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Exploring Optical-Flow-Guided Motion and Detection-Based
Appearance for Temporal Sentence Grounding

Daizong Liu, Xiang Fang, Wei Hu, Senior Member, IEEE, Pan Zhou, Senior Member, IEEE

Temporal sentence grounding aims to localize a target segment
in an untrimmed video semantically according to a given sentence
query. Most previous works focus on learning frame-level features
of each whole frame1 in the entire video, and directly match
them with the textual information. Such frame-level feature
extraction leads to the obstacles of these methods in distin-
guishing ambiguous video frames with complicated contents and
subtle appearance differences, thus limiting their performance. In
order to differentiate fine-grained appearance similarities among
consecutive frames, some state-of-the-art methods additionally
employ a detection model like Faster R-CNN to obtain detailed
object-level features in each frame for filtering out the redun-
dant background contents. However, these methods suffer from
missing motion analysis since the object detection module in
Faster R-CNN lacks temporal modeling. To alleviate the above
limitations, in this paper, we propose a novel Motion- and
Appearance-guided 3D Semantic Reasoning Network (MA3SRN),
which incorporates optical-flow-guided motion-aware, detection-
based appearance-aware, and 3D-aware object-level features to
better reason the spatial-temporal object relations for accurately
modelling the activity among consecutive frames. Specifically, we
first develop three individual branches for motion, appearance,
and 3D encoding separately to learn fine-grained motion-guided,
appearance-guided, and 3D-aware object features, respectively.
Then, both motion and appearance information from correspond-
ing branches are associated to enhance the 3D-aware features
for the final precise grounding. Extensive experiments on three
challenging datasets (ActivityNet Caption, Charades-STA and
TACoS) demonstrate that the proposed MA3SRN model achieves
a new state-of-the-art.

I. INTRODUCTION

As an important multimedia task of cross-modal understand-
ing, temporal sentence grounding (TSG) aims to retrieve the
most relevant video segment according to a given sentence
query [1]–[5]. There are several related tasks proposed in-
volving both video and language, such as temporal action
localization [6]–[8], video question answering [9]–[11], and
video captioning [12]–[14]. Compared with these tasks, TSG
is more challenging as it needs to not only capture the
complicated visual and textual information, but also learn the
complex multi-modal interactions between visual and textual
information for accurately modelling the target activity.
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1In this paper, the frame is a general concept for an actual video frame or
a video clip which consists of a few consecutive frames.

(a) A hard example for temporal sentence grounding

Query: Person opens the door.     Person closes the door.    Person opens the closet.

Video:

GT:

Query: Person opens the door.     Person closes the door.    Person opens the closet.

Video:

GT:

(c) Existing detection-based framework
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(b) Previous frame-level extraction framework 

Open? 
Close?

(Confused)

Open? 
Close?

(Confused)

door? 
closet?

(Confused)

theOpen? 
Hold?

Motion Motion 
Reasoning

optical
flow

Fig. 1. (a) A hard example of temporal sentence grounding where the
video contains several semantically similar segments. (b) Previous framework
typically extracts frame-level features for reasoning, which fails to capture
subtle appearance differences (“door” and “closet”) and distinguish the
complex foreground-background contexts (“open” and “hold”) in each frame.
(c) Existing detection-based framework only extracts appearance-aware object
information, and fails to distinguish similar motions “open” and “close”. (d)
Our method develops three specific branches to separately learn optical-flow-
guided motion, detection-based appearance and 3D-aware object contexts, and
associates the information of them to better reason the query.

Most existing works [15]–[23] develop a proposal-ranking
framework that first generates multiple candidate segment
proposals and then ranks them based on their similarities with
the sentence query. The segment proposal with the highest
similarity score is finally selected as the best target segment.
Instead of using complex proposals, some recent works [24]–
[28] utilize a proposal-free approach that directly regresses the
temporal locations of the target segment. Specifically, they
either regress the start/end timestamps based on the entire
video representation, or predict at each frame to determine
whether this frame is the start or end boundary. Compared to
the proposal-ranking counterparts, these proposal-free meth-
ods have faster running speed but generally achieve lower
performance. Although the above two types of methods have
achieved impressive results, all of them attempt to extract the
frame-level visual features for each whole frame to model the
semantic of the target activity, which captures the redundant

ar
X

iv
:2

20
3.

02
96

6v
1 

 [
cs

.C
V

] 
 6

 M
ar

 2
02

2



2

background information and fails to explore the fine-grained
differences among video frames with high similarity. This
failure is significantly serious in adjacent frames near the
segment boundary. For instance, for two queries with similar
semantics (e.g., “Person opens the door” and “Person opens the
closet” as shown in Fig. 1(a) and (b)), modeling the temporal
relations by frame-level features can capture the same action
“open”, but it is difficult to adequately distinguish the subtle
details of different objects (“door” and “closet”). Besides, it
also fails to distinguish the complex foreground (“open” the
door) and background (“hold” the clothes) activity contents
with the same appearing object “person”.

Recently, in order to capture more fine-grained fore-
ground object-level appearance features in each frame, some
detection-based methods [29]–[31] have been proposed and
achieved promising results. To accurately reason the semantic
of the target activity for modelling, [29] considers temporal
sentence grounding and learns spatio-temporal object relations,
while other methods [30], [31] focus on the spatio-temporal
object grounding task which aims to retrieve an object rather
than a video segment. By learning the object-level representa-
tions in each frame, these methods significantly alleviate the
issue of indistinguishable local appearances and foreground-
background contents, such as “door” and “closet”, “open” and
“hold”. However, methods like [29] generally extract object
features by an object detection model (i.e., Faster R-CNN
[32]), which lacks the object-level motion context for the
temporal action modelling of a specific object (e.g., “door” and
“closet”), thus degenerating the performance on semantically
similar events. For example, as shown in Fig. 1(c), although
detection-based methods can learn the object appearance in
each frame, they have difficulties in distinguishing the similar
motions “open” and “close” by learning the object relations
in consecutive frames, since the detected objects extracted by
Faster R-CNN have similar appearance and spatial positions
in these frames. Since the motion context is necessary to
model the consecutive states or actions for objects [33], how
to effectively encode and integrate the motion context and the
appearance information to compose the complicated activity
is a crucial problem in TSG.

To this end, we propose a novel Motion- and Appearance-
guided 3D Semantic Reasoning Network (MA3SRN), which
incorporates both motion contexts and appearance contexts
into 3D-aware object features for better modelling the target
activity. Considering the optical flow is widely used in various
video understanding tasks [34]–[38] which identifies actions
with large motion, we extract optical flows between adjacent
frames among the entire video offline and take them as the
motion information. To efficiently capture the appearance
information, we obtain the object-level appearance from a
detection model (e.g., Faster R-CNN). Also, we follow pre-
vious TSG works to encode 3D-aware features from the video
clips with a C3D network [39] to embed the spatio-temporal
information. Particularly, we apply the bounding boxes (bbox)
extracted from the detection model on the motion and 3D-
aware features to capture the subtle object information for
filtering out the redundant backgrounds. After obtaining the
above three kinds of features, we integrate their contexts to

generate more representative features.
However, it is ineffective to directly construct a multi-stream

model that takes individual features (i.e., motion, appearance,
or 3D-aware feature) as the input in each stream and sub-
sequently concatenate them as the multi-stream output, be-
cause this lacks the interaction among these different features.
Considering that motion, appearance, and 3D-aware features
are complementary to each other, we design an effective and
novel fusion scheme to dynamically integrate different kinds
of features to enhance the overall feature representations for
improving the learning of each modality.

