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supervised active speaker localization
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Abstract—An objective understanding of media depictions,
such as inclusive portrayals of how much someone is heard
and seen on screen such as in film and television, requires the
machines to discern automatically who, when, how, and where
someone is talking, and not. Speaker activity can be automatically
discerned from the rich multimodal information present in the
media content. This is however a challenging problem due to the
vast variety and contextual variability in the media content, and
the lack of labeled data. In this work, we present a cross-modal
neural network for learning visual representations, which have
implicit information pertaining to the spatial location of a speaker
in the visual frames. Avoiding the need for manual annotations
for active speakers in visual frames, acquiring of which is very
expensive, we present a weakly supervised system for the task of
localizing active speakers in movie content. We use the learned
cross-modal visual representations, and provide weak supervision
from movie subtitles acting as a proxy for voice activity, thus
requiring no manual annotations. We evaluate the performance
of the proposed system on the AVA active speaker dataset and
demonstrate the effectiveness of the cross-modal embeddings
for localizing active speakers in comparison to fully supervised
systems. We also demonstrate state-of-the-art performance for
the task of voice activity detection in an audio-visual framework,
especially when speech is accompanied by noise and music.

Index Terms—cross-modal learning, weakly supervised learn-
ing, multiple instance learning, active speaker localization

I. INTRODUCTION

TREMENDOUS variety and amounts of multimedia con-
tent are created, shared, and consumed everyday, and

across the world, with a great influence on our everyday
lives. These span various domains, from entertainment and
education to commerce and politics, and in various forms;
for example, in the entertainment realm these include film,
television, streaming, and online media forms. There is an
imminent need for creating human-centered media analytics
to illuminate the stories being told by using these various
content forms to understand their human impact: both societal
and economic. Recent efforts to address this need has led to
the emergence of computational media intelligence (CMI) [1]
which deals with building a holistic understanding of persons,
places, and topics involved in telling stories in multimedia, and
how they impact the experiences and behavior of individuals
and society at large.

Creating such rich media intelligence requires the ability
to automatically process and interpret large amounts of media
content across modalities (audio, video, language, etc.), each
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modality with its strengths and limitations to help understand
the story being told. The ability to process multiple modalities
hence becomes essential to learn robust models for media
content analysis. It should be noted that humans concurrently
process and experience different aspects of the presented
media: sights, sounds, and language use to develop a holistic
understanding of the story presented [2]. For example, several
studies in psychology and neuroscience have shown evidence
for how visual perception in humans is intertwined with
other senses such as sound and touch. These mechanisms
can be altered even at early stages of development of the
primary visual cortex (e.g., [3]). This integration of multiple
sensory modalities to holistically perceive visual stimuli is
a widely studied field in human psychology, referred to as
crossmodal perception [4]. Recently, there have been several
works focused on the computationally harnessing the idea of
crossmodal perception in the audio-visual domain. Most of
these studies use the idea of the naturally existing relations in
the audio and the corresponding visual frames, in produced
media content [5], [6], [7], [8].

When and where constructs are the fundamental pillars of
CMI, for developing a holistic understanding of a scene, which
direct to locate the action of interest in time and space. In this
paper, we address the problem of audio-visual speech event
localization in (Hollywood) movies, which essentially detects
the audio speech event in time (when) and the corresponding
speech activity in the visual frames (where). Inspired by the
cross-modal integration in humans to address the challenges of
partial observability and dynamic variability of the audio and
visual modalities, we developed a cross-modal neural network
that can efficiently fuse the complementary information of the
visual and audio modalities to effectively localize an audio-
visual speech event.

In our preliminary work [9], we introduced a cross-modal
problem formulation for the task of visual voice activity
detection. We proposed a 3D convolutional network that
observes the raw visual frames of a video segment and predicts
the posterior for segment-level audio voice activity detection
(VAD). We further established that the learned embeddings
were capable of localizing humans in the visual frames. In this
work we further advance the proposed framework for audio-
visual speech event localization, where audio speech event
refers to the voice activity detection in time (audio modality)
and visual speech localization refers to localizing active speak-
ers in space (visual frames). The novel contributions reported
include the following:

1) We introduce an enhanced cross-modal architecture con-
sisting of 3D convolutional neural networks (CNNs)
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and stacked convolutional Bi-LSTMs. This enables the
system to capture multi-scale temporal context and in-
troduces an ability to learn hierarchical abstractions in
the presented information. The presence of convolutional
operations throughout the architecture, in CNNs as well
as in Bi-LSTMs, enables the system to preserve the
spatiotemporal information, thus making it interpretable
at several levels.

