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DDistill-SR: Reparameterized Dynamic Distillation
Network for Lightweight Image Super-Resolution

Yan Wang, Tongtong Su, Yusen Li, Jiuwen Cao, Gang Wang, and Xiaoguang Liu

Abstract—Recent research on deep convolutional neural net-
works (CNNs) has provided a significant performance boost
on efficient super-resolution (SR) tasks by trading off the
performance and applicability. However, most existing methods
focus on subtracting feature processing consumption to reduce
the parameters and calculations without refining the immediate
features, which leads to inadequate information in the restoration.
In this paper, we propose a lightweight network termed DDistill-
SR, which significantly improves the SR quality by capturing
and reusing more helpful information in a static-dynamic feature
distillation manner. Specifically, we propose a plug-in repa-
rameterized dynamic unit (RDU) to promote the performance
and inference cost trade-off. During the training phase, the
RDU learns to linearly combine multiple reparameterizable
blocks by analyzing varied input statistics to enhance layer-
level representation. In the inference phase, the RDU is equally
converted to simple dynamic convolutions that explicitly capture
robust dynamic and static feature maps. Then, the information
distillation block is constructed by several RDUs to enforce
hierarchical refinement and selective fusion of spatial context
information. Furthermore, we propose a dynamic distillation
fusion (DDF) module to enable dynamic signals aggregation
and communication between hierarchical modules to further
improve performance. Empirical results show that our DDistill-
SR outperforms the baselines and achieves state-of-the-art results
on most super-resolution domains with much fewer parameters
and less computational overhead. We have released the code of
DDistill-SR at https://github.com/icandle/DDistill-SR.

Index Terms—Image super-resolution, convolutional neural
networks, dynamic convolution, reparameter, deep learning.

I. INTRODUCTION

SUPER-RESOLUTION (SR) is a classic computer vision
problem, which aims to restore a high-resolution im-

age from its degraded low-resolution counterpart [1]. As an
essential task, SR has been widely used in various real-
life applications, such as medical imaging [2], surveillance
imaging [3], and real-time gaming media [4]. Meanwhile, the
demand for efficiency and robustness in these complex real-
time applications continues to push forward the advancement
of SR techniques.

Despite its importance, developing a high-quality SR system
is a non-trivial task due to its various ill-posed properties [6],
e.g., notorious labeling and evaluation issues where one
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Fig. 1. Performance scores of the proposed method compared with existing
lightweight super-resolution models on the Set14 [5] dataset. We set the
magnification factor ×4, and multi-adds are calculated with a 1280 × 720
SR shape. Best viewed in color.

low-resolution (LR) input can correspond to multiple high-
resolution (HR) images as the targets. The research community
has made significant efforts to address these problems, which
can be generally summarized as three strands: interpolation-
based methods [7], [8], reconstruction-based methods [9],
[10] and deep learning-based methods [11], [12]. The first
two methods are often fast and easy to develop for SR
tasks, while their performance under challenging scenarios,
e.g., using large magnification factors, is often inferior. In
recent years, driven by the rapid development of deep-neural-
network-based function approximators, CNNs have been the
mainstream model to seek more effective SR solutions. By
learning the relationship between LR and HR image pairs,
numerous CNN-based models [13]–[15] are proposed to re-
store satisfactory images with higher PSNR and SSIM [16].
For instance, SRCNN [17] is a pioneer work to demonstrate
the inherent advantage of the convolution layer in low-level
vision tasks, which constructs a high-quality SR model sur-
passing most conventional algorithms. The following works
adopt various techniques, such as increasing the network’s
depth [18], [19], attention mechanism [20], and advanced
network structures [21]. These methods often obtain a larger
receptive field by utilizing a deeper or more complicated
feature extraction procedure to summarize the inherent non-
linear mapping between low-and high resolution. Neverthe-
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less, simply enhancing feature extractors increases the cost
of computation and memory in inference, thereby restricting
the applications in scenarios with limited resources, such as
embedded systems and mobile devices.

To develop an efficient and effective SR model, many
lightweight networks with proper model sizes have been
designed. Based on the architectures of existing models [22],
these lightweight SR methods can be classified into the follow-
ing three categories. First, the recursive methods [23] focus on
leveraging the parameter-sharing blocks to reduce the model
size and enlarge the receptive field of networks. Second, the
residual/multi-path learning methods [24], [25] adopt multi-
path or connections (e.g., residual or dense connection) among
different blocks, to increase the feature flow connections and
strengthen the model capability. Third, the layer-level modifi-
cation methods leverage advanced layer designs to provide bet-
ter structural awareness for SR, such as dynamic convolution
operator [26], reparameterization operator [27], and attention
mechanism [20]. However, the recursive learning methods with
reusable modules only reduce parameters while increasing
the computational complexity, which is unaffordable for real-
world applications. The latter two strategies attempt to capture
more informative features with powerful convolutional blocks
or effective topology. However, these approaches tend to work
independently and may be difficult to complement each other.
In addition, another issue is that their fixed kernels and
predefined trunk are inflexible to handle the input with diverse
statistics, which may result in a monotonous feature expression
and structural details loss. Therefore, this area of research
remains relatively unexplored, which is essentially promising
for performance enhancement.

In this article, we propose a lightweight super-resolution
network called DDistill-SR which comprises reparameterized
dynamic units (RDU) and dynamic distillation fusion (DDF)
modules to better utilize the immediate features under practical
resource-restricted environments. Within RDU, we endow the
convolution with dynamic adaptivity towards varied inputs
and robust static kernels by integrating dynamic convolu-
tion and reparameterization strategies. Compared with other
reparameterization and dynamic convolution, our method with
convolution’s inference equally captures more representative
static and dynamic features by dynamically fusing several
parallel reparameterizable blocks. For DDF, we develop par-
allel dynamic feature distillation and fusion pipelines to refine
the static and dynamic features jointly. Unlike the previous
information distillation design [28] that focuses on pruning
static features, the proposed DDF reuses the intermediate
dynamic features yielded by RDUs at the sub- and full-
network level. We compare DDistill-SR with several state-
of-the-art methods, such as LESRCNN [29], PAN [30], and
RFDN [31]. The results in Fig. 1 show that our networks
achieve a better trade-off among the restoration accuracy,
parameters, and multi-add operations.

