
1

Confidence-Aware Active Feedback for
Interactive Instance Search
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Abstract—Online relevance feedback (RF) is widely utilized in
instance search (INS) tasks to further refine imperfect ranking
results, but it often has low interaction efficiency. The active
learning (AL) technique addresses this problem by selecting
valuable feedback candidates. However, mainstream AL methods
require an initial labeled set for a cold start and are often
computationally complex to solve. Therefore, they cannot fully
satisfy the requirements for online RF in interactive INS tasks. To
address this issue, we propose a confidence-aware active feedback
method (CAAF) that is specifically designed for online RF in
interactive INS tasks. Inspired by the explicit difficulty modeling
scheme in self-paced learning, CAAF utilizes a pairwise manifold
ranking loss to evaluate the ranking confidence of each unlabeled
sample. The ranking confidence improves not only the interaction
efficiency by indicating valuable feedback candidates but also the
ranking quality by modulating the diffusion weights in manifold
ranking. In addition, we design two acceleration strategies, an
approximate optimization scheme and a top-K search scheme,
to reduce the computational complexity of CAAF. Extensive
experiments on both image INS tasks and video INS tasks search-
ing for buildings, landscapes, persons, and human behaviors
demonstrate the effectiveness of the proposed method. Notably,
in the real-world, large-scale video INS task of NIST TRECVID
2021, CAAF uses 25% fewer feedback samples to achieve a
performance that is nearly equivalent to the champion solution.
Moreover, with the same number of feedback samples, CAAF’s
mAP is 51.9%, significantly surpassing the champion solution by
5.9%. Code is available at https://github.com/nercms-mmap/caaf.

Index Terms—Active learning, Interactive instance search.

I. INTRODUCTION

W ITH the explosive development of media technology,
image/video instance analysis has received much at-

tention in the past decade [1]–[8]. The goal of instance
search (INS) is to search for instances of a query from a
gallery of images or videos. After the features and initial
ranking list are obtained, online relevance feedback (RF) is
commonly employed in INS tasks to refine the imperfect
retrieval result by asking for extra supervisory information
through an interactive process [9], [10]. However, RF often has
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low interaction efficiency, as not all samples are guaranteed to
provide valuable information.

Active learning (AL) [11] addresses this issue by selecting
valuable feedback samples that are beneficial for improving
the model performance. Particularly, considering the practical
difficulty of collecting labeled data and the special requirement
of quick response in the online interaction scenario, we need a
lightweight AL strategy that does not require a predefined la-
beled set and that has low computational complexity. However,
mainstream AL methods, e.g., [12]–[15], require an initial
labeled pool that accounts for 5%∼10% of the entire training
set for a cold start, and solving them is often time-consuming.
Therefore, existing AL methods cannot fully satisfy the need
for online RF in interactive INS tasks.

To address the above issue, we propose a confidence-aware
active feedback method (CAAF) that is specifically designed
for online RF in interactive INS tasks. Inspired by the explicit
difficulty modeling scheme in self-paced learning (SPL) [16],
[17], CAAF measures the confidence of each sample with the
manifold ranking (MR) [18] loss. Since MR does not require
any labeled samples except for the query, CAAF is compatible
with interactive INS tasks where the query is the only labeled
sample at the beginning. However, unlike SPL, which focuses
on easy samples with small losses, CAAF preferentially selects
low-confidence hard samples with large losses, as they have
higher potential values from the perspective of AL [19].

To solve the proposed CAAF, we adopt the alternative
optimization strategy [20], which divides CAAF into a ranking
step and a suggestion step. The ranking step refines ranking
scores with the user’s relevance feedback, where labeled
samples are endowed with higher confidence scores and have
higher weights in diffusing their ranking scores. The sugges-
tion step estimates samples’ confidence scores with their rank-
ing losses, where unlabeled samples with larger ranking losses
gain lower confidence scores. As a result, CAAF improves not
only the interaction efficiency by selecting valuable feedback
samples but also the retrieval performance by modulating the
diffusion weights in MR.

However, the above solution consists of two quadratic
programming problems, which still suffer from high computa-
tional complexity. Therefore, we further design two accelera-
tion strategies to reduce the execution time of CAAF. We aban-
don the convergence condition of the alternative optimization
strategy and approximately solve the quadratic-programming-
based objective function by calculating the closed-form ex-
pressions, i.e., the ranking step and the suggestion step are
successively solved only once in each round of feedback
instead of iteratively optimized until convergence, and the
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Refined 𝑲𝑲 Ranking Results

The rankings of the top-𝐾𝐾 samples are refined.

The rankings of the remaining samples are unchanged.

Fig. 1. Workflow of the proposed CAAF. Given an initial ranking list r0, where gallery samples are listed in descending order by their initial ranking scores,
the pairwise similarity between the top-ranked K gallery samples and the probe is depicted by a confidence-weighted data manifold. On this basis, CAAF
couples the ranking score f and confidence score v in one objective function E(f ,v), where f is solved by minimizing Ev(f) in the ranking step and v
is solved by minimizing Ef (v) in the suggestion step. Feedback suggestions are returned to the user, and the feedback scores are used to refine the ranking
scores in the next round of feedback. The re-ranked top-K samples, which are listed in descending order by their refined ranking scores (represented as a
light yellow bar), are merged back to the initial ranking list (represented as a light blue bar), and the final ranking list r∗ is generated.

constraints in their objective functions are omitted. On the
other hand, only top-K samples in the initial ranking list
are considered in the interactive INS process. Hence, the
problem scale is confined to the constant K which is usually
much smaller than the gallery size. The experimental results
in Section IV-F demonstrate that both strategies significantly
reduce the execution time without noticeable performance
degradation.