2) We present an end-to-end trainable cross-modal system
for active speaker localization in visual frames, trained in
a weakly supervised fashion. The proposed setup utilizes
a multiple instance learning formulation designed for de-
tecting the presence of speech in audio while considering
the location of active speaker faces in the visual modality
as the key instances. Furthermore, we evaluate the
system on a public dataset and demonstrate performance
comparable to state-of-the-art fully supervised methods.

3) We present an audio-visual system for segment-level
voice activity detection (VAD) which utilizes a fusion
of the learned cross-modal visual representations and
state-of-the-art audio representations. We conduct exper-
iments on public benchmark datasets to show the state-
of-the-art VAD performance for the cases when speech
is accompanied by noise or other interference.

II. RELATED WORK

A. Cross-modal learning

There has been a recent surge of studies focused on
cross-modal machine perception, especially in media content
analysis. The idea of cross-modal learning primarily revolves
around modelling one modality guided by another. In [10], the
authors target video advertisement classification, using cross-
modal autoencoders, reconstructing one modality from the
other. In a more recent work by [11], a cross-modal relation-
aware network is proposed for audio-visual event localization
involving a self-attention mechanism where query is derived
from one modality while the key-value pairs the other. Another
work [12] targets the problem of fake news detection using a
cross-modal residual network, where the text modality guides
the attention for learning visual representation and vice-versa.
In our earlier work [9], we proposed a cross-modal problem
setup for the the task of visual VAD invovling a hierarchically
context-aware network (HiCA) which observes the visual
frames and predict the audio VAD labels.

B. Weakly supervised object detection (WSOD)

WSOD refers to the training setup when only image level
labels are provided for supervision opposed to bounding box
labels in fully-supervised scenarios. Recent research in WSOD
can be broadly categorized into two directions, i) Class activa-
tion maps (CAMs), and ii) Multiple instance learning (MIL)
based setups. CAMs based methods leverage the relationship
between CNN embeddings and the class posteriors to compute
localization maps. One of the earlier approaches [13] used
the idea that the recognition score will drop if the object
of interest is artificially masked out in the input image. The
idea of CAMs [14] was initially proposed to compute the

discriminative image regions for a class of interest in the
case of linear prediction layers. Grad CAM [15] was later
introduced, generalizing CAMs by using the gradients of the
posteriors with respect to the activations of the pertinent layer.
Furthermore, GradCAM++ [16], introduced weighted average
of pixel-wise gradients to improve the coverage of detections
and dealt with multiple occurrences of the same object.

MIL setups pose the input image for classification as a bag
of instances where instances are object proposals. In an early
attempt [17] a two stream CNN was proposed, one stream to
predict bag scores while the other one to compute the instance
level scores. Recently [18] proposed a multistage instance
classifier (MIDN) to predict the tighter object detection boxes,
which is further enhanced to improve coverage of detection
by using 2 MIDMs [19]. To alleviate the non-convexity issues
associated with MIL [20] proposed to use a combination of
smoothed loss functions.

C. Active speaker localization

Earlier works [21] in active speaker detection largely focus
on using the activity in the lip region available in the visual
modality. In another approach [22], authors proposed to use the
synchrony between the cropped images of lip regions and the
associated audio to determine active speakers. Furthermore,
[23] introduced the use of cues from upper body motion to
determine an active speaker, which they further refined using
personalized voice models [24]. Recently [25] proposed a
large scale dataset (AVA active speaker dataset), consisting
of movies and the corresponding active speaker annotations
along with baseline performance using a supervised frame-
work. Several frameworks have since followed [26], [27],
[28] for improving the performance on the AVA dataset. But
all these works are restricted to supervised frameworks. To
overcome the need of expensive annotations [29] proposed a
self-supervised framework trained for the task of audio visual
correspondence using the optical flow information.

D. Sound source localization

The problem of active speaker localization falls within
the general domain of sound source localization, but for a
particular audio event: speech. The core idea driving the
research in this direction is to exploit the existing audiovisual
correspondence in the media content. Earlier efforts [30], [31],
[32] used canonical correlation analysis to model the audio-
visual correspondence. Recent research has been dominated by
self-supervised deep learning methods, where researchers try
to capture the audio-visual correspondence using various proxy
tasks. One such proxy task [8], [33] uses the additive nature
of audio and reconstruct the sound for each pixel by learning
a mask for the audio spectrogram. Another proxy task [7]
predicts the time alignment of the given audio and video
pair. The work by [6] used the audio-visual correspondence to
predict a localization score for every pixel and [34] extended
the same formulation for object detection. Furthermore [11]
proposed a cross-modal attention mechanism for audio event
classification and used the learned attention for modeling
the localization task. Majority of these works qualitatively
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Fig. 1. The crossmodal architecture with 3D CNNs and stacked convolutional BiLSTM layers

established the gained localization ability from the inherent
audio-visual correspondence but lacks quantitative evaluation.
In this work we present a qualitative as well as thorough
quantitative analysis of the acquired localization ability of the
visual embeddings.