Specifically, we first detect and obtain appearance-aware
object representations by a Faster R-CNN model, and si-
multaneously employ the RoIAlign [40] on the optical-flow-
guided and 3D-aware feature maps from the ResNet50 [41]
and C3D network for the extraction of motion-aware and 3D-
aware object features, respectively. Then, we develop three
separate branches to reason the motion-guided, appearance-
guided, and 3D-aware object relations, respectively. In each
branch, we interact object features with query information
for query-related object semantic learning, and adopt a fully-
connected object graph for spatio-temporal semantic reason-
ing. At last, we represent frame-level features by aggregating
object features inside the frame, and introduce an attention-
based associating module to selectively integrate representative
information from three branches for the final grounding.

This paper extends our previous work [3] in three as-
pects. Firstly, the motion information in [3] captures only
partial motion, since it is directly extracted from the C3D
network that contains both spatial-aware appearance context
and temporal-aware action context. In contrast, this paper takes
such embeddings from the C3D network as the 3D-aware
features for spatial-temporal context encoding, and represents
the exact motion information via optical flows, with a rea-
soning branch integrated for action inferring. Secondly, we
design a more powerful motion-appearance associating module
with co-attentional transformers [42] to associate and incor-
porate the motion-guided, appearance-guided features into the
3D-aware one for spatial-temporal object-level representation
learning. Thirdly, we add experiments on a large-scale dataset
ActivityNet Caption [43], and conduct more experiments to
demonstrate the effectiveness of the proposed MA3SRN.

The contributions of this paper are summarized as follows:
• As far as we know, we are the first to propose a Motion-

and Appearance-guided 3D Semantic Reasoning Network
for Temporal Sentence Grounding, exploring the optical-
flow-guided motion-aware, detection-based appearance-
aware, and 3D-aware object features.

• We devise motion, appearance, and 3D-aware branches
separately to capture action-oriented, appearance-guided,
and 3D-aware object relations. An attention-based
motion-appearance associating module is further pro-
posed to integrate the most representative features from
these three branches for the final grounding.

• We conduct extensive experiments on three challenging
datasets: ActivityNet Caption, Charades-STA and TACoS.
Experimental results show that our MA3SRN outper-
forms state-of-the-art approaches by a large margin.
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II. RELATED WORK

A. Image/Video Retrieval

Given a set of candidate images/videos and a sentence
query, early retrieval works mainly aim to select the im-
age/video that best matches the query [44]–[48]. As for image
retrieval, previous works focus on localizing the semantically
relevant image region. They first generate candidate image
regions using image proposal method [32], and then find
the matched one with respect to the given query. Some
works [49]–[51] try to extract target image regions based on
description reconstruction error or probabilities. As for video
retrieval, some methods [52], [53] incorporate deep video-
language embeddings to boost retrieval performance, similar
to the image-language embedding approach [54]. Lin et al.
[55] first parse the query descriptions into a semantic graph
and then match them to visual concepts in videos.

B. Temporal Action Localization

As a single-modal task, temporal action localization aims
to classify action instances by predicting the corresponding
start timestamps, end timestamps, and action category labels
[8], [56], [57]. Existing methods can be divided into one-stage
methods [58]–[60] and two-stage methods [61]–[64]. The one-
stage methods directly predict action boundaries and labels
simultaneously. Specially, Xu et al. [60] employ a graph con-
volutional network to perform one-stage action localization. In
contrast, the two-stage methods first generate action proposals,
then refine and classify confident proposals. Generally, these
confident proposals are generated by the anchor mechanism
[61], [62], [64], [65]. Besides the anchor-based mechanism, we
can generate proposals by other technologies, such as sliding
window [6], temporal actionness grouping [7], combining
confident starting and ending frames [63], [66].

C. Temporal Sentence Grounding

As an important yet challenging multimedia task introduced
by [16] and [15], temporal sentence grounding (TSG) tries to
identify the boundary of the specific video segment semanti-
cally corresponding to a given sentence query. Different from
temporal action localization, TSG is substantially more chal-
lenging as it needs not only capture the complicated visual and
textual information, but also learn the complex multi-modal
interactions among them for modelling the target activity.
Traditional methods [16], [67] localize the target segment via
generating video segment proposals. They sample candidate
segments from a video first, and subsequently integrate query
with segment representations via a matrix operation. These
methods lack a comprehensively structure for effective multi-
modal features interaction. To further mine the cross-modal
interaction more effectively, some works [68]–[71] integrate
the sentence representation with those video segments in-
dividually, and then evaluated their matching relationships.
For instance, Xu et al. [68] introduce a multi-level model
to integrate visual and textual features earlier and further
re-generate queries as an auxiliary task. Chen et al. [17]
capture the evolving fine-grained frame-by-word interactions

between video and query to enhance the video representation
understanding. Other works [1], [4], [18], [72]–[74] propose to
directly integrate sentence information with fine-grained video
clip, and predict the temporal boundary of the target segment
by gradually merging the fusion feature sequence over time.

Different from these above methods based on segment
candidates, some works [2], [5], [24]–[28] directly leverage
the interaction between video and sentence to predict the
starting and ending frames. These works first interact video
clips and sentence query information to generate contextual
and fine-grained video representation, and then either regress
the start/end timestamps based on the video representation or
predict at each frame to determine whether this frame is a start
or end boundary. There are also some reinforcement learning
(RL) based frameworks [75], [76] proposed in the TSG task.

However, the above two types of methods are all based on
frame-level features to capture the semantic of video activities,
which is unable to capture the fine-grained discrepancy among
different frames with high similarity, especially the adjacent
frames near the segment boundary. Recently, some detection-
based methods [3], [29]–[31] have been proposed to capture
subtle and fine-grained object appearances in each frame,
which filters out the background contents and improves the
localization performance. However, these methods only extract
object features by detection models, thus failing to learn the
motion information of each object.

III. OUR APPROACH

In this section, we first introduce the problem statement
of temporal sentence grounding (TSG). Next, we present the
modules of our proposed MA3SRN model, including the video
and query encoders, three-stream reasoning branches (3D-
aware branch, appearance branch, and motion branch), motion-
appearance associating module, and grounding head, as shown
in Fig. 2.

A. Problem Statement

In the TSG task, we are provided with an untrimmed video
V = {vt}Tt=1 and a sentence query Q = {qn}Nn=1, where
vt denotes the t-th frame, T denotes the frame number, qn
denotes the n-th word and N denotes the word number. This
task aims to localize the precise start and end timestamps
of a specific segment in the video V , which refers to the
corresponding semantic of the query Q.