The workflow of the proposed CAAF method is shown in
Figure 1. Given an initial ranking list, first, we select the top-K
gallery samples. Second, we construct a confidence-weighted
data manifold with these samples and the probe to depict
their pairwise relationship, where the nodes correspond to the
probe and the galleries, and the edges encode their pairwise
similarities. On this basis, CAAF successively solves a ranking
step and a suggestion step to generate refined ranking results
and feedback suggestions, respectively. This RF process will
repeat several times until the maximum annotation budget is
reached. Eventually, the final ranking list concatenates the re-
ranked top-K samples and the remaining samples in their
initial ranking orders.

The contributions of this paper are summarized as follows:
• We propose CAAF, an AL strategy that is specifically de-

signed for interactive INS tasks, which improves not only
the interaction efficiency by selecting valuable feedback
samples but also the retrieval performance by modulating
the diffusion weights in manifold ranking.

• We design two acceleration strategies to solve CAAF,
including an approximate solution to simplify the solving
process and a top-K search scheme to reduce the problem
scale, which ensure a smooth interaction experience in
large-scale INS tasks.

• We conduct extensive experiments on both image and

video INS tasks searching for buildings, landscapes,
persons, and human behaviors, which demonstrate the
effectiveness of the proposed method. Notably, in the
large-scale video INS task of NIST TRECVID 2021,
CAAF uses 25% fewer feedback samples to achieve
nearly equivalent performance as the champion solution.
Moreover, with the same number of feedback samples,
CAAF’s mAP is 51.9%, significantly surpassing the
champion solution by 5.9%.

The remainder of this paper is organized as follows: Sec-
tion II briefly reviews the related work. In Section III, we
describe the proposed CAAF method and its solution. Sec-
tion IV shows the experimental results, and conclusions are
given in Section V.

II. RELATED WORK

In this section, we briefly present a review of INS and RF
and then introduce related developments in AL and SPL.

A. Instance Search

INS tasks aim to search a specific instance from a large
set of multimedia data. According to the data type, INS
tasks include image retrieval [21] and video retrieval [22].
According to the category of the search instance, INS tasks
include but are not limited to object retrieval [3] and person
re-identification [23]. A typical pipeline of the INS task is to
detect and locate the search instance [2], [4]–[6], to extract and
encode discriminative features to compact vectors [1], [3], [7],
[8], and then to apply post-processing strategies to improve the
retrieval accuracy [24], [25].

Our method is a post-processing strategy that aims to
refine the existing retrieval results through efficient human
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interactions. The method has been tested to be effective
on image- and video-based datasets covering buildings [26],
landscapes [27], persons [28], and human behaviors [29].

B. Relevance Feedback

RF is a commonly utilized post-processing technique that
refines the existing retrieval results by asking users to provide
extra annotations. Generally, RF comprises two steps: sample
selection and ranking optimization. Existing methods mainly
focus on the second procedure, i.e., optimizing the model with
a small amount of user feedback to generate more accurate
retrieval results [9], [10]. However, the first procedure is
naively implemented by top selection or random selection,
which is not guaranteed to select the most valuable feedback
candidates, thus leading to low interaction efficiency [30].

To address this problem, some researchers have introduced
AL techniques to RF [30]. CAAF follows this rationale, but
implements the idea differently. The details are described in
the following sections.

C. Active Learning

AL methods aim to minimize the annotation cost by se-
lecting the most valuable feedback samples that are either
informative [31], [32], representative [12], [13], or both [15],
[33]. The mainstream AL methods require a pre-defined
labeled set for a cold start, e.g., VAAL [13] initializes the
labeled pool with 10% of the training set, and CoreGCN [15]
randomly selects 1,000 samples as the initial labeled set. In
addition, these methods are often computationally complex
to solve, e.g., VAAL needs to train a variational autoencoder
and an adversarial network to select representative unlabeled
samples, and CoreGCN estimates the uncertainty of unlabeled
samples by training a graph convolutional network. However,
considering the practical difficulty of collecting labeled data
and the special requirement of quick response in the online
interaction scenario, these methods cannot fully satisfy the
need for online RF in interactive INS tasks.

CAAF addresses this problem by measuring the samples’
confidence with the manifold ranking [18] loss and preferen-
tially selects low-confidence hard samples with large losses
as valuable feedback candidates. Since MR does not require
any labeled samples except for the query, CAAF is compatible
with interactive INS tasks where the query is the only labeled
sample at the beginning.

D. Self-Paced Learning

SPL [16], [17] is a classic learning paradigm that gradually
incorporates easy to hard samples into the training processes.
The core idea of SPL is to measure the easiness of each sample
with a task-specific loss and to preferentially select easy
samples with low losses to train the model. The effectiveness
of such a learning regime has been validated in various tasks,
including fine-grained visual classification [34], cross-modal
matching [35] and object detection [36]–[38].