III. METHODOLOGY

In this section, we first introduce the problem formula-
tion for learning cross-modal visual representations, followed
by the cross-modal neural network architecture and relevant
implementation details. We further elaborate on the methods
developed to formally use the learned visual representations
for active speaker localization in a weakly supervised manner.
The overview of the complete end to end framework is given
in Fig 3.

A. Problem Description

The work in this paper is especially motivated by the
application of active speaker localization in media content such
as entertainment media, notably Hollywood movies. From a
computer vision perspective, movie videos are challenging
due to the presence of rich variety and high dynamics in
the content with potentially multiple variable number of per-
sons in both the foreground and the background. Supervised
modeling of such videos requires large amounts of (labeled)
data. In particular, training an audiovisual system for person
localization task in a supervised fashion requires large-scale
bounding box annotations, which are tedious and expensive
to acquire. Inspired by the recent success of cross-modal
representations in understanding media content [11], [12], we
formulate our problem in a cross-modal fashion where we
model a function of audio modality i.e., talking/non-talking
person, by directly observing the visual frames. This helps us
in circumventing the widespread issues of drop in performance
while jointly modeling multiple modalities against uni-modal
systems [35], that arises primarily due to the difference in the
rate of generalization for different modalities.

In our preliminary work [9], we trained a cross-modal
network for predicting segment-level audio voice activity by

using the visual information and established that the learned
embeddings implicitly acquired a capability to localize humans
in the visual frames. Motivated by the attained localizing
ability, in this work we modified the cross-modal formulation
described in [9], such that the learned embeddings can localize
active speakers in the visual frames. To do so, we propose
a modified formulation of the learning task to predict the
presence of speech (PoS) for a video segment by observing the
visual frames. For a given video segment vi of t − seconds,
we define PoS as the step function of the duration of voice
activity.

PoS =

{
1 duration of voice activity > 0

0 duration of voice activity = 0
(1)

The task of predicting PoS is specifically chosen with a hy-
pothesis that the neural network will assess the active speaker
regions in visual frames as the most salient to detect the PoS in
the video segment. In our experimental setup we use data from
Hollywood movies for training under this formulation, and
thus utilize the readily available movie subtitles to acquire the
PoS labels involving no manual annotations. Since obtaining
a segment-level (video segment of t-sec) PoS label is a
more relaxed scenario against obtaining a segment-level voice
activity label, it enables us to obtain finer labels as compared
to the strategy introduced in [9].

Formally, given a video V , we partition the video into
smaller segments vi of t− seconds each. For each of the vi,
we acquire a label yi, where yi indicating the PoS in the video
segment. The network sees k such small segments at once, and
the network is trained for the mapping problem vi → yi. In
the current setup, t = 1sec and k = 10.

{vi, . . . , vi+k} → {yi, . . . , yi+k} yi ∈ {0, 1} (2)

B. Cross-modal network architecture

1) Architecture: To model the visual signal in a cross-
modal fashion, in preliminary work [9], we introduced a
Hierarchical Context-Aware (HiCA) architecture providing the
temporal context at different levels, modeling the short-term
context using 3D CNNs and long-term context using BiLSTM.
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Furthermore, we qualitatively and quantitatively established
that the trained representations were selective to human faces
and the human body. In this work, we enhance the decentral-
ized temporal context of the HiCA architecture by employing
three stacked convolutional Bi-LSTM on top of the 3D CNNs
to provide multi-scale temporal context. The introduction of
the stacked Bi-LSTMs is motivated by the fact that stacked
LSTM networks introduce a hierarchical level of abstractions,
as established in various works [36] in the field of Natural
Language Processing. The convolutional Bi-LSTMs enable
the integrated interpretability for the architecture, since they
preserve the spatial and temporal structure of the input. Such
a model also enables visualizing the learned representations at
different levels of the stacked Bi-LSTMs, allowing to analyze
the learned hierarchical abstractions. The elaborated neural
network architecture is shown in Figure 1.

2) Experimental implementation details: The network is
trained on a set of 268 Hollywood movies, released during
the period 2014-18. The videos are sampled at 24 frames per
second and are lowered in resolution to 180 x 360 pixels.
The Presence of speech labels are implicitly obtained using
the readily available movie subtitles since they correspond
to the human speech dialogues present in the movies. The
obtained labels are coarse and do not employ any manual
annotations. The subtitles are first processed to remove the
presence of special sounds by removing the content quoted
within [.]/{.}. It has been observed that the acquired subtitles
are not accurately time aligned with the audio. We used the
gentle force aligner 1, a Kaldi-based 2 tool to align speech and
text, which time aligns the subtitles and audio and provides
a confidence score with each alignment. We discard the part
of the videos which has not been aligned with high enough
confidence (empirically determined). We further compute a
binary label for each t− sec of the video segments using the
presence of subtitles as a proxy for presence of speech. To
provide a tolerance for subtitle alignment errors, we assign
a video segment a positive PoS label only if it has speech
content for more than 10% of the duration.