Overall, the main contributions of our paper are three-fold:
1) We propose a novel reparameterized dynamic unit (RDU)

to extract the robust static and adaptive dynamic fea-
tures by dynamically combining parallel reparameteri-
zable blocks for better layer-wise representation. The

RDU is trained with complex structures and deployed
with convolution inference, therefore ensuring efficiency.
Experiments show that the RDU module significantly
improves the performance of multiple super-resolution
networks with a negligible increase in parameters and
calculations.

2) We propose a dynamic distillation fusion (DDF) module
to maximize the effects of the hierarchical dynamic
information by refining dynamic features step-by-step for
network-level enhancement. Within the DDF, the infor-
mative dynamical features can be selectively retained and
distilled throughout the entire feature extraction process,
which can improve both restoration fidelity and accuracy.

3) We present a reparameterized dynamic distillation super-
resolution network (DDistill-SR) to improve the imme-
diate feature representation by applying RDU and DDF
for efficient SISR. The qualitative and quantitative results
demonstrate that our method aptly balances the restora-
tion performance and computational complexity.

The remainder of this paper is organized as follows. In
Section II, we review the related works on image super-
resolution and enhancement techniques on CNN. The design
of DDistill-SR is presented in Section III. In Section IV, we
evaluate DDistill-SR and compare it with various state-of-the-
art approaches. Finally, we conclude this work in Section V.

II. RELATED WORK

A. Single-Image Super-Resolution

As the first CNN-based SR method, SRCNN [17] uses a 3-
layers end-to-end architecture to fit nonlinear mapping, which
outperforms most traditional SR methods. Following SRCNN,
Dong et al. [13] has proposed FSRCNN, which uses the post-
deconvolution up-sampling layer and 1 × 1 convolution to
diminish computations and parameters. VDSR [18] deepened
the network with 20 convolution layers to obtain a vast
receptive field for adapting various upscaling factors, which
has massively improved the performance. However, increasing
the depth of these models aggravates the convergence difficulty
due to their structural defects, which restricts both inference
efficiency and model performance.

To address this issue, residual-learning methods, e.g.,
EDSR [19], have stacked more convolution layers to learn
global and local residuals. Since then, several SR models
with larger receptive fields have been proposed to improve the
reconstruction quality. However, a deeper network means more
parameters and heavier load. From this perspective, recursive
learning has been applied to accelerate convergence and reduce
model size based on shared weights and skip connections. For
example, DRCN [23] employs a single convolution layer to
increase the depth of the recursion layer, and Lai et al. [32]
combined the cascade Laplacian pyramid architecture and
Charbonnier loss to obtain a stable training process. However,
the recursive learning methods have much higher computa-
tional complexity because they have to repeatedly use the
same block to ensure a good feature representation. Another
effective strategy for enhancing the restoration performance
is to maximize the immediate feature extraction efficiency by
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employing the powerful attention mechanism or convolution
layer. For example, RCAN [15] used channel attention to ob-
tain more informative features by exploiting the channel-wise
interdependencies, and HAN [33] adopted holistic attention
to learn the channel and spatial correlation of each layer.
However, these networks cannot be applied to lightweight
scenarios since they have hundreds of layers.

In order to achieve a better trade-off between the model
complexity and performance, many competitions [34], [35]
and works [29], [36] have been carried out for lightweight
SR. CARN-M and CARN [37] use local and global cascading
architectures, and they achieve more efficient image recov-
ery and video recovery on mobile devices. Hui et al. [38]
integrated enhancement and compression units into the infor-
mation distillation network to achieve efficient inference time.
Tian et al. [14] proposed CFSRCNN with a cascaded structure
and an efficient feature extractor to prevent potential training
instability and performance drop. However, the most critical
information in these intermediate features is not highlighted in
the methods, which would cause inefficient feature extraction
and inferior performance.

The latest works absorbed multiple strategies for better rep-
resentation capability to address the above issue. For example,
Zheng et al. [28] adopted the information multi-distillation
block (IMDB) and leveraged contrast-aware channel attention
in the final stage of the block to emphasize channel attributes
of features generated by progressive refinement. PAN [30] in-
tegrated pixel attention and self-calibrated convolution to gain
competitive super-resolution results with only 272k parame-
ters. RFDN [31] further improved IMDB by using a lighter
feature distillation function and a more powerful enhanced
spatial attention (ESA) [20] to achieve higher efficiency, and
it won first place in the AIM 2020 efficient SR challenge.
In addition, Tian et al. [39] introduced an asymmetric CNN
(ACN) to enhance the square convolution kernels in the
horizontal and vertical directions and develop the multi-level
feature fusion mechanism to achieve an excellent trade-off
between performance and complexity.

B. Convolutional Block Design

Recently, lightweight convolution blocks have been widely
used in SR, which are more powerful and flexible for deploy-
ment in real life [40]–[43]. We summarize two representative
lightweight convolution block methods, model parameteriza-
tion, and dynamic convolution, which are used in our work.

Model reparameterization converts a trained heavy block
into a simple one, which has been widely adopted in CNN-
based models. For example, the asymmetric convolution block
(ACB) [43] combines an asymmetric convolution skeleton
and a convolution baseplate into a standard convolution,
which greatly ameliorates the performance of CNNs. The
RepVGG [44] stacks many reparameterized convolutions,
which achieves higher accuracy and faster speed on clas-
sification tasks. Driven by the reparameterization technique,
the lightweight SR performance has been sufficiently pro-
moted. FIMDN [35] leverages ACB to enhance the IMDN
and shows the potential of reparameterization to improve

the SR performance without changing the model inference.
Ding et al. [45] devises an inception-like Diverse Branch
Block (DBB) to extract multiple-path features in the training
stage, which gains remarkable improvement and broader ap-
plication on numerous architectures. Inspired by RepVGG and
DBB, Zhang et al. [27] has introduced a novel reparameterized
block, called the edge-oriented convolution block (ECB), to
balance hardware efficiency and restored visual quality in real-
time mobile applications. Nevertheless, these reparameterized
methods greatly increase the training complexity, which limits
their application in deeper networks.