B. Overview

In this section, we propose a novel Motion- and
Appearance-guided 3D Semantic Reasoning Network
(MA3SRN), which incorporates optical-flow-guided motion-
aware, detection-based appearance-aware, and 3D-aware
object features to better reason the object relations for
accurately modelling the activity among consecutive frames.
As shown in Fig. 2, we first design three video encoders to
extract corresponding optical-flow-guided motion, detection-
based appearance, and more contextual spatial-temporal
3D-aware object features, respectively. Then, we develop
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Fig. 2. The overall pipeline of our proposed MA3SRN model. Firstly, we leverage three-stream video encoders to extract optical-flow-guided motion, detection-
based appearance, and 3D-aware object features, respectively. We also utilize the query encoder to embed the word- and sentence-level query features. Then,
we develop separate motion, appearance, and 3D-aware branches for specific cross-modal object reasoning. Finally, we associate motion-appearance contexts
and incorporate them into 3D-aware information to generate more representative features for better grounding.

separate motion, appearance and 3D-aware branches to learn
fine-grained action-oriented, appearance-aspect and 3D-aware
object relations. In each specific branch, after interacting
object-query features to filter out irrelevant object features,
we reason the relations between the foremost objects with
a spatio-temporal graph and represent frame-level features
by fusing its contained object features. Finally, we associate
the frame-level features from three branches, and integrate
the motion-appearance information into 3D-aware ones via
triple-modal transformers to generate more representative
features for the final accurate grounding.

C. Video and Query Encoders

1) Video encoder
Most previous works employ a general C3D network [39] to

extract 3D-aware features from each whole frame, which fails
to distinguish the visually similar background contents and
capture the subtle details of small objects. Although detection-
based models utilize Faster R-CNN [32] to extract appearance-
aware object features on a pre-trained image detection dataset,
they lack temporal modeling. Different from these models, we
generate both 3D-aware and appearance features to encode
more contextual information, and attempt to additionally ex-
tract optical-flow-guided motion-aware information to obtain
action-oriented features for temporal modeling. We also apply
the bounding boxes detected from Faster R-CNN on the above
three kinds of features to extract fine-grained object features
for filtering out the complicated backgrounds, leading to better
multi-modal representation learning.
Appearance feature encoding. For appearance features, we
first sample fixed T frames from the original untrimmed
video uniformly. Then, based on the Faster R-CNN model
built on a ResNet50 [41] backbone, we obtain K objects

from each frame. Thus, we obtain T × K objects in total
in a single video, and represent their appearance features as
V a
local = {oa

t,k, bt,k}
t=T,k=K
t=1,k=1 , where oa

t,k ∈ RD denotes the
local object-level appearance feature of the k-th object in t-th
frame, D is the feature dimension, and bt,k ∈ R4 represents
the corresponding bounding-box position. Considering that
the global feature of the whole frame also contains the non-
local information of its internal objects, we employ another
ResNet50 model with a linear layer to generate the global
frame-level appearance representation V a

global ∈ RT×D.
Motion feature encoding. For motion features, we first gen-
erate the optical flows among the frames in the entire video by
an energy minimisation framework [77], and then extract the
feature maps of each optical flow through a ResNet50 [41]
model. We apply RoIAlign [40] on such feature maps and
use object bounding-box locations bt,k to generate motion-
aware object features as V m

local = {om
t,k, bt,k}

t=T,k=K
t=1,k=1 . To

extract the global features V m
global ∈ RT×D of each optical

flow, we directly apply average pooling and linear projection
to the extracted feature maps of the ResNet50 model.
3D-aware feature encoding. For 3D-aware features, we first
extract the feature maps of each video clip using the last
convolutional layer in the C3D [39] network. Then, we
adopt RoIAlign [40] on these feature maps and use object
bounding-box locations bt,k to generate 3D-aware object fea-
tures V 3d

local = {o3d
t,k, bt,k}

t=T,k=K
t=1,k=1 . To extract the clip-level

global features V 3d
global ∈ RT×D, we directly apply average

pooling and linear projection to the extracted feature maps of
C3D.

For our TSG task, it is necessary to consider both spatial and
temporal locations of each object to reason object-wise rela-
tions for accurately modelling the target activity. Therefore, we
add a spatio-temporal position encoding to object-level local
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features in the above three representations as:

va
t,k = FC([oa

t,k; e
b; et]),

vm
t,k = FC([om

t,k; e
b; et]), (1)

v3d
t,k = FC([o3d

t,k; e
b; et]),

where eb = FC(bt,k) is utilized to encode the spatial po-
sition knowledge of each bounding-box, FC(·) is the fully
connected layer, and et is the temporal position knowledge
obtained by [27] based on the index of each frame. There-
fore, the position-aware local object features are denoted as
V̂ a
local = {va

t,k}
t=T,k=K
t=1,k=1 , V̂ m

local = {vm
t,k}

t=T,k=K
t=1,k=1 , V̂ 3d

local =

{v3d
t,k}

t=T,k=K
t=1,k=1 . Similarly, we add the temporal position en-

coding into three global representations as:

V̂ a
global = FC([V a

global; eT ]),

V̂ m
global = FC([V m

global; eT ]), (2)

V̂ 3d
global = FC([V 3d

global; eT ]).

Finally, we expand the dimension of the above three global
features from T × D to (T × K) × D, and concatenate the
local object-level features with corresponding global features
to reflect the context in objects as:

F a = FC([V̂ a
local; V̂

a
global]),

Fm = FC([V̂ m
local; V̂

m
global]), (3)

F 3d = FC([V̂ 3d
local; V̂

3d
global]),

where F a = {fa
t,k}

t=T,k=K
t=1,k=1 ∈ R(T×K)×D,Fm =

{fm
t,k}

t=T,k=K
t=1,k=1 ∈ R(T×K)×D,F 3d = {f3d

t,k}
t=T,k=K
t=1,k=1 ∈

R(T×K)×D denote the final encoded object-level features.
2) Query encoder
Following previous works [16], [20], [78], we first employ

the Glove model [79] to embed each word of the given
sentence query into a dense vector. Then, we use multi-head
self-attention [80] and Bi-GRU [81] modules to encode its
sequential information. We denote the final word-level features
as Q = {qn}Nn=1 ∈ RN×D. By concatenating the outputs of
the last hidden unit in Bi-GRU with a further linear projection,
we can obtain the sentence-level feature as qglobal ∈ RD.

D. Cross-modal Object Reasoning

After extracting the appearance-aware, motion-aware and
3D-aware object representations, it is necessary to capture
the relations between appearance-aware objects for inferring
the spatial semantic, learn the relations between motion-aware
objects for modeling the temporal semantic. Therefore, we
develop three separate branches to reason the appearance-
guided, motion-guided, and 3D-aware object relations with
cross-modal interaction. Specifically, in each branch, we first
interact object features with the query to enhance their seman-
tic for distinguishing the query-relevant and query-irrelevant
objects, and then reason the foremost object relations in spatial
temporal spaces within a spatio-temporal graph. A query-
guided attention module is further developed to fuse the object
information within each frame to represent the frame-level
features of current branch.