After pre-processing and time aligning the subtitles with
audio, we obtained, on average, nearly 70% of the movie dura-
tion with a high enough speech-subtitle alignment confidence
score. We used k = 10sec and t = 1sec, which were driven
heuristically, ensuring that CNNs and LSTMs observe enough
temporal context to learn. Our training set consists of nearly
360 hours of video data, which comprises 130k samples (1.3
million video-label pairs, since each sample consists of 10
pairs). The network has been optimized to minimize the cross-
entropy loss using an accelerated SGD optimizer for nearly 1
million iterations for a batch size of 8.

C. CAM-assisted active speaker localization

The utmost factor motivating the use of convolutional net-
works throughout the cross-modal architecture is the ability
of CNNs to enhance the interpretability of the learned embed-
dings. In this work we use an extension of GRAD CAMs [15]

1https://lowerquality.com/gentle/
2https://kaldi-asr.org/

Fig. 2. Class activation maps for positive class imposed on the input frames
showing the localization ability of the learned embeddings.

to 3D CNNs, as introduced in our preliminary work [9] to
visualize the information learned by the visual embeddings.
We first differentiate the output sigmoid score, the posterior
p̂i for PoS, with respect to each of the filters Fm of the
pertaining convolutional layer (the last conv-LSTM layer in
current scenario) with m filters. The obtained gradients are
aggregated across temporal and spatial dimensions to obtain
the contribution of each filter towards the presence of speech
event. The filters of the convolutional layer in consideration are
averaged in accordance with the weights computed in Eqn. 3,
and rectified linearly to obtain the final class activation maps,
C.

αm =
1

Z

∑
i

∑
j

∑
k

∂p̂

∂Fmijk
C = ReLU(

∑
m

αmF
m) (3)

We use this framework to quantitatively analyze the learned
abstractions among the stacked LSTM layers. Fig. 2 shows the
positive-class activation maps for selected key-frames from
the video segments of the TV show Andi Mack, not seen
by the network earlier. Although the CAMs are designed for
the purpose of enhancing the interpretation of the involved
neural network, we observe in Fig. 2 that the CAMs provide
a non-trivial signal for localizing active speakers. We propose
to extend the CAMs framework in a classification scenario,
where for a given face bounding box, we use the CAMs
derived signal to predict the status of the face as active speaker
or not-speaking. Such a system will quantitatively validate
the earlier presented hypothesis that the learned cross-modal
representations for the task of PoS have implicit information
for localizing active speakers.

The proposed cross-modal system consists of 3DCNNS
and ConvBiLSTMs, which preserve the temporal and spatial
information throughout the network, and thus enable the
CAMs to take advantage of the abstracted information in
the later stacked BiLSTM layers. We compute the CAMs
for the last ConvBiLSTM layer for a given video segment,
part of a longer video clip. Since the ultimate layer in the
network has a temporal resolution of 6 fps, and so are the
obtained CAMs. We linearly interpolate the CAMs across the
temporal and spatial dimensions to obtain the maps matching
the spatio-temporal resolution of the given video segment.
We normalize the obtained CAMs to restrict their value in
range [0,1], by using a min-max normalization (using Eqn. 4
for a frame f ) across the longer video clip. The min-max
normalization is motivated by the assumption that there exists
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at least one instance of active speaker in the longer video clip,
thus marking that as the benchmark for the CAM scores.

Cf =
Cf

Max(C)−Min(C)

sfj = maxCf [y1 : y2, x1 : x2]

(4)

Formally, we denote a bounding box of the jth face in frame
f , for a video segment vi as bfj = [(x1, y2), (x2, y2)]. We ROI
pool the normalized CAM, Cf for the frame f , pertaining to
the face bounding box, and compute the posterior score, sfj
by max-pooling the pooled CAM. The framework is shown in
the Fig. 3-ii.

D. Weakly supervised active speaker localization

In the previous section, we used CAMS, a function of the
embeddings, rather than the embeddings directly, to formalize
a system for active speaker detection. Such a system helps us
to explicitly validate our hypothesis, that the learned visual
representations can localize active speakers in visual frames.
In this section, we propose a systematic method to utilize
the learned embeddings for active speaker localization, in a
weakly supervised manner. We present a multiple instance
learning (MIL) setup optimized for the proxy task of the

presence of speech (PoS) by observing the learned cross-modal
embeddings §III-B, and model the active speakers as the key
instances. The setup is inspired by the recent works in weakly
supervised object detection[19], [20], [37], [18].