Recently, some methods [14], [19] have combined SPL
and AL into one framework, e.g., ASPL [19] assigns pseudo

labels for high-confidence easy samples selected by SPL
and annotates ground-truth labels for low-confidence samples
selected by AL; and SPAL [14] integrates SPL and AL into
one objective function, so the easiness and representativeness
of each sample can be jointly considered for model training.

Different from ASPL and SPAL, CAAF directly uses SPL as
an AL strategy and preferentially selects low-confidence hard
samples with large losses as valuable candidates for online
RF in interactive INS tasks. In addition, CAAF uses SPL as a
modulator to adjust the diffusion weights in MR, where labeled
samples are endowed with higher confidence scores and thus
have higher weights in diffusing their ranking scores. As a
result, CAAF improves not only the interaction efficiency but
also the ranking accuracy.

III. PROPOSED METHOD

In this section, we present the problem formulation with
necessary notations and then introduce the solution and accel-
eration strategies.

A. Problem Formulation
Given a probe p and a gallery set G = {gi}ni=1, we merge

them into a new image set X = G ∪ {p} = {xi}mi=1, where
m = n+1. Next, the pairwise data affinity can be represented
as A = [max(aij , 0)]mi,j=1 ∈ [0, 1]m×m, where aij reflects the
similarity between xi and xj . Our goal is to actively select the
most valuable feedback samples for RF to refine the ranking
score f = [fi]

m
i=1 ∈ [0, 1]m×1, where fi is the ranking score

of xi.
Manifold ranking. The classic manifold ranking (MR) [18]

aims to obtain the ranking score f by minimizing a pairwise
ranking loss function, with a smoothing term to constrain sim-
ilar samples to have similar ranking scores, and a fitting term
to prevent the ranking score f from deviating too much from
the reference ranking score y = [0, · · · , 0, 1]> ∈ {0, 1}m×1.
The pairwise loss function between xi and xj is defined as

lij = aij(fi − fj)2 + α(fi − yi)2 + α(fj − yj)2, (1)

where α ∈ (0, 1) is a parameter to balance the smoothing term
and fitting term. To adapt such a framework to our human-in-
the-loop setting, we redefine y = [yi]

m
i=1 as

yi =

{
si, if xi ∈ Ψ,

0, otherwise,
(2)

where si ∈ {0, 1} is the feedback score of xi, and Ψ is the set
of all annotated samples. si = 1 if xi is relevant to the probe,
and si = 0 otherwise. In particular, probe xm = p can be
considered a special annotated sample whose feedback score
is sm = 1. fi = yi if xi ∈ Ψ.

Confidence modeling. In the context of INS, the confidence
of a sample can be defined as the reliability of its ranking
score. We denote the confidence score as v = [vi]

m
i=1 ∈

[0, 1]m×1, where vi is the confidence score of xi. Apparently,
the labeled samples have higher confidence than the unlabeled
samples. Hence, vi is initialized as

vi =

{
1, if xi ∈ Ψ,

0, otherwise.
(3)
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For unlabeled samples, however, vi is negatively correlated
with the ranking loss. i.e., the higher the ranking loss is,
the lower the confidence. And from the perspective of AL,
the lower the confidence is, the higher the feedback value.
Therefore, v is optimized by minimizing the following loss
function:

L(f ,v) =
1

m2

∑
i,j

(vi + vj)(lij − β), (4)

where lij is the pairwise manifold ranking loss defined in
Eq. 1, and β > 0 is a loss threshold to measure the confidence
of each sample. Specifically, when lij is smaller than β,
minimizing L(f ,v) will make both vi and vj approach 1;
in contrast, when lij is larger than β, minimizing L(f ,v) will
make both vi and vj approach 0.

By optimizing Eq. 4, v works in two aspects:
• Feedback generation. When taking v itself as the opti-

mization objective, it serves as an indicator to generate
feedback suggestions based on the ranking confidence of
each unlabeled sample.

• Weight modulation. When taking f as the optimization
objective, v becomes an additional weight in MR to
increase the impact of high-confidence samples and to
reduce the influence of the low-confidence samples.

Furthermore, to constrain the element value of v, a squared
norm regularization term R(v) is added to Eq. (4).

R(v) =
γ

m
‖v‖22 , (5)

where γ > 0 is the regularization weight parameter. We obtain
the following constraint optimization problem:

min
f ,v
E(f ,v) = L(f ,v) +R(v)

s.t. 0 � f � 1, fi = yi if xi ∈ Ψ

0 � v � 1, vi = 1 if xi ∈ Ψ

(6)

where 0 and 1 represent a full 0 vector and a full 1 vector,
respectively, and � denotes the element-wise comparison of
≤.

B. Solution

To solve f and v, we adopt the alternative optimization
strategy [20] and decompose Eq. 6 into a ranking step and
suggestion step.