Unlike reparameterization, dynamic convolution improves
the performance over standard convolution by using addi-
tional parameters and calculations. For example, condition-
ally parameterized convolutions (CondConv) [46] aggregates
multiple convolution kernels and delivers outperformance in
classification missions. Similarly, DYConv [47] aggregates
kernels according to dynamic attention to achieve higher
efficiency. Then, Chen et al. [48] introduced spatial aware-
ness into dynamic convolution by learning guided masks to
further improve performance. Gaussian dynamic convolution
(GDC) [49] was introduced to collect contextual information
by randomly sampling the spatial area according to the Gaus-
sian distribution offsets. However, these methods contain a
large number of redundant parameters, which hinders their
deployment on mobile devices. To improve the accuracy while
maintaining a proper model size, Li et al. [50] leverages
dynamic convolution decomposition (DCD) to replace oner-
ous dynamic attention over channel groups, which achieves
significant growth in accuracy and convergence rate. Re-
cently, dynamic convolution has been widely applied in dy-
namical magnification and degradation super-resolution tasks.
UDVD [26] has proposed 2 types of dynamic convolution
to restore both synthetic and real images under variational
degradation. Wang et al. [51] has designed a plug-in adaptive
upsampling module with a scale-aware convolution layer to
achieve a scale-arbitrary SR scheme.

Although these convolution blocks have achieved break-
throughs in the SR field, there still exists a huge promoting
space for obtaining better generality and effectiveness. In
this paper, we combine the advantages of the dynamical
convolution and reparameterization to propose a more efficient
block, which improves the information capture capability.

III. METHODOLOGY

In this section, we present the technical details of the
proposed DDistill-SR network. Overall, it consists of two
main components: a reparameterized dynamic unit (RDU)
which serves as a plug-in replacement for the conventional
blocks; and a reparameterized dynamic feature distillation
block (RepDFDB) which employs multiple-step distillation
and local fusion module to generate informative feature maps.
Then, we introduce the formulation of these two components
and demonstrate how to stack them to build our DDistill-SR.

A. Reparameterized Dynamic Unit (RDU)
We formulate a reparameterized dynamic unit (RDU) by

integrating the structural reparameterization and dynamic con-



4

Dot product

Element-wise multiple

Element-wise add Batch norm 

Idendity

K×K Conv

K×K RepConv

AVG Average pooling

FC Fully connectedWeighed sum

Q:1×1 

AVG

FC

FC     

repara Repara operations

DCD style Dynamic RepConv

Concat

K×K

K×K

x

K×K Dynamic RepConv

DynamicReparameterization
RDU

K×K 

DBB style RepConv

Training

Inference

1×1 1×1 

K×K AVG

1×1 K×K

Repara
P:1×1 

FC

Dynamic

Static 

Residual Block style

x

x

1×1

K×K 

Fig. 2. Illustration of the implementation of RDU with residual block structure. RDU can be decomposed into two parts: reparameterization and dynamic. For
the reparam strategy, the light green block shows the structure of DBB-style RepConv, which is trained in multi-branches and deployed as a static convolution.
For dynamic, the light yellow block reveals the architectures of DCD-style Dynamic RepConv, which strengthen the static branch with RepConv.

volution techniques, which forms a more effective plug-in
replacement over the original convolution block. Since these
two strategies are convolution-based reformation, we first give
the mathematical notions of a convolution layer to clearly
explain RDU as follows:

h(x) = W ∗ x+ b, (1)

where x is the input features and h(x) is the output features
with C and D channels. ∗ denotes the convolution operation.
W ∈ RD×C×k×k and b ∈ R1×D×1×1 represent the weight
and bias for the k × k convolutional kernel, respectively.
To achieve the best feature extraction, we adopt a dynamic
convolution to obtain the dynamic weight W (x). For K
static expert kernels, the dynamic kernel is their weighted sum
determined by an input-relevant attention mechanism πk(x).
This information fusion process can be encapsulated as:

W (x) =

K∑
k=1

πk(x)Wk, (2)

In addition to enhancing the convolution via dynamical
fusion, we leverage structural reparameterization to get prefer-
able static WRep and bRep. It converts one complex archi-
tecture, e.g., an inception-style block, to a static convolution
block by transforming its parameters. This process does not
engage additional model parameters for inference through
static fusion. We denote the reparameterized convolution as
RepConv, which includes RepVGG, DBB, and ECB. Given a
N branch reparameterizable block, the procedure of using fW

and f b to convert its all trainable and fixed parameters K to

a k × k static convolution can be summarized as follows:

WRep =

N∑
i=1

fW
i (Ki), (3a)

bRep =

N∑
i=1

f b
i (Ki), (3b)

where WRep and bRep are reparameterized matrices of the
kernel and bias for the static k × k convolution. In Fig. 2,
we present an example of DBB-style RepConv, which can be
replaced by any other reparameterizable block, e.g., RepVGG.

On the premise that both dynamic and static enhancements
are accessible, the problem comes:“How to best integrate
these two techniques?”. Although directly replacing static
kernels with reparameterized kernels is available and easy to
implement, the parameter number is apparently unacceptable
for a lightweight network when the growth rate of parameters
number is K · N . Following DCD [50], we leverage matrix
decomposition to simplify the dynamical convolution in Eq. 2.
Assuming the dynamic convolution operation maintains the
channel number of C, the k× k size dynamic kernel in DCD
can be calculated in the following manner:

W (x) = Λ(x)W + PΦ(x)QT , (4)

where Λ(x) is a C × C diagonal matrix related to the
squeeze-and-excitation (SE) module [15]. Q is a C×L matrix
that reduces the number of input channels from C to L.
Correspondingly, P is another matrix to broaden the width
from L to C. Φ(x) is a L × L tensor decided by individual
input x, and it dynamically performs feature fusion in latent
space. Different from the classification task, the maximum
of the latent space L is artificially enlarged to C

2 to ensure
ample dynamical information. In addition, the dynamic weight
PΦQT can be separated to generate an individual output,
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which is informative in feature representation. According to
this, we design a special module to collect and reuse them as
an effective feature representation supplement. Based on these,
we combine structural reparameterization and dynamic con-
volution into a convolution process to construct an advanced
Dynamic RepConv that maintains the running-time structures
to make the best use of each convolution operation by:

ĥ(x) = Λ(x)WRep ∗ x+
(
PΦ(x)QT

)
∗ x+ bRep, (5)

where ĥ(·) represents the advanced Dynamic RepConv used
in RDU. W rep and brep are the reparameterized weight and
bias converted from complicated reparameterizable blocks.