The problem of active speaker localization in space, is
closely related to the active speaker detection in time, which is
widely known as voice activity detection (VAD). The prevalent
audio-based VAD systems are severely challenged by the va-
riety and variability in the noise seen in real-world conditions.
Various works have shown that visual features pertaining to
localizing active speakers can complement the audio represen-
tations in noisy scenarios. We formalize a multimodal system
for VAD using the learned cross-modal visual representations
along with state-of-the-art [38] audio representations and show
the usefulness of the visual embeddings especially in the cases
when speech is accompanied by noise.

1) MIL problem formulation: Multiple instance learning
falls under the domain of supervised learning scenarios, where
given labeled bags, each bag consisting of multiple instances,
we learn a mapping from bags to labels. Particularly for a
binary classification task, the bag is assigned a positive label if
at least one of the instances in the bag is positive. This scenario
fits appropriately with our problem formulation described in
§III-A. We define a small video segment, vt, as a bag, and
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all the faces appearing during the video segment as instances.
We train the system for the presence of speech (PoS) events,
thus assigning vt (bag) a positive label only if at least one of
the faces (instances) corresponds to the active speaker.

The proxy task of PoS in the MIL setup is specifically
chosen, so as to make it consistent with the earlier cross-
modal setup (§III-B). With such a setup the cross-modal
architecture observes the raw visual frames and is trained
for the PoS labels. The output embeddings along with face
proposals further become input for the MIL system, which
is also trained for the PoS task. This consistency in both the
setups’ learning tasks makes them compatible to be trained in
an end-to-end fashion. The combined CNN + MIL architecture
observes the raw visual frames and predicts the PoS tags.
Due to computational constraints, in this work, we restrict to
training the two components separately.

2) Implementation details: The MIL system observes the
visual representations, obtained using the proposed cross-
modal architecture (§III-B), and face detection boxes3 for each
frame to predict the PoS in the video segment. The face
detections are sampled to match the temporal resolution of
the visual representations. We employ an ROI [39] pooling
layer to generate instance-level descriptors, which next passes
through a set of fully connected layers, terminating with a
sigmoid activation layer. Thus, we obtain the instance level
predictions, which are further pooled using a modified linear
softmax [40] to produce the bag level predictions. Since we
froze the weights of the cross-modal (HiCA) architecture while
training the MIL system, we introduce a trainable 3D-CNN
block which observes the visual embeddings from the HICA
architecture and, its output representations further act as an
input to the MIL system. This enables fine tuning of the
initially learned embeddings for the MIL system. The complete
architecture is shown in Fig. 3.

In a recent work [40] it was suggested that in MIL system
training, the max-pooling of the instance posteriors, to obtain
the bag posteriors, shows a selective behavior highlighting
one of the instances among all others. It was also pointed
that linear softmax pooling boosts the larger posteriors while
suppressing the smaller posteriors at the same time. For the
application of active speaker localization, we assume the
case of non-overlapping speakers, i.e., there can be at most
one active speaker in each frame. This requires the selective
behavior of the pooling method, selecting one instance (face),
at the frame level. Concurrently, there will likely be more
than one frame in the video, consisting of instances of active
speakers. Thus we require linear-softmax kind of behavior at
inter-frame level pooling, boosting the posterior of the more
confident frames.

We propose to use a combination of the two pooling
methods, thus pooling the instances in each frame using
max-pooling to obtain the frame-level posteriors. We further
pool the frame-level posteriors using linear softmax pooling
operation to obtain the video level posterior score. Let the
instance posterior for the ith face in frame f is denoted as
P̂fi. The bag posterior, P̂ , is obtained as shown in eq 5. We

3Neven Vision f RTM API

optimize the MIL system for the cross-entropy loss, LossMIL
between the bag posteriors P̂ and corresponding PoS labels.

P̂ =

∑
f (maxi P̂fi)

2∑
f (maxi P̂fi)

(5)

Simultaneously, we train a late-fusion multi-modal network
for the task of VAD, for the same set of input data. We
obtain the VAD labels for the video segments using the movie
subtitles in a similar fashion as we obtained the PoS labels,
described in §III-B. We provide a positive binary label if the
speech content is present more than 50% of the duration of
the video segment, and a negative label otherwise. We use the
pre-trained state-of-the-art [38] audio representations for the
task of VAD, and pass them through an FC layer to further
concatenate with the video representations, obtained from the
introduced 3D CNN block between the HICA architecture and
the MIL system. The concatenated representations are further
passed through a set of FC layers to give a segment-level
posterior score for VAD. We compute a cross-entropy loss,
Lossav and optimize jointly with the MIL system, minimizing
the convex combination of the two losses (using α = 0.9).