Ranking step. In the ranking step, we optimize f with
fixed v; thus, Eq. (6) can be simplified by eliminating the
regularization term R(v) and the threshold β. The objective
function is then computed as

Ev(f) =
1

2

∑
i,j

ṽij lij , (7)

where ṽij = vi+vj and the constant coefficient 1
m2 in Eq. (4)

is replaced by 1
2 to simplify the following transformation. By

replacing lij with Eq. (1) and by eliminating terms irrelevant
to f , Eq. (7) can be further rewritten as a confidence-weighted
manifold ranking problem

Ev(f) =
1

2

∑
i,j

ṽij lij

=
1

2

∑
i,j

ṽijaij(fi − fj)2 +
∑
i,j

αṽij(fi − yi)2

=
1

2

∑
i,j

ṽijaij(f
2
i + f2j − 2fifj)+∑

i,j

αṽij(f
2
i + y2i − 2fiyi) (8)

=
∑
i,j

ãijfi
2 −

∑
i,j

ãijfifj +
∑
i,j

αṽijf
2
i −

2
∑
i,j

αṽijfiyi +
∑
i,j

αṽijy
2
i

=f>Df − f>Ãf + f>Qf − 2f>Qy + C

=f>(P + Q)f − 2f>Qy + C,

where ãij = ṽijaij is the confidence-weighted affinity be-
tween xi and xj ; D is a diagonal matrix, where dii =

∑
j ãij ;

Q is a diagonal matrix, where qii =
∑
j αṽij ; P = D − Ã

is the Laplacian matrix of the confidence-weighted graph; and
C =

∑
i,j αṽijy

2
i is a constant term irrelevant to f . Since

both P and Q are positive semi-definite matrices, Eq. (8) is a
standard convex quadratic programming (QP) problem [39].

Suggestion step. In the suggestion step, f is fixed while v
is optimized. The related objective function can be concisely
rewritten in a matrix form as

Ef (v) =
γ

m
‖v‖22 +

1

m2

∑
i,j

(vi + vj)(lij − β)

=
γ

m

∑
i

v2i +
2

m2

∑
i

vi l̃i

=
γ

m
v>Iv +

2

m2
l̃
>
v

(9)

where I is an m-by-m unit matrix, l̃ = [l̃i]
m
i=1 ∈ Rm×1, and

l̃i =
∑
j(lij − β). Similarly, Eq. (9) is also a standard QP

problem.
After the above decomposition, CAAF can generate one

round of refined ranking scores and valuable feedback sug-
gestions by alternatively optimizing the ranking step and
suggestion step until convergence.

C. Acceleration Strategies

Real-time response is in high demand in interactive INS
tasks, yet it may be too time-consuming to iteratively solve
the QP problems in the ranking step and suggestion step,
especially when the problem scale m is extremely large.
Therefore, we design two acceleration strategies to efficiently
solve the proposed model, including an approximate solution
to simplify the original solution in Section III-B, and a top-K
search scheme to reduce the problem scale.

Approximate solution. To reduce the execution time, we
abandon the convergence condition in the alternative opti-
mization strategy and successively solve the ranking step and
suggestion step only once in each round of feedback. In this
case, we do not have to strictly follow the constraints in Eq. (8)
and Eq. (9), and both f and v can be solved by closed-form
expressions.
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Algorithm 1 Approximate solution for CAAF
Input: the image set X = G ∪ {p}, where G and p denote

the gallery set and probe, respectively, the affinity matrix
A, the initial labeled image set Ψ = {p}, the number of
feedback samples per round q, and the maximum round
of feedback T .

Output: The ranking score f∗.
1: for t in [0, T ] do
2: Set y and v by Eq.(2) and Eq.(3), respectively;
3: Solve f with fixed v by Eq.(10);
4: Solve v with fixed f by Eq.(13);
5: Select q samples with the smallest v from X \Ψ, and

add them to Ψ with their feedback scores;
6: end for
7: return f∗ = [fi]

n
i=1.

In the ranking step, f can be solved by

fi =


yi , if xi ∈ Ψ,

fi −min(f̂)

max(f̂)−min(f̂)
, otherwise,

(10)

where min(·) and max(·) denote the minimum and maximum
value, respectively, of a vector, and f̂ is solved by

f̂ = (P + Q)−1Qy. (11)

In the suggestion step, v can be solved by

v = − l̃

γm
. (12)

Since we are only concerned with the relative magnitude of
v instead of its real value, the constant terms can be further
omitted. Hence, v is solved by

v = −l̂, (13)

where l̂ = [l̂i]
n
i=1 and l̂i =

∑
j lij .

Since Eq. (10) and (13) only involve basic matrix oper-
ations, we can use a GPU to accelerate the computational
process. The comparative results between the original QP
solution and the GPU-accelerated approximate solution will
be discussed in Section IV-F.

After successively solving f and v, the user is asked to
provide feedback scores for the q least confident unlabeled
samples. At the beginning of the next round of feedback,
we reuse Eq. (3) to update v, i.e., unlabeled samples are
considered to be low-confidence while labeled samples are
regarded as high-confidence. Once the pre-determined max-
imum round of feedback T is reached, the ranking score
of probe fm is removed, and the ranking score is denoted
as f∗ = [fi]

n
i=1. The overall procedure of the approximate

solution is summarized in Algorithm 1.
Top-K search scheme. Since relevant samples tend to be

concentrated at the top of the initial ranking list [40], we follow
a common practice that selects only the top-K samples from
the initial ranking list r0 to form the gallery set G [41], [42],
i.e., the number of galleries n = K, and the total number
of samples m = K + 1. Therefore, we can set a relatively

small K to balance the performance and computational cost.
Eventually, the final ranking list r∗ concatenates two parts:
(1) the re-ranked top-K samples listed in descending order by
their refined ranking scores f∗ and (2) the remaining samples
in their initial ranking orders. The rationality of this practice
will also be discussed in Section IV-F.