Finally, we construct plug-in RDUs with the modified
Dynamic RepConvs and potential arrangements (e.g., residual
block style). Each RDU consists of two outputs: the static
features extracted by the normal block and the additional
dynamic features fused by the shallow fusion part. As shown
in Fig 2, the normal block is a general residual block but
uses powerful Dynamic RepConv to extract static features
F static. The shallow fusion part leverages concatenation and
convolution operations to integrate two PΦQT into dynamic
residual F dynamic. The entire process of residual block style
RDU can be given by:

F static = ĥ1

(
ĥ2 (x)

)
+ x,

F dynamic = h
(
C
((
PΦQT

)
1
,
(
PΦQT

)
2

))
,

(6)

where ĥ1 and ĥ2 are two Dynamic RepConv in residual block.(
PΦQT

)
i

is the i-th dynamic residual generated by ĥi(·). h(·)
and C(·) represent the 1×1 convolution and the concatenation
operation along the channel dimension respectively.

B. Reparameterized Dynamic Feature Distillation Block

Inspired by information distillation SR networks [28], [31],
we propose a novel feature distillation processing block,
the reparameterized and dynamic feature distillation block

(RepDFDB), to reject dynamic information into the distilla-
tion process. The design of RepDFDB is shown in Fig. 3.
Particularly, RepDFDB has two parts: the multiple-step dis-
tillation using RDU and the local fusion module. As labeled
in the left part of Fig. 3, the multiple-step distillation module
adopts the proposed RDU block and a convolution layer to
extract static, dynamic, and distilled features for subsequent
refinement steps. For each step, RDU is employed to calculate
n-th F static

n , F dynamic
n , and 1× 1 convolution layer is devised

for F distilled
n . Given the input feature Fin, the multiple-step

distillation procedure can be given by:

F static
1 , F dynamic

1 , F distilled
1 = RDU1(Fin), h(Fin),

F static
2 , F dynamic

2 , F distilled
2 = RDU2(F

static
1 ), h(F static

1 ),

F static
3 , F dynamic

3 , F distilled
3 = RDU3(F

static
2 ), h(F static

2 ),

F dynamic
4 , F distilled

4 = Fin, h(F
static
3 ),

(7)
where F static

n , F dynamic
n and F distilled

n are n-th static, dynamic
and distilled features, respectively. The RDUn represents
RDU according to Eq. 6,

Existing methods only leverage static information in the dis-
tillation fusion process. In contrast, our local fusion module in
RepDFDB involves both static and dynamic distillation merg-
ing processes to obtain further improvements. For conventional
static distillation fusion (SDF), F distilled

n are concatenated and
then processed by a 1×1 convolution layer to perform channel
fusion as follows:

FSDF = h(C(F distilled
1 , F distilled

2 , F distilled
3 , F distilled

4 )), (8)

where FSDF is the static fused feature map in the local
level. For our proposed dynamic distillation fusion (DDF),
as depicted in Fig. 3, we merge the F dynamic

n of Eq. 6 to
calculate block-wise dynamic residue, but also refine the fused
features with pixel-attention (PA) [30] mechanism fPA(·). The
attention map of the static result is used to calibrate the
dynamic fusing procedure. In general, the entire process of
DDF can be formulated as:

FDDF = fPA(FSDF)·
h(C(F dynamic

1 , F dynamic
2 , F dynamic

3 , F dynamic
4 )),

(9)

where FDDF is the refined dynamic residual at the local level
and also is the dynamic output for RepDFDB. Finally, we
apply the enhanced spatial attention (ESA) [20] and block-
scale skip connection to strengthen the high-frequency spatial
perception. Therefore, the final static output of RepDFDB can
be computed by:

F = fESA(FSDF + FDDF) + Fin, (10)

where Fin denotes the input features, and fESA(·) is the
enhanced spatial attention module to enhance spatial context.

C. Network Architecture

The architecture of DDistill-SR is shown in Figure 4. Over-
all, there are four consecutive sub-modules to learn meaningful
features from the original inputs: Feature Extraction module,
Multiple Step Distillation module, Global Fusion module, and
Upscaling module.
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The LR images are first processed with the Feature Extrac-
tion module which utilizes a single 3× 3 convolution layer to
generate elementary features. Given the input LR images ILR
with the shape of N × 3 × H × W , the low-level extracted
feature FFE has the same height H and width W but larger
channel number C.

Then, features are fed into the Multiple Step Distillation and
Global Fusion module for intermediate feature extraction and
fusion. These modules can be considered as extensive versions
of the corresponding components in RepDFDB because both
designs utilize hierarchical feature detection and fusion mod-
ules according to Eq. 7 and Eq. 8-10, respectively. In the global
Multiple Step Distillation, RepDFDB is devised to replace the
RDU and 1× 1 convolution, where F calculated by Eq. 10 is
used as the static and distilled feature maps, and FDDF in Eq. 8
as the dynamic feature map. In the Global Fusion module, we
use the RDU instead of ESA to enhance the high-frequency
information with fewer parameters. Hence, the intermediate
features can communicate among the block and network by
progressively refining the static and dynamic information.

Finally, the feature yielded by the Global Fusion module
is sent to the Upscaling module, which consists of non-
parametric sub-pixel operation and several convolutional lay-
ers for all scales in particular on light and efficient reconstruc-
tion. For the ×s upscaling task, we first reduce the feature
channels to 3s2 in the first convolution layer, then we convert
the feature maps from the LR space to an HR image using a
pixel shuffle layer. Moreover, we add the second convolution
layer as a filter to improve the visual verisimilitude.