Lossjoint = α ∗ LossMIL + (1− α) ∗ Lossav (6)

3) Post processing: We propose post-processing steps to
refine the obtained instance-level posteriors by imposing audio
and visual constraints.

• Video post processing: We assume that at any point in
time there exists at most one speaker. To apply such a
constraint, we penalize the posteriors of all the faces,
but the one with the maximum posterior score, in every
frame. This helps in removing the false positives in the
predictions.

P̂fi =

{
P̂fi, P̂fi = maxi P̂fi.
P̂fi

β , otherwise.
(7)

• Audio post processing: We use the fact that if there is no
speech detected in the audio modality, there can not be
any speaker present in the visual frames. To integrate this
information in the active speaker posteriors, we impose a
penalty on all the faces in the frames appearing in non-
voice activity regions. Essentially,

P̂fi =

{
P̂fi, if frame f in VAD region.
P̂fi

γ , otherwise.
(8)

IV. EXPERIMENTS AND EVALUATIONS

In this section, we present the qualitative and quantitative
evaluation of the learned cross-modal visual representations
by evaluating the proposed systems for active speaker lo-
calization, the CAMs-assisted, and the MIL-based weakly
supervised system. We provide details about the evaluation
datasets, the experimental setups, and the metrics reported.
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Fig. 4. Illustration of localization performance of the crossmodal embeddings
specifically for the frames with more than one face.

A. Qualitative analysis

Here we evaluate the hypothesis, that the visual embedding
learned to detect the presence of speech in audio modality can
localize active speakers in the visual frames, from a qualitative
perspective. We visualize the salient regions in the video
frames for the positive class i.e., presence of speech event in
the audio modality using the methodology described in §III-C.
Fig. 2 shows the CAMs imposed on the frames in form of
heatmaps and demonstrates that the positive class activations
situate around human faces with high concentration.

Multiple faces in a frame: An approach for generalized
sound source localization was recently proposed by [7], where
a neural network for audio-visual synchrony was trained, a
framework that appears to be closest to our case. This work
presents class activation maps for various videos in audio-
set [41] and shows that the learned audio-visual representations
are selective to human faces and moving lips in case speech
event. But the majority of cases presented in this work consist
of just one human face in the frame; moreover, they do not
provide extensive quantitative analysis to support the claim.
As we specialize the cross-modal embeddings for the presence
of speech events, it becomes interesting to see what happens
when more than one human face is present in a frame. In
Fig. 4, we present the CAMs for selected frames, from the
TV show Andi Mack and the movie Dumb and Dumber,
neither seen by the network during training, corresponding to
positive class. The frames are particularly selected to have
more than one faces present. The figure illustrate that the
learned crossmodal embeddings are able to select the active
speaker even when more than one face is present on the frame.
However, the variance of the heatmaps is not as concentrated
as in the case of a single face, shown in Fig. 2. The sample
videos with imposed CAMs can be found in supplementary
material.

Importance of stacked LSTMs: In this work, we en-
hance the HICA [9] architecture with three additional stacked
Convolutional-BiLSTM, with an idea that it preserves the
spatial and temporal information and achieves hierarchical
abstraction. To qualitatively validate the advantages of stacked-
ed Convolutional BiLSTM layers, we compare the CAMs at
two hierarchical levels, one at the end of 3D convolutional
network (Conv CAMS) and the other at the end of the stacked
LSTMs (LSTM CAMs).
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Class activation maps for frames from speech event (Red-box: active speaker)

Class activation maps for frames from non-speech event

Fig. 5. Qualitative comparison of CAMs for the last convolutional layer
against the last convolutional-LSTM layer for the case of speech and non-
speech events.

TABLE I
TRUE POSITIVE RATES FOR FPR=0.315, EVALUATED FOR SEVERAL

MODELS FOR THE TASK OF VAD.

Datasets /
Models resnet90 tiny 320 Cldnn cnn td ours

AVA
(Clean Speech) 0.992 0.965 0.985 0.983 0.92

AVA
(Speech + Music) 0.787 0.632 0.906 0.917 0.92

AVA
(Speech + Noise) 0.944 0.826 0.922 0.93 0.96

AVA
(all) 0.917 0.81 0.935 0.945 0.935

In Fig. 5, we present CAMs for the two hierarchical levels
under two different scenarios:

1) Speech event: We present frames with more than one
face present in the frame, from the set of speech events.
To make it more informative, we manually marked the
active speakers in the frames using a red box. It can
be observed that the activations in the case of the
Conv CAMs extend to the non-speaker face as well,
while the LSTM CAMs can correct the activations to
concentrate just on the active speaker.