Cross-modal interaction. Learning correlations between vi-
sual features and query information is important for query-
based video grounding, which helps to highlight the relevant
object features corresponding to the query while weakening
the irrelevant ones. In details, for the k-th object in the t-th
frame in the appearance branch, we employ a multi-modal
interaction module that selectively injects textual evidences
into its features. We first utilize an attention mechanism to
aggregate the word-level query features {qn}Nn=1 for each
object fa

t,k as:

Ma
t,k,n = w>tanh(W a

1 f
a
t,k +W a

2 qn + ba1), (4)

(fa
t,k)
′ =

N∑
n=1

softmax(Ma
t,k,n)qn, (5)

where W a
1 and W a

2 are projection matrices, ba1 is the bias
vector and the w> is the row vector as in [18]. (fa

t,k)
′ is

the object-aware textual features for the k-th object in t-th
clip. Next, we build the textual gate that takes such textual
information as the guidance to weaken the query-irrelevant
objects while highlight the query-relevant ones. The query-
enhanced object features f̂a

t,k can be obtained by:

f̂a
t,k = σ(W a

3 (f
a
t,k)
′ + ba2)� fa

t,k, (6)

where σ is the sigmoid function, � represents element-
wise product, W a

3 , b
a
2 are learnable parameters. F̂ a =

{f̂a
t,k}

t=T,k=K
t=1,k=1 ∈ R(T×K)×D, and the enhanced object fea-

tures F̂m and F̂ 3d of motion and 3D-aware branches can be
obtained in the same way.
Spatio-temporal graph reasoning. Considering that the
query-relevant objects have both spatial interactivity and tem-
poral continuity within the video, as shown in Fig. 2, we
construct a reasoning graph network over all objects to capture
their spatio-temporal relations in each branch, respectively.
Specifically, for appearance branch, we define object-wise
features F̂ a = {f̂a

t,k}
t=T,k=K
t=1,k=1 including all objects in all

frames as nodes and build a fully-connected appearance graph
on them. We adopt graph convolution network (GCN) [82]
with leanrable adjacent matrix to learn the spatio-temporal
object-relation features via message propagation. In details, we
first measure the pairwise affinity between all object features
by:

Aa = softmax((F̂ aW a
4 )(F̂

aW a
5 )
>), (7)

where Wm
4 ,Wm

5 are learnable parameters. Am ∈
R(T×K)×(T×K) is the adjacent matrix obtained by calculating
the affinity edge of each pair of objects. Two objects with
strong semantic relationships will be highly correlated and
have an edge with high affinity score in Aa. In contrast,
two objects with weak semantic relationships will be weakly
correlated and have an edge with low affinity score in Aa.
After obtaining Aa, we apply one single-layer GCN with
residual connections to perform spatio-temporal object seman-
tic reasoning as:

F̃ a = (AaF̂ aW a
6 )W

a
7 + F̂ a, (8)

where W a
6 is the weight matrix of the GCN layer, W a

7 is
the weight matrix of residual structure. The output F̃ a =
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Fig. 3. Illustration of the motion-appearance associating module.

{f̃a
t,k}

t=T,k=K
t=1,k=1 ∈ R(T×K)×D is the updated features for

appearance-aware objects. The updated feature F̃m and F̃ 3d

for motion-aware and 3D-aware objects can be obtained in the
same way.
Object feature fusion. After obtaining the updated object
features, we aim to integrate the object features within each
frame to represent more fine-grained frame-level information
under the guidance of query information. To this end, we first
compute the cosine similarity between each appearance-aware
object feature f̃a

t,k in frame t and the sentence-level query
feature qglobal as :

cat,k =
(f̃a

t,k)(qglobalWq)
>

||f̃a
t,k||2||qglobalWq||2

, (9)

where Wq is the projection matrix, cat,k indicates the relational
score between each visual object and the given query. Then,
we fuse the object features within each frame t to represent
current query-specific frame-level feature as:

ha
t =

K∑
k=1

softmax(cat,k)f̃
a
t,k. (10)

The final query-specific frame-level features in appearance,
motion and 3D-aware branches can be denoted as Ha =
{ha

t }Tt=1 ∈ RT×D,Hm = {hm
t }Tt=1 ∈ RT×D,H3d =

{h3d
t }Tt=1 ∈ RT×D, respectively.

E. Associating Motion and Appearance

After generating appearance-aware, motion-aware and 3D-
aware frame-level features Ha, Hm, and H3d, we develop
a motion-appearance associating module to associate their
features and decide which features are most discriminative for
final grounding. Module details are shown in Fig. 3.
Appearance- and motion-guided 3D-aware feature en-
hancement. Considering the 3D-aware feature contains im-
plicit spatial appearance and temporal motion information, we
abstract the spatial-temporal contexts from the appearance and
motion features, and integrate them into the 3D-aware features
for generating 3D-aware enhanced features (details are shown
in the first stream of Fig. 3). To incorporate the appearance
and motion contexts into the 3D-aware features, we develop an
attention-based mechanism to aggregate the relevant contexts

for enhancing the 3D-aware features. Inspired by transformer
architecture that contains multi-head self-attention blocks for
multi-inputs correlating and updating, we design a triple-modal
transformer, called TriTRM, to take three kinds of features
(Ha, Hm, and H3d) as input and incorporate two of them
into the other one.

Generally, the transformer contains individual query (Q),
key (K), and value (V ) matrices. The keys/values in our
TriTRM are defined as the concatenation matrices from two
modalities, the query is the matrix from the other one modality,
and we fed all of them as input to the multi-head attention
block to learn the triple-modal correlating and updating. As
a result, the TriTRM block generates attention features to
the current modality conditioned on the other two modalities.
Typically, we define our TriTRM as follows:

TriTRM(Q,K,V ) = FFN(σ(
QKT

√
d

V )), (11)

where σ denotes the softmax function, d is the feature di-
mension of the multi-head block, and FFN denotes the feed
forward network. By using such TriTRM function in our
associating module, we can leverage two of the modalities
as a guide to enhance the remaining one modality.

Therefore, for the associating process in the first stream
in Fig. 3, we leverage the TriTRM function to obtain the
enhanced 3D-aware features as follows:

Ĥ3d = TriTRM(Q3d,K(A,M),V(A,M)), (12)

where Ĥ3d denotes the enhanced 3D-aware features.
K(A,M),V(A,M) are the concatenated matrix from appearance
and motion features Ha,Hm with further linear projections.
In this soft and learnable way, contexts appeared in appearance
feature and motion feature are aggregated into the 3D-aware
feature space.
3D- and motion-guided appearance enhancement. Com-
pared with the 3D-aware feature H3d and motion feature Hm,
the appearance feature Ha contains more on the appearance
details and spatial location clues of a certain object. Similar to
enhanced 3D-aware feature Ĥ3d, we also employ the TriTRM
module to attend 3D-aware and motion-aware object features
into appearance space for inferring appearance contexts and
integrate them with the appearance features Ha as:

Ĥa = TriTRM(QA,K(3d,M),V(3d,M)), (13)

where Ĥa is the enhanced appearance feature.
K(3d,M),V(3d,M) are the concatenated contexts from
3D-aware and motion features H3d,Hm with further linear
projections.
3D- and appearance-guided motion enhancement. Also, we
can use the TriTRM module to obtain the enhanced motion
feature as follows:

Ĥm = TriTRM(QM ,K(3d,A),V(3d,A)), (14)

where Ĥm is the enhanced motion feature.
Query-guided motion-appearance fusion. To determine
which information is most discriminative among appearance,
motion, and 3D-aware features Ĥa, Ĥm, Ĥ3d corresponding
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to the query, we integrate them under the guidance of sentence-
level query features through the following attention-based
weighted summation:

H̃ = softmax(Ĥ3d(qglobal)
>)� Ĥ3d

+ softmax(Ĥa(qglobal)
>)� Ĥa

+ softmax(Ĥm(qglobal)
>)� Ĥm,

(15)

where H̃ = {h̃t}Tt=1 ∈ RT×D is the integrated frame-level
features to be fed into the latter grounding head.