IV. EXPERIMENTS

A. Datasets and Metrics

We conduct the whole training process on DIV2K [52] and
Flick2K [19], which are widely used in multiple SR tasks.
Specifically, 3450 high-quality RGB images are included in the
training set. In order to verify the generality and effectiveness
of our DDistill-SR model, three common degradation methods
are applied to obtain the LR-HR image pairs: BI, BD, and DN
for imitating LR images in the real world. Then, we investigate
the performance of different SR algorithms on five well-known

datasets: Set5 [53], Set14 [5], B100 [54], Urban100 [55], and
Manga109 [56], each of which has different characteristics.
Referring to most SR methods, we utilize the peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) [16] as
the quality evaluation metrics on the Y channel of the Y CbCr
space.

B. Implementation Details

In general, we extract LR-HR patch pairs with the LR
size of 64× 64 from the preprocessed images in DIV2K and
Flickr2K. Regarding LR-HR pair preparation, the commonly
used down-sampling approach, bicubic interpolation (BI), is
applied under magnification factors ×2, ×3, and ×4 for the
basic tests. In addition, the blur-down-sampled (BD) method
is utilized to blur HR images with a 7 × 7 Gaussian ker-
nel and standard deviation σ = 1.6, then downscaled with
bicubic interpolation to generate ×3 datasets. Thirdly, a more
complicated method is used to test SR restoration in extreme
cases. The down-sampled-noisy (DN) method processes HR
images with bicubic downsampling followed by additive 30%
Gaussian noise. During training, we rotate the images by 90°,
180°, 270° and flip them horizontally for data augmentation.
The minibatch size is set up to 64 and the ADAM optimizer
(β1 = 0.9, β2 = 0.999) [57] is applied to update model
parameters. Moreover, the cosine annealing learning scheduler
is utilized to achieve faster convergence. The learning rate is
initialized as 5× 10−4, and the minimum learning rate is set
as 1 × 10−7. The cosine period is 250k iterations, and four
periods are conducted in the process. For convenience, we
use the ×2 model as the pre-trained model to train the ×3
and ×4 models. The final models are fine-tuned before and
after the reparameterization operation. We implement the final
DDistill-SR with 56 channels and RDU with the base design.
In terms of loss functions, the L1 loss is utilized to optimize
the DDistill-SR model, and L2 loss is used to fine-tune. All
experiments are conducted on the Pytorch framework with a
single RTX 3090 GPU.
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TABLE I
INVESTIGATIONS OF THE REPARAMETERIZATION PERFORMANCE ON

B100 [54] TESTSET WITH ×4 BI DEGRADATION.

Model Params MAdds Runtime PSNR/SSIM

w/o Rep 675K 32.62G 0.0137s 27.5946/0.737121
w/ Rep (training) 1173K 60.80G 0.0279s 27.6455/0.738465
w/ Rep (inference) 675K 32.62G 0.0137s 27.6457/0.738467

TABLE II
INVESTIGATIONS OF RDU ON BI BENCHMARKS (×4). THE PARAMS AND

MADDS ARE CALCULATED WITH TRAINING MODELS.

Model RDU Params MAdds PSNR/SSIM
Conv-type Rep-method

D
D

is
til

l-
SR

Static Static 493K 26.76G 28.21/0.8129

DYConv
Static 1596K 27.65G 28.22/0.8132

RepVGG 1758K 30.01G 28.22/0.8133
DBB - - -

DCD
Static 675K 32.62G 28.28/0.8140

RepVGG 720K 34.97G 28.29/0.8140
DBB 1173K 60.80G 28.32/0.8148

R
FD

N

Static Static 582K 31.72G 28.24/0.8130

DYConv Static 1704K 31.72G 28.26/0.8133
RepVGG 1870K 35.21G 28.26/0.8137

DCD Static 716K 33.17G 28.31/0.8147
DBB 1224K 61.98G 28.33/0.8153

HR RFDN RFDN w/ RDU Ours w/o DDF Ours

Fig. 5. Visual results on Urban100 (×4) [55]. The models with the proposed
RDU and DDF better handle the structural distortion.

C. Ablation Studies

In this section, a series of ablation studies are conducted to
examine the effectiveness of each component of DDistill-SR,
including the RDU module and the DDF module. We totally
train the involved methods over 500k iterations for fairness.
The multi-adds and running time are counted when the output
size is 1280× 720 for all scales.

1) Effectiveness of the RDU: We examine the effectiveness
of the proposed RDU by investigating its static and dynamic
representation capability, respectively.

Reparameterization. The invariance of the reparameteriz-
ing procedure is first studied to ensure that the technique is
harmless for running-time performance. We use DBB-style
RepConv onto the DDistill-SR to measure the effects of repa-
rameterization. As shown in Table I, the evaluated difference
between training and inference modules is less than 0.1‰,
which implies the equivalence of performances. Furthermore,

TABLE III
INVESTIGATIONS OF THE DDF MODULE ON MANGA109 [56] WITH ×4 BI

DEGRADATION.

Model Params MAdds FLOPs PSNR/SSIM

Baseline 493K 26.76G 26.97G 30.49/0.9085
RDU (w/o Rep) 596K 28.18G 28.33G 30.49/0.9083
RDU (w/o Rep) + DDF 675K 32.62G 32.88G 30.61/0.9095
RDU + DDF 675K 32.62G 32.88G 30.79/0.9098

DDistill-SR

SRResNet

RFDN

DDistill-SR-S

MSRN

27.45

27.50

27.55

27.60

27.65

27.70

100 1000 10000
P

S
N

R
 o

n
 B

1
0
0
 (

d
B

)

Number of Parameters (K)

with RDU

with Static

Fig. 6. Illustration of the PSNR vs. model parameters between RDU and static
convolution with different models on B100 [54] for the scale factor ×4. The
diamond marks denote models with RDUs and the round marks denote the
static convolution.

the inference model gains a slight lead (0.05 dB on PSNR)
while maintaining the parameter number and running time as
the w/o Rep model.

