

Here we conduct ablation studies on THUMOS14 to analyze
the effect of each component in our framework, i.e., the branch
number, mutual location supervision, and the adaptive sampler.
Recently, the self-training-based strategy [16]–[18] has been
proposed to explicitly optimize the localization objective. It
adopts the pseudo-labels generated by CAS in the current step
as the location supervision for the next step, and relies on
the self-training strategy to iteratively refine the localization
results. For a detailed comparison, we also reproduce this
method under the same settings.

Specifically, we experiment with the following six setups.
The baseline is set as a vanilla classification-based method [8],
[10], which is trained with only the basic loss Lbasic, then
thresholds CAS for localization results. (A): The baseline
with only one branch; (B): The baseline with two identical
branches; (C): Add the adaptive sampler on (B); (D): Add
the self-training-based strategy on (B); (E): Add the mutual
location supervision strategy on (B); (F): Add the adaptive
sampler and the mutual location supervision strategy on (B).
For the above setups, as the two branches could generate quite
different CASs, we average their CASs as the final output
CAS. Table III reports all the localization results.

1) One branch v.s. Dual branch: In the proposed AMS
framework, the dual-branch setting causes the model parame-
ters to be doubled. We thus explore the effect of the branch
number on the localization performance. Comparing (B) to
(A), we can find that there is no significant difference between
the localization performance of the dual-branch model and the
one-branch model. The only 0.2% average mAP improvement
suggests that simply doubling the model parameters cannot
bring a significant increase in performance. Besides, (A) and
(B) perform worst among these six setups. This is because
relying only on classification supervision can mislead the
model to focus on the most discriminative regions, resulting
in sparse and incomplete localization results.

2) Self-training-based strategy v.s. Mutual location super-
vision: To evaluate the effect of location pseudo-labels, we
add either mutual location supervision or self-training-based
strategy to (B), and perform multiple training iterations. Com-
paring (D) or (E) to (B), we see that multiple iterations with
location supervision improve the performance by 3.4% average
mAP. This reflects that explicitly optimizing the localization
objective can reconcile the contradiction between classification
and localization in the WTAL task.

Besides, comparing (E) to (D), our proposed mutual location
supervision outperforms the self-training-based strategy by
0.5% average mAP. We conjecture the reason as follows.
During multiple iterations, the self-training-based strategy
separately trains the two branches. While in each iteration,
our mutual location supervision promotes mutual enhancement
between the two branches, and combines the action informa-
tion from the two branches, which plays the role of ensemble
learning [66]–[68] to bring a certain improvement.

3) Effectiveness of the adaptive sampler: We also add the
adaptive sampler on (B) and (E), to verify the effectiveness
of the proposed sampling strategy. Comparing (C) to (B),
the adaptive sampler purposefully differentiates the inputs of
the two branches, and brings a gain of 3.1% average mAP.
By adaptively selecting less discriminative snippets for the
supplementary branch, the sampler promotes it to explore the
actions underestimated by the base branch, thus completing
the localization results of the whole framework.

Moreover, comparing (F) to (E), the adaptive sampler fur-
ther boosts the effectiveness of mutual location supervision
in multiple iterations, bringing a gain of 3.7% average mAP.
By integrating the adaptive sampler and mutual location su-
pervision to form our AMS framework, we achieve the best
performance with large gaps from the others, which indicates
that both components play essential roles and jointly contribute
to more complete action localization results.

E. Validation and Analysis Experiments

1) Effect of the adaptive sampling weights: As designed in
Section III-C1, we design the sampling weight sequence to
be negatively correlated with the CAS of the base branch.
To verify the effectiveness of this strategy, we implement
three experiments in Table IV. (A): uniformly generate sample
weights; (B): randomly generate sample weights; (C): adap-
tively generate sample weights by our proposed strategy. The
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TABLE IV: Results of different sampling weight strategies
on THUMOS14. AVG(0.1-0.7) means the average mAP from
IoU 0.1 to 0.7. Our proposed adaptive sampling is significantly
better than random sampling and uniform sampling.

ID Sampling
weights

mAP@IoU AVG
(0.1-0.7)0.1 0.3 0.5 0.7

(A) Uniform 65.3 47.0 29.3 10.7 38.1
(B) Random 66.7 47.8 29.8 11.1 38.9
(C) Adaptive 69.1 52.7 33.1 13.0 42.3

0 1 2 3 4
Iteration

24.5

26.5

28.5

30.5

32.5

m
A

P@
Io

U
 0

.5
 (

%
) 32.7

33.1 32.8

30.5

24.9

Fig. 4: Results of progressive iterative refinement on THU-
MOS14. The best performance is obtained in the third itera-
tion, and the improvement over four iterations is 8.2% mAP.

results show that the adaptive sampling strategy significantly
surpasses the other two, boosting the performance to more
than 3.4% average mAP. As is evident, the adaptive sampling
strategy effectively differentiates the two branches, prompting
the supplementary branch to complement the detection results
of the base branch. Moreover, (B) outperforms (A) by 0.8%
average mAP. We speculate this is because random sampling
acts as a role of data augmentation, which enlarges the amount
of training data, thus bringing a certain gain.