2) Non-speech event: In this scenario, we present the
CAMs for the frames corresponding to non-speech
events. We observed that the Conv CAMs are concen-
trating on the faces visible in the frames irrespective
of their activity while the LSTM CAMs can correct the
undesired activations, and are selective to speech events.

It can be inferred that the group of 3D convolutional layers
is selecting the available faces in the frames and the stacked
LSTMs, as they can observe a longer context, are narrowing
down to selecting the active speakers.

B. Quantitative Analysis

Since we have visually established that the learned cross-
modal visual representations can successfully localize the
active speakers, now we formally quantify the performance
of the embeddings for audio-visual speech event localization.
It comprises two tasks, i) voice activity detection in audio
modality, and ii) active speaker localization in the visual
modality. We further experimentally support the robustness of
the visual representations for the localizing task.



IEEE TRANSACTIONS ON MULTIMEDIA 8

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AVA Speech (0.94)
Clean Speech (0.93)
Speech with Music (0.93)
Speech with Noise (0.96)
AVVP (0.82)

Fig. 6. Receiver-Operating Characteristics (ROC) for Audio-Visual VAD
performance for different datasets.

1) Audio-visual voice activity detection: We explore the
applicability of the cross-modal embeddings for localizing
audio speech events. We train a late fusion model for the audio
VAD task, in a co-training fashion with the MIL framework,
following § III-D. To validate the performance of the proposed
system, we evaluate it on two richly dynamic datasets. The first
is the AVA speech dataset [42], which consists of 15 minute
video clips from 160 international movies, manually annotated
for voice activity. The AVA dataset comprises three different
scenarios for speech events, clean speech, speech with music,
and speech with noise, which makes it highly challenging.
The proposed system is limited to segment level predictions,
thus providing binary labels for each 1 sec of the video.
To make the AVA dataset compatible with the segment level
evaluation, we use majority voting to compute the segment
level labels and report performance on validatoin set. The
other dataset we used for evaluation, LLP [43], consists of
1849 YouTube videos, each 10sec in duration, and video-
level event annotations on the presence or absence of different
video events, speech event being one. It offers annotations with
granularity being 1 sec, thus are coarse.

In Fig. 6, we present the receiver-operating characteristics
(ROC) curve, along with area under ROC curve, showing the
performance of the proposed system across different datasets,
evaluated for segment level predictions. In Table I, we compare
the performance of the system, in terms of true positive rate
when false positive rate being 0.315, with the state-of-the-
art systems. It can be observed that the proposed audio-visual
model outperforms the audio-based state-of-the-art methods in
cases when speech is accompanied with music and noise. It
can be inferred that the active speaker localizing capability of
the cross-modal visual representations, complements the voice
activity detection performance when the audio signal is not
reliable. For the same experimental setting, we observe a TPR
of 0.771 for LLP dataset. Since the dataset is designed for
the task of audio-visual event classification, we did not find
any reports of evaluations particularly for the speech event to
compare against.

2) Active speaker localization: To evaluate the active
speaker localization performance of the proposed CAM-
assisted system and MIL-based weakly-supervised frame-
work §III-D, we use the AVA active speaker dataset [25]. The
dataset consists of the same movies as in the AVA speech

TABLE II
PERFORMANCE (AUROC) FOR ACTIVE SPEAKER LOCALIZATION ON AVA

DATASET.

Experimental setup /
Methods CAMs MIL

Visual posteriors
(no post processing) 0.68 0.72

Visual
post processing 0.69 0.74

Visual + audio
post processing 0.80 0.83

Visual + audio (oracle)
post processing 0.82 0.85

AVA baseline
fully supervised system [25] 0.92

dataset, described in §IV-B1, with additional annotations,
comprising all the face tracks and manually annotated face-
wise active speaker labels (in all 780k annotated faces). The
movies in the AVA dataset are international movies, shot in
an earlier time period, thus are different from contempora-
neous Hollywood movies in terms of cinematography. The
authors [25] also present a fully supervised baseline and
reported the performance in terms of area under the ROC
curve. The proposed system has never observed any part of the
AVA active speaker dataset and we report performance on the
validation split (as provided by the authors [25]), consisting
of 33 movies, to make it comparable.

In Table II we report the performance for the CAMs-assisted
and the MIL-based system in terms of area under the ROC,
as suggested by [25]. For a more elaborate understanding
of the performance, we present the ROC curves for all the
experiments in Fig 7. We observe the following:

• The CAMs-assisted system, utilizing just the visual sig-
nal shows moderate performance for the task of active
speaker localization.

• Unlike CAMs, which are purposed for visualizing the
network activations, the proposed MIL system observes
more informative visual representations for the task of ac-
tive speaker localization. It shows improved performance
for the task compared to the CAMs-assisted method,
consistently across all the experiments.