IV. EXPERIMENTS

This section is divided into six parts. In the first part, we
introduce the settings in our experiments. Next, we report
the comparative results with existing AL methods on three
image-based INS datasets in the second part. The evaluation
results on NIST TRECVID are reported in the third part. In
the fourth part, ablation studies are performed to demonstrate
the effectiveness of the two key modules in CAAF. In the fifth
part, we provide a detailed analysis of the confidence modeling
scheme introduced in Section III-A to show how v works in
CAAF. The sixth part analyzes the rationality of the proposed
acceleration strategies. We discuss the limitations of CAAF in
the last part.

A. Settings

1) Datasets: We evaluate our method on three image re-
trieval datasets and the INS task of NIST TRECVID1:
• Holidays [27] is one of the most widely employed image

retrieval benchmarks. There are 1,491 images of 500
landscapes collected from personal holiday albums, and
each landscape has one query.

• Oxford5k [26] is also a popular dataset for image re-
trieval. This dataset contains 5,062 images of 11 buildings
in Oxford University, and 5 queries are defined for each
building, i.e., there are 55 queries in total.

• CUHK03 [28] is a person re-identification dataset that
collects images of 1,467 pedestrians on the CUHK
campus. It provides two types of annotations: the first
annotation is obtained by manually labeled bounding
boxes (labeled set), and the second annotation is obtained
by bounding boxes produced by an automatic detector
(detected set). We choose the latter in our experiment, as
it is more challenging than the former. We follow the new
training/testing protocol introduced by Zheng et al. [43],
where there are 1,400 probes vs. 5,332 galleries in the
testing set.

• NIST TRECVID INS Evaluation asks participants to
retrieve all relevant video segments about specific topics
from the EastEnders series. Each participant can submit
up to 4 automatic results and 4 interactive results. When
generating the interactive results, human interactions are
allowed to refine the automatically generated search re-
sults, and the interaction time for each search topic is
limited to 5 minutes. The entire dataset contains more
than 470,000 video shots from 244 episodes, with a total
length greater than 464 hours. We choose 40 query topics
about specific persons doing specific actions from the
2020 and 2021 challenges.

1https://www-nlpir.nist.gov/projects/tv2021/ins.html

https://www-nlpir.nist.gov/projects/tv2021/ins.html
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Fig. 2. Performance comparison of different AL methods on the Holidays, Oxford5k, and CUHK03 datasets under different feedback rounds (T ), where each
line represents an AL method.

2) Features: We choose the 4,096-dimensional feature ex-
tracted by VGG16 [44] pretrained on ImageNet [45] for
Holidays and Oxford5k, and the 1,536-dimensional feature
extracted by Beyond Part Model [46] is adopted for CUHK03.
The affinity matrix A is constructed by cosine similarity, and
the initial ranking list r0 is generated by sorting all gallery
samples in descending order by their Euclidean distance to
the probe.

For NIST TRECVID, we concatenate the facial visual
feature of the character that appeared in each video segment
and the category encoding of action taken by the character as
the semantic feature of each video segment [29]. We then take
the average feature of the top 25 samples in the initial ranking
list as the probe feature, as there is no specific query sample in
the INS task of NIST TRECVID. Similar to the three image-
based datasets, the affinity matrix A is calculated by the cosine
similarity. However, we further add a temporal expansion term
to reflect the temporal similarity between each video segment,
i.e., aij = e−λ|ti−tj |cos(xi, xj), where |ti − tj | calculates the
temporal distance between shot i and shot j, and cos(xi, xj)
denotes the cosine similarity between xi and xj . The intuition
is that temporally consecutive video segments tend to share the
same topic, and we set λ = 0.005. Instead of calculating the
Euclidean distance, the initial ranking list on NIST TRECVID
is generated by an automatic ranking strategy [47].

3) Evaluation metrics: The mean average precision (mAP)
is mainly used to evaluate the performance on all four datasets.
We also measure the execution time taken in each round of
feedback to evaluate the execution efficiency2.

4) Implementation details: We set α = 0.01 on all datasets
to balance the smoothing term and the fitting term in Equa-
tion 1. On the three image-based datasets, we set K = 300,
q = 5, and T = 4, i.e., the top 300 samples in the initial
ranking list are used to refine the retrieval performance, and
q×T = 20 feedback samples are generated for each probe in
total. On NIST TRECVID, unless otherwise specified, we set
K = 2000 and q = 18, but T is no longer fixed since the total

2The execution time of all experiments is measured on the same machine
with one Intel(R) Core(TM) CPU i9-11900K @ 3.50 GHz, 128 GB memory,
and one NVIDIA GeForce RTX 3090 GPU.
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Fig. 3. Execution time comparison of different AL methods on Holidays,
Oxford5k and CUHK03.

time is fixed in the official evaluation, and we try to take as
many feedback rounds as possible. In addition, we replace the
binary reference score y with the initial ranking score and set
v = 1 in the first round of feedback on NIST TRECVID, as
the semantic features are somewhat weak to provide adequate
information.