F. Grounding Head

At last, we apply grounding heads on the feature H̃ to
predict the target segment semantically corresponding to the
query information. There are many grounding heads proposed
in recent years: proposal-ranking based grounding head [18],
[20], [71], [78] and the boundary-regression grounding head
[25]–[27]. In this paper, we follow the former one [18], [20],
[74] to determine the target video segment with pre-defined
segment proposals. Specifically, we first define multiple seg-
ment proposals with different sizes on each frame t, and
adopt multiple 1d convolutional layers to process frame-wise
features h̃t to produce the confidence scores and temporal
offsets of these segment proposals. The scoring process is
shown in Fig. 4. Supposing there are R proposals within
the entire video, for each segment proposal whose start and
end timestamp is (τs, τe), we denote its confidence score and
boundary offsets as o and (δs, δe), where s, e means the start
and end. Thus, the predicted segments of each proposal can
be presented as (τs+δs, τe+δe). During training, we compute
the Intersection over Union (IoU) score ogt between each pre-
defined segment proposal and the ground truth, and utilize it
to supervise the confidence score as:

Liou = − 1

R

∑
ogtlog(o) + (1− ogt)log(1− o). (16)

As the boundaries of pre-defined segment proposals are rel-
atively coarse, we only fine-tune the localization offsets of
positive segments by a boundary loss. In details, if the confi-
dence score o of each proposal is larger than a threshold value
λ, we define this proposal is a positive sample. We promote
localizing precise start and end points by the boundary loss as
follows:

Lboundary =
1

Rpos

∑
L1(δs − δgts ) + L1(δe − δgte ), (17)

where Rpos is the number of positive samples, L1 denotes
the smooth L1 function. The overall loss function can be
formulated as:

L = Liou + αLboundary, (18)

where parameter α is utilized to control the balance.

IV. EXPERIMENTS

A. Datasets and Evaluation Metric

We conduct experiments on three challenging benchmark
datasets: ActivityNet Caption [43], Charades-STA [16], and
TACoS [83], summarized in Table I.

......

Fused Feature

Confidence Score

Confidence Score

Confidence Score

...
0.29 0.62

0.34 0.57

...0.23 0.61

...

Conv1d
...1 T

Conv1d

Conv1d

..
.

..
.

...1 T

...1 T

Video Sequence

Candidate Segment

Fig. 4. Illustration of the proposal-ranking based grounding heads.

ActivityNet Caption. Activity Caption [43] contains 20000
untrimmed videos with 100000 descriptions from YouTube
[84]. The videos are 2 minutes on average, and these annotated
video clips have much larger variation, ranging from several
seconds to over 3 minutes. Since the test split is withheld for
competition, following public split [16], we use 37421, 17505,
and 17031 sentence-video pairs for training, validation, and
testing respectively.
Charades-STA. Charades-STA is a benchmark dataset for
the video grounding task, which is built upon the Charades
[85] dataset. It is collected for video action recognition and
video captioning, and contains 6672 videos and involves 16128
video-query pairs. Following previous work [16], we utilize
12408 video-query pairs for training and 3720 pairs for testing.
TACoS. TACoS is collected by [83] for video grounding and
dense video captioning tasks. It consists of 127 videos on
cooking activities with an average length of 4.79 minutes. In
video grounding task, it contains 18818 video-query pairs. For
fair comparisons, we follow the same split of the dataset as
[16], which has 10146, 4589, and 4083 video-query pairs for
training, validation, and testing respectively.
Evaluation metric. We adopt “R@n, IoU=m” proposed by
[50] as the evaluation metric, which calculates the IoU be-
tween the top-n retrieved video segments and the ground
truth. It denotes the percentage of language queries having at
least one segment whose IoU with ground truth is larger than
m. In our experiments, we use n ∈ {1, 5} for all datasets,
m ∈ {0.5, 0.7} for ActivityNet Caption and Charades-STA,
m ∈ {0.3, 0.5} for TACoS.

B. Implementation Details

For appearance-aware object features, we sample the frames
in 8-frame step to avoid information redundancy. We utilize
ResNet50 [41] based Faster R-CNN [32] model pretrained
on Visual Genome dataset [86] to obtain appearance-aware
object features, and extract its global feature from another
ResNet50 pretrained on ImageNet. The number K of extracted
objects is set to 20. For motion-aware object features, we
compute the optical flows among the video frames by an
energy minimisation framework [77], and extract its global
features from another pretrained ResNet50 model. We apply
RoIAlign [40] on them to generate object features. For 3D-
aware object features, we define continuous 16 frames as a



8

TABLE I
SUMMARIES OF ACTIVITYNET CAPTION, CHARADES-STA AND TACOS DATASETS, INCLUDING DATA DOMAIN, NUMBER OF

TRAINING/VALIDATION/TESTING SAMPLES, AVERAGE VIDEO DURATION, AVERAGE TARGET MOMENT DURATION AND AVERAGE QUERY LENGTH.

Dataset Domain Training Set Validation Set Testing Set Video Time Moment Time Query Length
ActivityNet Caption [43] Open 37421 17505 17031 117.61s 36.18s 14.78

Charades-STA [16] Indoor 12408 - 3720 30.59s 8.22s 7.22
TACoS [83] Cooking 10146 4589 4083 287.14 5.45 10.05

TABLE II
OVERALL PERFORMANCE COMPARISON AMONG OUR METHOD WITH THE

PROPOSAL-BASED AND PROPOSAL-FREE METHODS ON THE ACTIVITYNET
CAPTION DATASET UNDER THE OFFICIAL TRAIN/TEST SPLITS.

Method
ActivityNet Caption

Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL C3D 29.01 10.34 59.17 37.54
ACRN C3D 31.67 11.25 60.34 38.57
QSPN C3D 33.26 13.43 62.39 40.78
SCDM C3D 36.75 19.86 64.99 41.53
BPNet C3D 42.07 24.69 - -
CMIN C3D 43.40 23.88 67.95 50.73

2DTAN VGG 44.51 26.54 77.13 61.96
DRN C3D 45.45 24.36 77.97 50.30
FIAN C3D 47.90 29.81 77.64 59.66
CBLN C3D 48.12 27.60 79.32 63.41
CBP C3D 35.76 17.80 65.89 46.20
GDP C3D 39.27 - - -
LGI C3D 41.51 23.07 - -

VSLNet C3D 43.22 26.16 - -
IVG-DCL C3D 43.84 27.10 - -

Ours C3D+Object 51.97 31.39 84.05 68.11
I3D+Object 53.72 32.30 85.45 69.48

clip and each clip overlaps 8 frames with adjacent clips. We
first extract clip-wise features from a pretrained C3D [39] or
I3D [87] model, and then apply RoIAlign on them to generate
object features. Since some videos are overlong, we uniformly
downsample frame- and clip-feature sequences to T = 256.
As for sentence encoding, we utilize Glove [79] to embed each
word to 300 dimension features. The head size of multi-head
self-attention is set to 8, and the hidden dimension of Bi-GRU
is set to 512. The dimension D is set to 1024, and the balance
hyper-parameter α is set to 0.005. For segment proposals in
grounding head, we have 800 samples for each video on
both Charades-STA and TACoS datasets and 1400 samples
for each video on ActivityNet Caption dataset, and set the
positive threshold as λ = 0.55. We train the whole model for
100 epochs with batch size of 16 and early stopping strategy.
Parameter optimization is performed by Adam optimizer with
leaning rate 4× 10−4 for ActivityNet Caption and Charades-
STA and 3 × 10−4 for TACoS, and linear decay of learning
rate and gradient clipping of 1.0.