• The visual post-processing step, which enforces the uni-
speaker constraint for each frame, shows a marginal
improvement in the performance, which indicates that the
raw posteriors are already highly selective of just one
speaker in each frame.

• Further adding audio post-processing step shows a notice-
able improvement for both the methods, CAMs-assisted
and MIL system. Since the audio post-processing specif-
ically constrains the active speakers in the voice active
regions only, the enhanced performance is indicative of
the false positives produced by the raw posteriors in the
non-speech regions. This can be attributed to the limited
information present in the visual modality which solely
generates the posteriors.

• We also present the performance of the audio-visual
post-processing step, using VAD labels provided by the
AVA [25] annotations. We observe marginal improvement
compared to system provided VAD (§III-D), which reval-
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Fig. 7. Performance (auROC) on AVA dataset a) MIL system posteriors + post processing b) CAMs-assisted system + post processing c) comparison of
CAMs and MIL d) with various face sizes.

a b c

Fig. 8. Performance (auROC) on AVA dataset with generic object proposals a) with different IOU thresholds. b) for
various face sizes c) different number of boxes.

Fig. 9. Sample of CAMs imposed on
frames for animated videos.

idates the high VAD performance of the proposed system
as noted in §IV-B1.

We compare the performance against the baseline setup by
[25]. The lower performance against [25] can be primarily
attributed to the differences in system setups. Firstly, the
network presented in [25] is end-to-end optimized on the AVA
dataset in a supervised fashion with audio-visual face-tracks as
input and annotated active speaker bounding boxes as labels.
While on the other hand, our cross-modal network has been
trained in a weakly supervised fashion without encountering
annotations for active speakers. Furthermore, it has not seen
the AVA dataset in any form. Secondly, the network output by
the cross-modal system is low in spatial resolution (12×23 to
be precise), thus features driving the MIL system, using ROI
pooling, have limited information for smaller faces.

To further investigate the effect of the face size on the active
speaker localization performance, we present an evaluation
based on face box sizes. We divide the set of all the face
boxes on the basis of their size into 3 categories: small boxes,
occupying less than 2% of the screen space (≤ 4 pixels for
CAMs (12×23)), medium-sized boxes, occupying 2%-15% of
the screen space, and large boxes, occupying more than 15%
of the screen space. In Fig. 7 we show the ROC curve for the
three sets. We observe a clear degradation in performance as
the size of the face goes smaller.

We stress-test the robustness of the cross-modal MIL setup
by generalizing the input proposals to generic object detection
boxes, along with the existing face proposals, which we obtain
using Faster RCNN [39]. We remove the object boxes which
overlap with the face boxes with an IOU > th and label
all the new boxes as negative. This increased the number
of sample boxes to 4-folds, making it 3M for AVA active
speaker dataset. The evaluation uses MIL posteriors, followed
by the visual and audio post-processing steps. We observe a

marginal degradation in performance decreasing from 0.83 to
0.80. This establishes that the system is robust to proposals
and can differentiate active human speakers well.

Greater value of IOU threshold indicates the presence of
object boxes with significant overlap with one of the face
boxes, but are definitely labeled as negative. Such a scenario
leads to more false positives, which is reflected in the form
of the decrease in performance with the increase in the IOU
threshold, as shown in Fig. 8a. For a better understanding, we
looked at the variation in performance against the number of
boxes present in each frame. For clarity, we divided the dataset
into sparse frames with less than 5 boxes, moderate frames
with the number of boxes between 5 and 15, and crowded
with more than 15 boxes. Although, from Fig. 8b, the system
performs better with fewer number of boxes in each frame,
the difference is marginal, which re-validates the robustness
of the system against proposal boxes. We also present the
performance against box sizes in Fig. 8c, and observed that
the performance degrades as the size of the box decreases,
consistent with the earlier observation.

V. SUMMARY AND FUTURE WORK

In this paper, we present a cross-modal framework for
learning visual representations, capable of localizing an active
speaker in the visual frames. We further formalized a system
for active speaker localization, in a weakly supervised manner,
requiring no manual annotations. The consistency in the prob-
lem formulation for the cross-modal network and the MIL
setup makes the system end-to-end trainable. We evaluated
the performance of audio-visual speech event localization on
the AVA dataset, and demonstrated compelling performance
for audio VAD in noisy conditions and showed performance
comparable to supervised methods for localizing an active
speaker.
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The presented system is self-contained in the sense that it
can be adapted to any domain in a straightforward manner.
To do so, it requires no manual annotations, but just coarse
voice activity labels, which can be obtained using the proposed
state-of-the-art VAD system. One of the immediate extensions
of our work is to adapt the system for animated content for
animated character discovery such as illustrated in Fig. 9.
Since the system connects the speech to its spatial source in
visual frames, it can be extended to jointly model audio and
visual modality for diarization.
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