Dynamic convolution. We further investigate the perfor-
mance of two dynamic convolution methods, the traditional
DYConv based on Eq. 2 and the advanced DCD based on
Eq. 4. Specifically, we test the w/o Rep models in this part
to show the separate potentiality of dynamic convolution on
SR tasks. Compared with static convolution, both DYConv
and DCD can limitedly boost super-resolution tasks but bring
larger training sizes, where the number of parameters increases
to 1596k/596k and the computations increase to 1.42G/1.45G.

Integrated RDU. To answer the question of “How to best
integrate these two techniques?”, we implement RDUs by
inserting different RepConvs (e.g., RepVGG and DBB) into
dynamic convolution (e.g., DYConv and DCD) and investigate
their validity in Table II and Fig. 5. For intuition and conve-
nience, we use Conv-Type/Rep-Method to enumerate possible
implementations of RDU. Generally, models with integrated
RDU outperform the static baseline while sharing similar
deployment costs. For the same reparameterization method,
RDU using DCD leads 0.07 dB-0.1 dB ahead of traditional
DYConv on both DDistill-SR and RFDN. In addition, the
complicate DBB leads RepVGG by 0.04 dB. Hence, the RDU
with DCD/DBB can obtain better improvements. Besides, we
note that the complex reparameter block also increases the
training burden (e.g., the DYConv/DBB is unable to train).
To balance the training cost and the final restored quality, we
adopt the DCD/DBB type RDU in our DDistill-SR.
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TABLE IV
INVESTIGATIONS THE EFFECT OF LATENT SPACE L IN RDU.

DDISTILL-SR WITH 56 CHANNELS AND DYNAMIC FUSION MODULE IS
ADOPTED ON 5 BI DEGRADED TESTSETS WITH SCALE FACTOR ×4.

L Params MAdds PSNR/SSIM

0 493K 26.76G 28.21/0.8129
8 588K 31.87G 28.28/0.8143
16 675K 32.62G 28.32/0.8148
24 830K 33.29G 28.35/0.8153

RDU on other models. We validate the effectiveness
of RDU by leveraging it in other SR methods, including
SRResNet and MSRN. The results in Fig. 6 show that the RDU
improves PSNR over all these models with few extra parame-
ters, especially for networks with deep feature extraction stage.
In SRResNet and MSRN, the PSNR scores increase by 0.1 dB
and 0.17 dB when we simply replace the vanilla convolution
layer with our RDU. Nevertheless, the improvement through
individually using RDU in DDistill-SR is not as conspicuous
as expected. This might be caused by the shallow structure
since only 4 backbone blocks are stacked in our network for
lightness, while 6 blocks of similar sizes are utilized in RFDN
and IMDN.

2) DDF Module: To solve this problem, we introduce the
DDF module with less additional cost to extend the dynamic
representations in the local and global ranges. As shown in
Table III, DDistill-SR with DDF achieves remarkably higher
quantitative indices, which leads to approximately 0.3 dB
improvement over the baseline. Meanwhile, we discuss the
critical role of DDF in models equipping RDU (w/o Rep),
where DDF raises the PSNR index by 0.12 dB. We also present
the visual expression in Fig. 5, where the DDF helps restore
the direction of lines in building pictures. It can be empirically
found that our DDF module improves the restoration quality
by a large margin.

3) Effectiveness of Different Latent Spaces: We now bal-
ance the performance with the latent space L of DCD
branches. Table IV shows the impact of different values of L
on the model size and evaluated index. L is a hyper-parameter
to determine the latent space of DCD. The results imply that
both performance and size increase with the growth of L,
where the performance increases at a much slower speed than
the model size. To achieve an intuitive trade-off relationship,
we finally set L = 16 in DDistill-SR and L = 8 in DDistill-
SR-S.

4) Effectiveness of Different RDU Architectures: We im-
plement RDU with four common connection modes as shown
in Fig. 7. The quality of restored images is evaluated on BI
testsets (×2) in Table V. Specifically, DDistill-SR with SCB
achieves comparative performance with 31% multi-adds and
nearly the same model size as the reference method. The
Base and SRB structure gain an increase of about 0.16 dB
with diminished 58K parameters and 32.3G computations
compared to IMDN on ×2 testsets. RB further improves the
restoration qualities with higher cost on the model scale. These
compositions can adapt to different tasks, and replace standard
static blocks, such as residual and separable convolution.

TABLE V
EVALUATION OF DIFFERENT ARCHITECTURES IN RDU. EXPERIMENTS

ARE PERFORMED ON FIVE BI SETS (×2) BY AVERAGE.

Method Params MAdds PSNR/SSIM

IMDN [28] 715K 158.7G 34.55/0.9359
Base 657K 126.4G 34.69/0.9368
SRB 657K 126.4G 34.70/0.9368
SCB 580K 38.1G 34.57/0.9363
RB 1129K 216.2G 34.74/0.9373

(b) SRB(a) Base (c) SCB

K×K

K×K

(d) RB

K×K

1×1

Concat

K×K K×K

1×1

1×1

Fig. 7. Illustration of the four potential ways to implement RDU with diverse
architectures: (a) base block (Base), (b) shallow residual block (SRB), (c)
separable convolution block (SCB) and (d) residual block (RB). The basic
K × K block represents Dynamic RepConv. We adopt (a) in DDistill-SR
implementation and (c) in DDistill-SR-S.

During our experiments, we apply the Base architecture to
DDistill-SR due to its outperforming and convenience and
adopt SCB in DDistill-SR-S for its lightness.