B. Comparison with Existing AL Methods

We compare CAAF with 6 AL methods on the three image-
based datasets:
• Rand is a commonly utilized baseline for AL approaches,

where feedback samples are randomly chosen from the
unlabeled set.

• CoreSet [12] is a state-of-the-art geometric technique and
it aims to choose a representative subset of the entire
dataset.

• VAAL [13] aims to select the most representative samples
by training a variational autoencoder and an adversar-
ial network to discriminate between unlabeled data and
labeled data. The probability associated with the dis-
criminator’s predictions serves as a score to select low-
confidence samples for feedback.

• SPAL [14] simultaneously considers the potential value
and easiness of an instance by integrating a self-paced
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regularizer and a term that estimates the distribution
difference between labeled data and unlabeled data into
one objective function.

• UncertainGCN [15] constructs a sequential graph convo-
lutional network (GCN) to distinguish unlabeled samples
from labeled samples. The outputs of the GCN serve as
confidence scores, and an uncertainty sampling approach
is applied to select samples whose confidence scores are
closest to a pre-defined small margin.

• CoreGCN [15] integrates CoreSet and UncertainGCN to
select informative and representative feedback samples.

All baseline methods are implemented with their default
settings in our experiment, except for VAAL, as it requires
a relatively large number of labeled samples to train the
VAE and adversarial network. However, it is impractical for
our interactive retrieval settings, where the probe is the only
labeled sample at the very beginning. Therefore, we randomly
select q samples in the first round of feedback, and VAAL
is applied from the second round of feedback. For a fair
comparison, all baseline methods, as with CAAF, are applied
to the top-K samples in the initial ranking list. In addition,
these methods are only used to generate feedback suggestions
for RF, and the feedback scores are diffused by the same
ranking process described in Sec. III-B.

Figure 2 shows the dynamic performance of all AL methods
as the feedback round T increases on three datasets. Compared
with state-of-the-art AL methods, CAAF gains the highest
improvement after 4 rounds of feedback, with the mAP
improving more than 15% on Holidays and Oxford5k and
more than 45% on CUHK03. Notably, different from the ex-
perimental results reported in other literature, some methods,
e.g., CoreSet and VAAL, may be inferior to Rand, which
can be attributed to the lack of labeled samples. These AL
methods usually need a pre-defined labeled set that accounts
for 5%∼10% of the whole unlabeled set for a cold start, yet the
query is the only labeled sample in the first round of feedback
in interactive INS tasks. These results demonstrate that CAAF
is more compatible with interactive INS tasks compared with
state-of-the-art AL methods.

Figure 3 compares the mean and standard deviation of the
execution time in each round of feedback on all three datasets.
We observe that most baseline methods need more than 400
ms (≈ log10(−0.39)s) to generate one round of feedback sug-
gestions, which cannot satisfy the optimal computer response
time [48]. However, with our approximate solution, CAAF
is able to generate feedback suggestions in less than 5 ms,
demonstrating its computational efficiency.

C. Evaluation on NIST TRECVID

In this section, we evaluate our method on the INS task of
NIST TRECVID 2020 & 2021 to demonstrate the capability
of handling extremely large-scale datasets.

1) Evaluation on NIST TRECVID 2021: We report the
official evaluation results [29] of the top-3 interactive runs
and their corresponding automatic runs in 2021:
• F_M_A_B_WHU_NERCMS.21_2 (Auto1) is the official

first-ranked automatic result.

TABLE I
COMPARISON BETWEEN TOPK AND CAAF IN NIST TRECVID 2021

Topic
Official Ours

Auto2+TopK Auto2+CAAF Auto2+CAAF*
#FB AP (%) #FB AP (%) #FB AP (%)

9319 176 59.8 75 60.0 176 70.7
9320 169 79.0 67 77.2 169 80.2
9321 182 65.3 80 64.1 182 72.1
9322 97 56.4 60 53.2 97 59.1
9323 90 51.5 66 53.1 90 57.8
9324 91 49.4 61 52.8 91 56.0
9325 120 71.9 77 69.7 120 75.3
9326 138 74.5 99 73.1 138 78.4
9327 130 74.0 90 74.0 130 75.7
9328 98 20.9 86 29.0 98 34.3
9329 114 21.5 90 21.6 114 24.5
9330 97 51.9 73 51.4 97 55.2
9331 104 39.8 80 39.9 104 45.9
9332 116 51.6 80 52.4 116 60.2
9333 77 40.4 82 38.0 77 45.9
9334 79 35.2 83 30.6 79 45.1
9335 60 6.5 80 8.7 60 14.0
9336 67 16.5 96 15.2 67 24.0
9337 50 12.8 72 12.9 50 15.9
9338 53 41.8 70 41.8 53 46.7

Mean 105.4 46.0 78.4 45.9 105.4 51.9

• F_M_A_B_WHU_NERCMS.21_4 (Auto2) is the official
second-ranked automatic result.