C. Comparison with State-of-the-Arts

Compared methods. We compare the proposed MA3SRN
with state-of-the-art TSG methods on three datasets. These
methods are grouped into three categories by the viewpoints of
proposal-based, proposal-free and detection-based approach:
(1) Proposal-based approach: CTRL [16], ACRN [67], QSPN
[68], SCDM [74], BPNet [88], CMIN [18], 2DTAN [21], DRN

TABLE III
OVERALL PERFORMANCE COMPARISON AMONG OUR METHOD WITH THE

PROPOSAL-BASED AND PROPOSAL-FREE METHODS ON THE
CHARADES-STA DATASET UNDER THE OFFICIAL TRAIN/TEST SPLITS.

Method
Charades-STA

Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL C3D 23.63 8.89 58.92 29.57
ACRN C3D 20.26 7.64 71.99 27.79
QSPN C3D 35.60 15.80 79.40 45.50
SCDM I3D 54.44 33.43 74.43 58.08
BPNet I3D 50.75 31.64 - -

2DTAN VGG 39.81 23.25 79.33 51.15
DRN I3D 53.09 31.75 89.06 60.05
FIAN I3D 58.55 37.72 87.80 63.52
CBLN I3D 61.13 38.22 90.33 61.69
CBP C3D 36.80 18.87 70.94 50.19
GDP C3D 39.47 18.49 - -

VSLNet I3D 47.31 30.19 - -
IVG-DCL I3D 50.24 32.88 - -

ACRM I3D 57.53 38.33 - -

Ours C3D+Object 67.23 45.63 95.14 73.86
I3D+Object 68.98 47.79 96.82 75.41

[89], FIAN [90], CBLN [78]; (2) Proposal-free approach:
CBP [72], GDP [25], LGI [27], VSLNet [28], IVG-DCL [91],
ACRM [2]; (3) Detection-based approach: MMRG [29].
Comparison on ActivityNey Caption. As shown in Table II,
we compare our MA3SRN with the state-of-the-art proposal-
based and proposal-free methods on ActivityNet Caption
dataset, where we achieve a new state-of-the-art performance
in terms of all metrics. Particularly, the proposed C3D+Object
variant outperforms the best proposal-based method CBLN
with 3.85%, 3.79%, 4.73% and 4.70% improvements on the all
metrics, respectively. The C3D+Object variant also makes an
even larger improvement over the best proposal-free method
IVG-DCL in metrics R@1, IoU=0.5 and R@1, IoU=0.5 by
8.13% and 4.29%. It verifies the benefits of utilizing detection
model to capture the detailed local contexts and filter out
the redundant background contents among the entire video.
When using more representative I3D features, our I3D+Object
variant also beats all the other methods and brings the improve-
ment of the C3D+Object variant by 1.75%, 1.91%, 1.10%, and
1.39% over all metrics, respectively.
Comparison on Charades-STA. We also compare MA3SRN
with the state-of-the-art proposal-based and proposal-free
methods on the Charades-STA dataset in Table III, where
we reach the highest results over all evaluation metrics.
Particularly, our C3D+Object variant outperforms the best
proposal-based method CBLN by 7.41% and 12.17% absolute
improvement in terms of R@1, IoU=0.7 and R@5, IoU=0.7,
respectively. Compared to the proposal-free method ACRM,
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TABLE IV
OVERALL PERFORMANCE COMPARISON AMONG OUR METHOD WITH THE

PROPOSAL-BASED AND PROPOSAL-FREE METHODS ON THE TACOS
DATASET UNDER THE OFFICIAL TRAIN/TEST SPLITS.

Method
TACoS

Feature R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL C3D 18.32 13.30 36.69 25.42
ACRN C3D 19.52 14.62 34.97 24.88
QSPN C3D 20.15 15.32 36.72 25.30
SCDM C3D 26.11 21.17 40.16 32.18
BPNet C3D 25.96 20.96 - -
CMIN C3D 24.64 18.05 38.46 27.02

2DTAN C3D 37.29 25.32 57.81 45.03
DRN C3D - 23.17 - 33.36
FIAN C3D 33.87 28.58 47.76 39.16
CBLN C3D 38.98 27.65 59.96 46.24
CBP C3D 27.31 24.79 43.64 37.40
GDP C3D 24.14 - - -

VSLNet C3D 29.61 24.27 - -
IVG-DCL C3D 38.84 29.07 - -

ACRM I3D 38.79 26.94 - -

Ours C3D+Object 47.88 37.65 66.02 54.27
I3D+Object 49.41 39.11 67.26 55.90

the C3D+Object model outperforms it by 9.70% and 7.30%
in terms of R@1, IoU=0.5 and R@1, IoU=0.7, respectively.
To make a fair comparison with the existing detection-based
method MMRG, as shown in Table V, we follow the same
data splits for training/testing. It shows that our C3D+Object
variant outperforms MMRG in all metrics by a large margin.
The good performance of our model is attributed to the ad-
ditional temporal modeling of the optical-flow-guided motion
learning beside the detection model. We further utilize the I3D
to present a new I3D+Object variant, which performs better
than C3D+Object since I3D can obtain stronger features.
Comparison on TACoS. Table IV and Table V also report the
comparison of grounding results on TACoS dataset. Compared
to the proposal-based method CBLN, our C3D+Object model
outperforms it by 8.90%, 10.00%, 6.06%, and 8.03% in terms
of all metrics, respectively. Our model also outperforms the
proposal-free method ACRM by 9.09% and 10.71% in terms
of R@1, IoU=0.3 and R@1, IoU=0.5, respectively. Com-
pared to the detection-based method MMRG, our C3D+Object
model brings the improvements of 5.92%, 5.13%, 5.31% and
5.94% in all metrics, respectively. The I3D+Object variant
further achieves better results.

D. Efficiency Comparison

We further evaluate the efficiency of our MA3SRN, by
fairly comparing its running speed and parameter size with
existing methods on TACoS dataset. Particularly, since the
detection process is implemented offline, we only compute
inference speed of our grounding model. As shown in Fig. 5,
the “speed (s/sample)” denotes the average time to localize
one sentence in a given video, “model size (MB)” denotes
the size of parameters. It can be observed that we achieve the
state-of-the-art grounding performance (R@1, IoU=0.5) with
much faster processing speeds and similar parameters sizes.
This attributes to: (1) Since CTRL and ACRN need to sample
candidate segments with various sliding windows, they need

TABLE V
COMPARISON WITH DETECTION-BASED METHOD MMRG ON

CHARADES-STA AND TACOS DATASETS UNDER MMRG’S TRAIN/TEST
SPLITS. WE DO NOT COMPARE WITH [30], [31] SINCE THEY ADDRESS

DIFFERENT TASKS AND DATASETS AND ARE CLOSE SOURCE.