D. Comparison with State-of-the-Art Models

1) Results with BI Degradation Method: To evaluate
the learning ability of the proposed method, we compare
DDistill-SR and DDistill-SR-S with several lightweight SR
models as shown in Table VI, including SRCNN [17],
FSRCNN [13], VDSR [18], LapSRN [32], MemNet [58],
IDN [38], CARN [37], LESRCNN [29], IMDN [28],
PAN [30], and RFDN [31]. We test these methods on the
Set5, Set14, B100, Urban100, and Manga109 datasets with
magnification factors of ×2, ×3, and ×4. DDistill-SR clearly
demonstrates a noticeable improvement in PSNR and SSIM
compared to all competing methods. Here, DDistill-SR-S
achieves comparable or better results with only 434k pa-
rameters and 24.2G MAdds computation, and DDistill-SR
outperforms all state-of-the-art methods. In Manga109, the
average PSNR improvement of DDistill-SR over RFDN is
0.28 dB, 0.30 dB, and 0.21 dB for three upscaling factors,
respectively. Moreover, experiments verify the effectiveness
and efficiency of DDistill-SR in terms of the parameter size
and computation cost. In detail, for the ×4 SR task, DDistill-
SR-S uses 116k and 181k fewer parameters than IMDN and
RFDN, respectively. Compared to the recently proposed PAN
with only 272k parameters and 28.2G MAdds, our Distill-
SR-S has advantages in calculation and restoration quality.
For the ×2 task, our method advances PAN on all datasets
with a maximal 0.24 dB leading. A similar result happens
to LESRCNN, which requires fewer calculations but fails to
maintain advantages in restoration quality. Our DDistill-SR
contains 675k parameters and 32.62G multi-adds operations,
which achieves 0.11 dB, 0.21 dB and 0.34 dB performance
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TABLE VI
AVERAGE PSNR/SSIM FOR SCALE ×2, ×3 AND ×4 ON DATASETS SET5 [53], SET14 [5], B100 [54], URBAN100 [55], AND MANGA109 [56] WITH BI

DEGRADATION. THE BEST/SECOND-BEST RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY.

Method Scale Params Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRCNN [17]

×2

8K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCNN [13] 13K 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR [18] 666K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
LapSRN [32] 251K 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
MemNet [58] 678K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
IDN [38] 553K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
CARN [37] 1592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
LESRCNN [29] - 37.65/0.9586 33.32/0.9148 31.95/0.8964 31.45/0.9206 38.09/0.9759
IMDN [28] 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
PAN [30] 261K 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273 38.70/0.9773
RFDN [31] 534K 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
DDistill-SR-S (Ours) 414K 38.03/0.9606 33.61/0.9182 32.19/0.9000 32.18/0.9286 38.94/0.9777
DDistill-SR (Ours) 657K 38.08/0.9608 33.73/0.9195 32.25/0.9007 32.39/0.9301 39.16/0.9781

SRCNN [17]

×3

8K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCNN [13] 13K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR [18] 666K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
LapSRN [32] 502K 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350
MemNet [58] 678K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
IDN [38] 553K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
CARN [37] 1592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
LESRCNN [29] - 33.93/0.9231 30.12/0.8380 28.91/0.8005 27.70/0.8415 32.91/0.9402
IMDN [28] 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
PAN [30] 261K 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511 33.61/0.9448
RFDN [31] 541K 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
DDistill-SR-S (Ours) 414K 34.37/0.9275 30.34/0.8420 29.11/0.8053 28.19/0.8528 33.69/0.9451
DDistill-SR (Ours) 665K 34.43/0.9276 30.39/0.8432 29.16/0.8070 28.31/0.8546 33.97/0.9465

SRCNN [17]

×4

8K 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCNN [13] 13K 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR [18] 666K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
LapSRN [32] 502K 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900
MemNet [58] 678K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
IDN [38] 553K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
CARN [37] 1592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
LESRCNN [29] - 31.88/0.8903 28.44/0.7772 27.45/0.7313 25.77/0.7732 30.01/0.9017
IMDN [28] 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
PAN [30] 272K 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854 30.51/0.9095
RFDN [31] 550K 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
DDistill-SR-S (Ours) 434K 32.23/0.8960 28.62/0.7823 27.58/0.7365 26.20/0.7891 30.48/0.9090
DDistill-SR (Ours) 675K 32.29/0.8961 28.69/0.7833 27.65/0.7385 26.25/0.7893 30.79/0.9098

improvement over IMDN on Set14, Urban100 and Manga109
(×4). Generally, our DDistill-SR models obtain better trade-
offs between performance and applicability.

In addition, we show the restored image and qualitative
results in Fig. 8. Our methods generally produce more accu-
rate and vivid images than others. Specifically, DDistill-SR
obtains sharp edges and precise contour, which reuses the
dynamic residuals to maintain structural information. Mean-
while, DDistill-SR-S generates clear but disorganized figures,
since DDistill-SR-S adopts RDU without DDF for lightweight
delivery, which only strengthens the local information but
ignores the network-level dynamic feature enhancement. In
img 005, the shape and orientation of building windows are
not correctly restored in most existing methods except for
our DDistill-SR. In terms of PSNR criteria, DDistill-SR beats
the second-best method RFDN by 0.37 dB. The superiority is

also corroborated in img 012 and img 067, where DDistill-SR
recovers structural direction from the interlaced and blurred
LR images. Referring to the last image YumeiroCooking,
DDistill-SR-S performs better than other methods. Compared
to PAN, DDistill-SR-S obtains a 0.45 dB improvement on
PSNR, which is also reflected by the qualitative results where
our DDistill-SR-S correctly rebuilds the stroke direction. In
summary, the HR images generated by DDistill-SR are closer
to the ground truth than other state-of-the-art methods.

2) Results with BD and DN Degradation Methods: We
further compare our DDistill-SR model with other SR meth-
ods [18], [59]–[61] on the ×3 BD and DN degraded datasets.
In Table VII, we demonstrate the consistent performance
improvement in PSNR and SSIM scores on the test sets
Set5, Set14, B100, and Urban100. As a groundbreaking work,
RDN [21] leverages dense connections between each layer to
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HR PSNR FSRCNN 25.82 dB VDSR 27.35 dB CARN 27.71 dB LESRCNN 27.50dB

img 012 from Urban100 IMDN 27.37 dB PAN 27.85 dB RFDN 28.03 dB Ours-S 27.82 dB Ours 28.39 dB

HR PSNR FSRCNN 23.25 dB VDSR 23.53 dB CARN 23.85 dB LESRCNN 23.68dB

img 012 from Urban100 IMDN 23.81 dB PAN 23.85 dB RFDN 23.88 dB Ours-S 23.91 dB Ours 23.97 dB

HR PSNR FSRCNN 18.00 dB VDSR 18.84 dB CARN 19.42 dB LESRCNN 19.39dB

img 067 from Urban100 IMDN 19.64 dB PAN 19.59 dB RFDN 19.99 dB Ours-S 20.05 dB Ours 20.27 dB