• I_M_A_B_WHU_NERCMS.21_1 (Auto1+TopK) is the
official first-ranked interactive result. This method takes
Auto1 as the initial search result, asks the user to verify
the initially top-ranked video segments, and removes the
irrelevant segments from the search list.

• I_M_A_B_WHU_NERCMS.21_5 (Auto2+TopK) is the
official second-ranked interactive result. This method
takes the same interaction strategy as Auto1+TopK, and
the only difference is that it takes Auto2, instead of
Auto1, as the initial search result.

• I_M_A_B_WHU_NERCMS.21_3 (Auto2+CAAF) is the
official third-ranked interactive result that refines Auto2
via the proposed CAAF.

In addition to the official evaluation results, we supple-
ment an interactive solution (Auto2+CAAF*) where the to-
tal feedback number of each topic is equivalent to that of
Auto2+TopK, i.e., 176 samples are fed back to the user in
Topic 9319, 169 samples are fed back to the user in Topic
9320, etc.

As presented in Table I, when the total interaction time
is constrained to 5 minutes, the user can check 105 video
segments on average with Auto2+TopK, which is 28 more than
that of Auto2+CAAF. The low-confidence samples selected
by CAAF can sometimes be difficult for human users to
discriminate. To alleviate the effects caused by noisy anno-
tations, we ask the user to abstain from feedback if he or
she is unsure about the label. Nevertheless, Auto2+TopK only
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Fig. 4. 11-point interpolated precision-recall curve of Auto2+CAAF* and all
baseline methods in NIST TRECVID 2021, where the values in the legend
represent the mAP of each method.

TABLE II
EVALUATION ON NIST TRECVID 2020

Method mAP (%)

AutoBest [49] 25.2
AutoBest+InterBest [49] 36.8

Auto2 24.7
Auto2+TopK 38.1
Auto2+CAAF 38.7

performs 0.1% better than Auto2+CAAF with the same initial
search result. With both the same initial search result and total
feedback number, Auto2+CAAF* outperforms Auto2+TopK
by 5.9%. Moreover, Figure 4 shows that Auto2+CAAF* even
surpasses the first-ranked Auto1+TopK, although the perfor-
mance of Auto2 itself is inferior to that of Auto1.

All the above experimental results demonstrate that CAAF
is capable of handling massive data and that CAAF is more
efficient than directly checking the top-ranked samples in the
initial ranking result.

2) Evaluation on NIST TRECVID 2020: We further im-
plement Auto2+TopK and Auto2+CAAF on NIST TRECVID
2020. We fix the total feedback number of each topic to
80, as CAAF can check approximately 78 samples in 5
minutes according to the statistics in Table I. And we set
K = 2000, q = 16 and T = 5 for CAAF. The results are
shown in Table II. As a reference, we also report the best
automatic and interactive results (denoted as “AutoBest” and
“AutoBest+InterBest”, respectively) on the official evaluation
in 2020 [49].

We observe that although Auto2 is inferior to AutoBest,
Auto2+TopK outperforms AutoBest+InterBest by 1.3%, which
means that TopK is quite a strong baseline. However,
Auto2+CAAF outperforms Auto2+TopK by 0.6%, which fur-
ther demonstrates the effectiveness of CAAF.
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Fig. 5. Ablation study on the Oxford5k dataset.

D. Ablation Studies

In this section, we examine the roles of two key modules,
the ranking step and suggestion step, on the Oxford5k dataset
by removing them from CAAF. When the ranking step is
removed, the ranking scores of the labeled samples are directly
replaced by their feedback scores, while the ranking scores of
the unlabeled samples retain their initial ranking scores. And
when the suggestion step is removed, the feedback suggestions
are generated by random sampling.

We observe from Figure 5 that the performance of CAAF
significantly drops once the ranking step or suggestion step is
removed, which demonstrates that each module is essential to
CAAF. Since the ranking step can be regarded as modified
MR, while the suggestion step serves as an AL sampling
strategy, it also implies that CAAF effectively takes advantage
of both MR and AL.

E. Analysis of Confidence Modeling

We claim in Section III-A that the confidence modeling
scheme in CAAF can not only indicate valuable feedback
samples for AL but also modulate the propagation weight
in MR and improve the ranking accuracy. The comparative
results in Section IV-B have already demonstrated the former
part of the claim; this section is divided into two parts to
further prove the claim. In the first part, we analyze the effect
of weight modulation to demonstrate the latter part of the
claim. In the second part, we further analyze the distribution
of feedback samples and present an illustrative example of the
feedback samples. The experiments are conducted on three
image-based datasets with default settings.

1) Analysis of weight modulation: To eliminate the effect
of weight modulation in the ranking step, we set v = 1 at the
beginning of each round of feedback. In this case, the ranking
step of CAAF degrades to the classical MR. We then compare
CAAF and MR with the same suggestion step; the results are
shown in Table III.