Charades-STA

Method Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MMRG Object 44.25 - 60.22 -

Ours C3D+Object 49.88 36.09 67.45 43.27
I3D+Object 51.04 37.28 68.97 45.16

TACoS

Method Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MMRG Object 57.83 39.28 78.38 56.34

Ours C3D+Object 63.75 44.41 83.69 62.28
I3D+Object 65.42 46.10 86.18 63.66
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Fig. 5. Comparisons on speed (the average time to localize one sentence in
a given video) and model size with other baselines on TACoS dataset.

a quite time-consuming matching procedure. (2) 2DTAN and
DRN adopt much convolutional layers to achieve multi-step
feature fusion, which contains a large number of parameters
and are cost time. (3) CBLN utilizes multiple global and local
windows to extract different level contexts among the entire
video, thus needs more parameters. (4) Our MA3SRN is free
from above complex and time-consuming operations, showing
superiority in both effectiveness and efficiency. Besides, our
model size is similar to CBLN.

E. Ablation Study

In this section, we will perform in-depth ablation studies to
examine the effectiveness of each component in our MA3SRN
on Charades-STA dataset. Since most previous works utilize
C3D to extract features in this task and our C3D+object variant
already achieves the state-of-the-art performance, to neglect
the impact of strong feature extractor I3D, we only utilize the
C3D+Object variant as our backbone here.
Main ablation studies. We first conduct an main ablation
studies to examine the effectiveness of all the modules in
our model, including different feature encoders (3D-aware,
appearance, motion), different reasoning branches (3D-aware,
appearance, motion), and the motion-appearance associating
module. The corresponding results of the ablation study are
reported in Table VI. Model ¬ and model ® are the baseline
models, where we only utilize a general C3D model and a
ResNet50 based Faster-RCNN for 3D-aware and appearance-
aware object feature extraction, respectively. We do not con-
sider motion-aware baseline since it lacks appearance seman-
tics for activity modelling. Instead of building corresponding
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TABLE VI
MAIN ABLATION STUDY OF THE PROPOSED MA3SRN UNDER THE OFFICIAL TRAIN/TEST SPLITS ON CHARADES-STA DATASET. IT INVESTIGATES

THREE-STREAM FEATURE ENCODERS, THREE-STREAM REASONING BRANCHES, AND THE MOTION-APPEARANCE ASSOCIATING MODULE.

Model Feature Encoding Reasoning Branches Associating R@1, R@1, R@5, R@5,
3D-aware Appearance Motion 3D-aware Appearance Motion Module IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

¬ X × × × × × × 59.79 36.36 86.68 64.57
­ X × × X × × × 61.45 38.96 89.74 67.29
® × X × × × × × 57.84 34.76 85.27 63.09
¯ × X × × X × × 60.28 37.20 88.44 65.97
° X X × X X × × 62.85 40.85 91.56 69.19
± X X × X X × X 64.47 43.09 93.16 71.55
² X × X X × X × 62.71 40.47 90.96 68.62
³ X × X X × X X 64.22 42.60 92.37 70.40
´ × X X × X X × 61.92 38.66 89.59 67.44
µ × X X × X X X 63.33 41.54 91.76 68.48

Full X X X X X X X 67.23 45.63 95.14 73.86

TABLE VII
ABLATION STUDY ON THE VIDEO AND QUERY ENCODERS ON

CHARADES-STA DATASET.

Module Changes R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Video
Encoder

w/ global feature 67.23 45.63 95.14 73.86
w/o global feature 65.08 43.41 92.77 71.09

w/ position encoding 67.23 45.63 95.14 73.86
w/o position encoding 63.68 42.44 92.30 70.72

Query
Encoder

w/ self-attention 67.23 45.63 95.14 73.86
w/o self-attention 65.43 43.96 93.17 71.55

w/ Bi-GRU 67.23 45.63 95.14 73.86
w/o Bi-GRU 65.61 44.20 93.42 71.92

reasoning branch in model ¬ and ®, we directly employ
a general co-attention [92] module to interact object-level
cross-modal information and simply concatenate query-object
features for semantic enhancement. We also utilize another
co-attention module to capture object-relations, and a mean-
pooling layer to fuse object features to represent the frame-
level features. We utilize the same grounding head in all
ablation variants. From the Table VI, we can summary the
following conclusions: (1) It is worth noticing that the baseline
models ¬ and ® achieves better performance than almost all
existing methods in Table III, demonstrating that the detection-
based method is more effective in distinguishing the frames
with high similarity. That means that our object-level features
are able to filter out redundant background information in
frame-level features of previous works, thus leading to fine-
grained activity understanding and more precise grounding.
Besides, the baseline model ¬ performs better than the base-
line model ®, as the C3D features capture both potential
spatial appearance and temporal motion information and are
more contextual than the detection-based appearance ones. (2)
By adding the reasoning branches to the baseline models ¬
and ®, models ­ and ¯ boost a lot since the corresponding
reasoning branches help to highlight the query-relevant objects
while weaken the irrelevant ones. Besides, the reasoning
branches also provide a graph network for more fine-grained
object correlating, leading to better activity modelling. (3)
By joint learning two kinds of video features (3D-aware and
appearance, 3D-aware and motion, appearance and motion)
in models °, ², ´, the grounding performance improves a
lot. This is because the motion, appearance, and 3D-aware

features are complementary to each other. Once the action-
oriented motion contexts are incorporated into appearance-
based/3D-aware features or the appearance-aware contexts are
incorporated into motion-based/3D-aware features, the model
can generate more contextual and representative features for
final grounding. Besides, the motion-appearance association
module further brings large improvement in models ±, ³, µ,
which proves the effectiveness of incorporating appearance,
motion and 3D-aware features for bi-directional enhancement.
(4) Joint learning all three kinds of video features (3D-
aware, appearance and motion) achieves the best results, the
performance boost is larger than using only two of them,
demonstrating that the motion, appearance, and 3D-aware
features are complementary to each other.

Analysis on the multi-modal encoders. As shown in Table
VII, We conduct the investigation on different variants of
multi-modal encoders. For video encoding, we find that the
full model performs worse (degenerate 2.15%, 2.22%, 2.37%
and 2.77% in all metrics) if we remove the global feature
in three branches. It demonstrates that the global feature
helps to better explore the non-local object information among
the objects in the same frame. Besides, it also presents the
effectiveness of the position encoding in identifying spatial-
temporal knowledge and improving the accuracy of 3.55%,
3.19%, 2.84% and 3.14%. For query encoding, the self-
attention module is a kind of transformer encoder that captures
the intra-modality contexts. As shown in Table VII, it brings
the improvement of 1.80%, 1.67%, 1.97% and 2.31% in all
metrics. Moreover, the Bi-GRU module also helps to learn the
sequential information among the word sequences, and brings
additional performance (1.62%, 1.43%, 1.72% and 1.94%) to
the full model.