2) Effect of the progressive iterative refinement: Fig. 4
quantifies the results of four iterations to evaluate the effect
of progressive refinement. The best performance is obtained
in the third iteration, which gains 8.2% mAP compared to the
initial iteration. Such a huge gain shows that in progressive
iterations, the quality of pseudo-labels is continuously improv-
ing through mutual enhancement between the two branches.
And the adaptive sampler and mutual location supervision can
collaborate and promote each other. In essence, the mutual en-
hancement is a voting ensemble of the localization results from
the two branches, which can provide more complete and pre-
cise supervision, compared to each individual branch. When
we combine the location information of the two branches, the
localization errors that only exist in one branch are largely
ruled out, thus avoiding error propagation.

Moreover, we notice that the gain of a single iteration is
decreasing until it becomes zero. In the initial iteration, the
location pseudo-labels are low-quality, or even none. While
after three iterations, the quality of pseudo-labels tends to be
high and stable, the performance reaches the main bound.

3) Effect of the aggregation operations: As described in
Section III-C1, we aggregate all action information of category

TABLE V: Results of three aggregation operations in Sec-
tion III-C1 on THUMOS14. ‘Random’ means randomly se-
lecting a ground-truth category channel. Both the ‘Maximum’
operation and the ‘Average’ operation bring promising results.

aggregation
method

mAP@IoU AVG
(0.1-0.7)0.1 0.3 0.5 0.7

Random 67.5 51.6 32.5 12.5 41.4
Average 68.9 52.5 33.3 13.1 42.2

Maximum 69.1 52.7 33.1 13.0 42.3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Sampling adjustment value
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Fig. 5: Effects of the sampling adjustment value η on THU-
MOS14. The localization results are reported at IoU threshold
0.5. And the best performance is achieved when η = 0.75.

channels in CAS through the average operation. There are two
other aggregation operations available, that is, the maximum
operation and the operation randomly selecting a ground-truth
category channel. Table V summarizes the comparison. There
is no significant performance difference between the average
operation and the maximum operation. And the results of
these two operations are superior to the random operation.
The reason may be that the random operation also provides
the supplementary branch with some action regions that have
been found by the base branch. This increases the overlap
between the actions discovered by the supplementary branch
and the base branch, thus damaging the performance.

4) Effect of the sampling adjustment value η: In Eq. 4, the
sampling adjustment value η is designed to adjust the sampling
weight sequence. Fig. 5 demonstrates the effect, where η varies
from 0 to 2 with an interval of 0.25. We find that it shows a
clear trend to peak at 0.75. And there are slight differences in
performance when using values from 0.5 to 1. However, when
we continue to increase η to 2, the performance drops a lot.
This is because in this case, the sampling weights of different
video snippets tend to be the same, causing the adaptive
sampling to degenerate to the uniform sampling. Accordingly,
the inputs of the two branches become substantially identical,
and our AMS framework degenerates into the straightforward
mutual location supervision model.

F. Qualitative Results

To qualitatively demonstrate the superiority of the proposed
framework, we visualize several examples in Fig. 6. For
clear understanding, we provide the inputs, the CAS, and the
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ground truth

final results

results of the 

supplementary

branch

results of the 

base 

branch

An example of LongJump action An example of ThrowDiscus action

Fig. 6: Qualitative results on THUMOS14 (Best viewed in color). In each example, there are nine plots. The first three plots are
the input video, the CAS, and localization results of the base branch. The middle three plots show the input video, the CAS, and
localization results of the supplementary branch. The last three plots are the final CAS, the final localization results of the whole
framework, and the ground truth action intervals. The base branch, fed with videos of uniformly temporal distribution, can only
detect the most discriminative actions. Through the adaptive sampler, we input videos of non-uniformly temporal distribution
to the supplementary branch, hence force it to purposefully complement the less discriminative actions underestimated by the
base branch. Mutual location supervision makes our final localization results more complete and precise.

localization results of the base branch and the supplemen-
tary branch in turn. Generally speaking, whether for videos
containing sparse or dense action instances, the localization
results of our framework are relatively complete and pre-
cise. More specifically, the base branch, which is fed with
videos of uniformly temporal distribution, can only detect the
most discriminative action regions. Therefore, its correspond-
ing results are sparse and trivial. Relying on the adaptive
sampler, we select the uncertain video snippets of the base
branch as inputs for the supplementary branch. The videos of
non-uniformly temporal distribution, force the supplementary
branch to purposefully complement the less discriminative
actions underestimated by the base branch, but also causes
some false-positive background predictions. On this basis,
mutual location supervision promotes the mutual enhancement
between the two branches, which combines their localization
results for more complete and precise final prediction results.
The good qualitative results again prove the effectiveness of
our proposed framework.

V. CONCLUSION

In this work, to solve the incompleteness issue of CAS in
WTAL, we propose an adaptive mutual supervision framework
(AMS) with two branches. The base branch leverages CAS to
localize the most discriminative action regions, and the supple-
mentary branch localizes the less discriminative action regions
through a novel adaptive sampler. The adaptive sampler dy-
namically updates the input of the supplementary branch with

a sampling weight sequence negatively correlated with the
CAS from the base branch, thus prompting the supplementary
branch to localize the action regions underestimated by the
base branch. To promote mutual enhancement between the
two branches, we construct mutual location supervision. Each
branch uses location pseudo-labels generated from the other
branch as localization supervision. By alternately optimizing
the two branches in multiple iterations, we progressively
localize more complete action regions. Experiments on two
benchmarks demonstrated the effectiveness and outstanding
performance of the proposed AMS framework.
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