As shown in Table III, although CAAF performs slightly
worse than MR when T = 0, i.e., no sample is labeled except
for the probe, it consistently outperforms MR on all three
datasets when T ≥ 1. The difference between CAAF and MR
can reach 1.72%, 3.12%, and 1.72% on Holidays, Oxford5k
and CUHK03, respectively. These results demonstrate that v
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TABLE III
COMPARISON BETWEEN CAAF AND MR

T Method
Holidays Oxford5k CUHK03
mAP (%) mAP (%) mAP (%)

0
MR 67.80 43.35 53.72

CAAF 67.14 43.19 53.90

1
MR 79.02 49.53 71.14

CAAF 79.83 50.75 72.17

2
MR 82.30 53.51 83.87

CAAF 84.02 55.78 85.55

3
MR 84.83 56.44 88.25

CAAF 86.21 59.46 89.97

4
MR 86.29 58.39 90.60

CAAF 87.46 61.51 91.33

TABLE IV
COMPARISON BETWEEN QP SOLUTION AND APPROXIMATE SOLUTION

Dataset Method mAP (%) time (ms)

Holidays
QP 87.60 50.8 ± 4.00

Appr. 87.46 04.3 ± 0.26

Oxford5k
QP 61.43 49.6 ± 0.10

Appr. 61.51 04.4 ± 0.22

CUHK03
QP 91.38 50.4 ± 2.10

Appr. 91.33 04.0 ± 0.02

does help improve the ranking accuracy by modulating the
affinity matrix in MR.

2) Analysis of feedback samples: We count the distribution
of the feedback samples in the initial ranking list. The heatmap
is illustrated in Figure 9. We observe that in the first round of
feedback, the feedback samples tend to be concentrated at the
top of the initial ranking list. As T increases, CAAF selects
samples from the middle and back segments of the initial
ranking list. This indicates that CAAF is able to select diverse
feedback samples that are not so similar to the probe, which
can be attributed to the manifold structure that can implicitly
depict the data distribution.

We further count the labels of the feedback samples. The
proportion of relevant and irrelevant samples is illustrated
in Figure 8. We observe that the proportion of relevant
feedback samples gradually decreases as the round of feedback
increases. Combined with Figure 9, this finding indicates that
relevant samples are more likely to appear at the top of the
initial ranking list, demonstrating the rationality of selecting
only the top-K samples for interactive INS.

A visualized example of the feedback samples selected by
CAAF is shown in Figure 10. As T increases, the number of
relevant samples gradually decreases, and so does the initial
ranking of the selected samples.

F. Analysis of Acceleration Strategies

This section explores the rationality of the two acceleration
strategies introduced in Section III-C on the three image-based
datasets with the default settings.

1) Analysis of approximate solution: We compare the
search accuracy and execution time taken in each round of
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Fig. 6. Search accuracy and execution time with varying Ks.
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Fig. 7. Performance gain/manifold smoothing loss v.s. query ID on Oxford5k,
where the blue line and orange line represent the performance gain and
manifold smoothing loss, respectively, and the dashed lines are their second-
order polynomial trend lines.

feedback of both the GPU-accelerated approximate solution
(Appr.) and the original QP solution (QP); the results are
shown in Table IV. We observe that Appr. achieves equivalent
performance as QP; however, the former’s execution time
is only approximately one-tenth of the latter’s. Therefore, it
is rational to simplify the optimization process through the
proposed approximation scheme.

2) Analysis of top-K search scheme: The search accuracy
and execution time with varying Ks are illustrated in Figure 6.
We observe that the performance tends to be stable when
K ≥ 300. The execution time per round of query exponen-
tially increases as K increases. These results demonstrate that
selecting only the top-K galleries is a reasonable practice for
balancing search accuracy and time cost, and we set K = 300.

G. Limitations
When analyzing the detailed performance gain of each

query after 4 rounds of interaction with CAAF, we observe
some cases where CAAF achieves minimal performance gain
and even degradation. Since CAAF is built on the manifold
ranking framework, the effectiveness of CAAF is limited
when the data distribution does not conform to the manifold
assumption.

To validate this argument, we compute the manifold smooth-
ing loss for each query with its ground truth label by
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1
m2

∑m
i=1

∑m
j=1 aij(ŷi−ŷj)2, where aij is the visual similarity

between pairwise samples xi and xj , and ŷi = 1 if xi is
the ground truth and ŷi = 0, otherwise. Next, we rank each
query’s ID according to its performance gain in ascending
order, and plot the corresponding manifold smoothing loss
on Oxford5k. The results are shown in Figure 7, where the
blue line and orange line represent the performance gain and
manifold smoothing loss, respectively, and the dashed lines
denote their second-order polynomial trend lines. The figure
shows that queries with higher loss values tend to obtain lower
performance gain, which confirms the above argument.

V. CONCLUSIONS

This paper investigates CAAF, a method that is specifically
designed for interactive INS to improve the interaction effi-
ciency by selecting the most valuable samples for RF. The core
idea and main novelty lies in the explicit assessment of the
ranking confidence, which improves not only the interaction
efficiency by indicating valuable feedback candidates but also
the retrieval performance by modulating the weights in the
ranking loss. Furthermore, with an approximate solution and
a top-K search scheme, CAAF can be efficiently applied to
interactive INS on large-scale datasets. Extensive experiments
on both image INS tasks and video INS tasks demonstrate the
effectiveness of our proposed method.
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