Analysis on the reasoning branches. We also conduct ab-
lation study within the reasoning branches as shown in Table
VIII. For object-level cross-modal interaction, our designed
attention based query-object interaction mechanism outper-
forms the mechanism of directly concatenating query-object
features by 1.32%, 1.41%, 1.53% and 1.48%. It indicates
that the simple concatenation operation fails to capture the
fine-grained multi-modal semantics for latter reasoning. For
spatio-temporal graph network, replacing the graph model
with simple co-attention model will reduce the performance of
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TABLE VIII
ABLATION STUDY ON THE REASONING BRANCHES ON THE

CHARADES-STA DATASET.

Module Changes R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Cross-modal
Interaction

w/ attention 67.23 45.63 95.14 73.86
w/ concatenation 65.91 44.22 93.61 72.38

Graph
Network

w/ graph 67.23 45.63 95.14 73.86
w/o graph 65.48 44.06 93.27 72.15

layer=1 67.23 45.63 95.14 73.86
layer=2 66.98 45.44 94.90 73.62

Object-feature
Fusion

w/ attention 67.23 45.63 95.14 73.86
w/ pooling 65.86 44.29 94.01 72.35

TABLE IX
ABLATION STUDY ON THE MOTION-APPEARANCE ASSOCIATING MODULE

ON CHARADES-STA DATASET.

3D-aware Appearance Motion R@1, R@5,
Appearance Motion 3D-aware motion 3D-aware Appearance IoU=0.7 IoU=0.7

× × × × × × 42.19 70.74
X × × × × × 43.56 72.13
× X × × × × 43.04 71.83
X X × × × × 43.98 72.55
X X X X × × 45.01 73.47
X X X X X X 45.63 73.86

1.75%, 1.57%, 1,87% and 1,71%, since the co-attention mod-
ule lacks temporal modeling while the spatio-temporal graph
enables better object correlation learning. We also investigate
the impact of different graph layer. Table VIII shows that our
model achieves the best result when the number of graph layer
is set to 1. More graph layers will result in over-smoothing
problem [93], leading to relatively lower performance that the
best one. For frame-level object-feature fusion, we find that the
attention based fusion mechanism performs better than directly
mean-pooling all objects features within the same frame, and
outperforms the latter by 1.37%, 1.34%, 1.13% and 1.51%. It
demonstrates that our attention based fusion mechanism helps
to filter out the redundant object information and aggregates
the most representative ones for final grounding.
Analysis on the associating module. As shown in Table
IX, we further implement ablation study on the proposed
motion-appearance associating module. We define the base-
line as we directly concatenate the 3D-aware, appearance
and motion features without associating them. The baseline
model achieves 42.19% and 70.74% in strict metrics R@1,
IoU=0.7 and R@5, IoU=0.7, respectively. By equipping the
3D-ware features with only appearance information, there is
a 1.37% and 1.39% point gain compared to the baseline.
This is because the appearance-aware objects contribute to the
locate the temporal objects in 3D features for modelling its
motion. By equipping the 3D-ware features with only motion
information, there is a 0.85% and 1.09% point gain compared
to the baseline. This is because the abstracted object awareness
from motion features share representative object contexts to
3D-aware features for enhancing. By equipping the 3D-ware
features with both appearance and motion information, the
model achieves better performance (43.98% and 72.55%).
Beside, equipping the appearance features with the 3D-aware
and motion information and equipping the motion features
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Fig. 6. Ablation study on the positive thredshold λ and the object number
K in each frame on the Charades-STA dataset.

with the 3D-aware and appearance information also contribute
to generating more representative features for final grounding.
Analysis on the hyperparameters. As shown in Fig. 6,
we investigate the impact of two hyperparameters: positive
threshold λ and the object number K. We could observe
that, with the increase of λ, the variation of the performance
follows a general trend, i.e., rises at first and then starts
to decline. This is because smaller λ will guide the model
take the negative segment proposals as the false positive one
during grounding. In addition, larger λ will decrease some
true positive segment proposals and make the grounding much
stricter, leading to worse performance. The optimal value of
λ is 0.55, where all the variants obtain the best performance.
Besides, for the object number K in each frame, the detection
model will generate lots of overlapping bboxes. However, we
can control both detection confidence score and non-maximum
suppression threshold to reduce the number of overlapped
bboxes and retain one or few bboxes for each object. Since
video contents are complex, we implement different number
K in Fig. 6. With larger K, the model performs better. The
variant with K = 30 achieves the best result but only performs
marginally better than K = 20 at the expense of a significantly
larger cost of GPU memory. Thus, we choose K = 20 in our
all experiments.

F. Visualization

To investigate the exact grounding results of our proposed
methods, we provide several qualitative examples of our model
and two baselines (DRN and CBLN) in Fig. 7. Here, we only
show a fixed number of bounding boxes, and color the best
matching ones according to the attentive weights. Since the
DRN and CBLN rely on the frame-level video features that
encode the whole frames, they fail to capture the subtle object
details described by the sentence and filter out the complicated
background visual content. Therefore, the baselines perform
worse in the visualization examples. Different from them,
our model learns motion-, appearance- and 3D-aware objects
contexts that easily captures the appearance differences among
visually similar frames, thus capture more fine-grained con-
texts among the video for better modelling the target activity
and providing more accurate grounding results.

V. CONCLUSION

In this paper, we proposed a novel Motion- and Appearance-
guided 3D Semantic Reasoning Network (MA3SRN) for
temporal sentence grounding, which incorporates optical-flow-
guided motion-aware, detection-based appearance-aware, and
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Query: Person takes a glass from somewhere.

Video:

GT: 24.9s 33.0sGT: 24.9s 33.0s

DRN: 20.3s 39.8s

21.5s 36.2s

Query: The person goes back to the washing machine and puts clothes in a bag.

Video:

GT: 39.4s 45.6sGT: 39.4s 45.6s

DRN: 40.7s 52.1s

40.1s 47.9s

Query: Person goes back to close the door.

Video:

GT: 12.9s 19.7sGT: 12.9s 19.7s

DRN: 10.5s 24.3s

11.8s 20.9s

Query: A person sitting on the bed opens a book.

Video:

GT: 2.2s 9.6sGT: 2.2s 9.6s

DRN: 0.9s 11.3s

Ours: 2.2s 9.7s

2.0s 10.2sCBLN:

Ours: 24.4s 33.5s

CBLN:

Ours: 39.2s 46.3s

CBLN:

Ours: 12.4s 19.7s

CBLN:

Fig. 7. The qualitative results of the predicted segments of different models on the Charades-STA dataset. All the grounding examples are the R@1 results.

3D-aware object features for better reasoning spatio-temporal
semantic relations between objects. Through the developed
3D-aware appearance and motion branches, our MA3SRN
manages to mine 3D-aware, appearance and motion clues
which match the semantic of query, and then we devise
an associating module to integrate the motion-appearance
information for final grounding. Experimental results on three
challenging datasets (ActivityNet Caption, Charades-STA and
TACoS) validate the effectiveness of our proposed MA3SRN.
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