HR-PSNR FSRCNN 26.25 dB VDSR 27.39 dB CARN 27.62 dB LESRCNN 27.72dB

YumeiroCooking from Manga109 IMDN 27.89 dB PAN 27.87 dB RFDN 28.31 dB Ours-S 28.32 dB Ours 29.02 dB

Fig. 8. The comparison of DDistill-SR-S (Ours-S) and DDistill-SR (Ours) with other excellent algorithms. Our DDistill-SR family has better visual and
qualitative results on the BI degradation dataset with scale factor ×4. The best/second-best PSNR results are highlighted and underlined, respectively.

comprehensively utilize local layers under the BD and DN
degradation. Our DDistill-SR method achieves similar perfor-
mance with fewer parameters than RDN on DN. DDistill-SR is
more suitable to extract meaningful features with certain noise
to introduce a more effective representation module. Moreover,
RDN contains 22M parameters, which is 33 times more than
the number of parameters of DDistill-SR. For BD degradation,
DDistill-SR achieves similar performance to high-cost RDN

and far outperforms other low-cost networks. However, the
gap between RDN and DDistill-SR is less than 0.09 dB, which
is much lower than the benefit of our approach over other
methods. Compared with SRMDNF, our method improves
PSNR and SSIM by 0.33 dB, and 0.0061 on average for the
four datasets.

We also show intuitive results to confirm the potential of our
method in anti-warping and denoising. As depicted in Fig. 9,
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TABLE VII
AVERAGE PSNR/SSIM FOR SCALE ×3 ON DATASETS SET5 [53], SET14 [5], B100 [54], URBAN100 [55] WITH BD AND DN DEGRADATION. THE

BEST/SECOND-BEST RESULTS ARE HIGHLIGHTED AND UNDERLINED RESPECTIVELY.

Dataset Type Bicubic SPMSR [59] VDSR [18] IRCNN G [60] IRCNN C [60] SRMDNF [61] RDN [21] DDistill-SR

Set5 BD 28.34/0.8161 32.21/0.9001 33.29/0.9139 33.38/0.9182 29.55/0.8246 34.09/0.9242 34.57/0.9280 34.39/0.9255
DN 24.14/0.5445 -/- 27.42/0.7372 24.85/0.7205 26.18/0.7430 27.74/0.8026 28.46/0.8151 28.47/0.8142

Set14 BD 26.12/0.7106 28.89/0.8105 29.58/0.8259 29.73/0.8292 27.33/0.7135 30.11/0.8364 30.53/0.8447 30.44/0.8401
DN 23.14/0.4828 -/- 25.60/0.6706 23.84/0.6091 24.68/0.6300 26.13/0.6974 26.60/0.7101 26.63/0.7120

B100 BD 26.02/0.6733 28.13/0.7740 28.61/0.7900 28.65/0.7922 26.46/0.6572 28.98/0.8009 29.23/0.8079 29.19/0.8049
DN 22.94/0.4461 -/- 25.22/0.6271 23.89/0.5688 24.52/0.5850 25.64/0.6495 25.93/0.6573 25.97/0.6607

Urban100 BD 23.20/0.6661 25.84/0.7856 26.68/0.8019 26.77/0.8154 24.89/0.7172 27.50/0.8370 28.46/0.8581 28.04/0.8463
DN 21.63/0.4701 -/- 23.33/0.6579 21.96/0.6018 22.63/0.6205 24.28/0.7092 24.92/0.7362 24.93/0.7370

HR PSNR Bicubic 25.24 dB HR PSNR Bicubic 23.41 dB

barbara from Set14 (BD) RDN 27.08 dB Ours 27.24 dB RDN 25.64 dB Ours 25.80 dB 12084 from B100 (DN)

Fig. 9. The comparison of DDistill-SR (Ours) and RDN [21] on BD and DN degradation (×3).

for barbara image with BD degradation, RDN and DDistill-SR
remove blurring artifacts and recover the deficient structural
edges. However, our method better restores the pattern of
the tablecloth and outperforms RDN in terms of sensory and
evaluation indices. Moreover, DDistill-SR learns the missing
high-frequency information from the highly aliased and noisy
DN inputs and generates images with more details. These
results clearly indicate that DDistill-SR is more effective
than other lightweight methods. We attribute the lead to our
enhancements on dynamic representation.

E. Pros and Cons

In this paper, we propose a plug-in convolutional block
RDU and an efficient dynamic distillation fusion module,
which show better representations in lightweight frameworks.
Although substantial improvement can be obtained in our work
for lightweight SR, critical points remain to research prior
to practical application. First, despite the proposed RDU that
efficiently combines dynamic convolution and reparameteri-
zation strategy to capture more powerful feature extraction
capabilities, extremely high overhead is unavoidable in the
training process. It is necessary to reduce the training-time
memory cost for deployment on large models. Second, the
DDF module can collect and reuses the immediate features to
erect the long-distance correlation for better quality. However,
due to the extra parameters and calculations, the DDF is
removed in the DDistill-SR-S. Recursive learning may help
reduce the additional cost by sharing the DDF module among
different levels. By overcoming these two points, we believe
DDistill-SR can achieve better performance and applicability.

V. CONCLUSION

In this article, we propose an efficient lightweight super-
resolution network, called DDistill-SR, to restore low-
resolution images under limited time and space overhead.
To improve the representation capacity in limited depth, we
employ more powerful convolutional layers and more effectual
fusion modules to fully use the static and dynamic signals
in the distillation super-resolution framework. Hence, a novel
reparameterized and dynamical RDU is proposed to enrich
the extraction and distillation of high-frequency information.
Extensive evaluations suggest that the proposed RDU may
help with other lightweight vision applications. Moreover, an
efficient distillation block is devised to ensure lightweight
and flexible feature processing. Furthermore, we conduct a
dynamic fusion module to collect local and global dynamic
residues to assist the final restoration. With these modifica-
tions, our DDistill-SR can adapt to different magnifications
and degradation. Extensive evaluations well demonstrate that
our DDistill-SR achieves the SOTA performance with rela-
tively fewer parameters and calculations.
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