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Abstract—Recent years have witnessed the great success of
blind image quality assessment (BIQA) in various task-specific
scenarios, which present invariable distortion types and evalua-
tion criteria. However, due to the rigid structure and learning
framework, they cannot apply to the cross-task BIQA scenario,
where the distortion types and evaluation criteria keep chang-
ing in practical applications. This paper proposes a scalable
incremental learning framework (SILF) that could sequentially
conduct BIQA across multiple evaluation tasks with limited
memory capacity. More specifically, we develop a dynamic
parameter isolation strategy to sequentially update the task-
specific parameter subsets, which are non-overlapped with each
other. Each parameter subset is temporarily settled to Remember
one evaluation preference toward its corresponding task, and the
previously settled parameter subsets can be adaptively reused in
the following BIQA to achieve better performance based on the
task relevance. To suppress the unrestrained expansion of mem-
ory capacity in sequential tasks learning, we develop a scalable
memory unit by gradually and selectively pruning unimportant
neurons from previously settled parameter subsets, which enable
us to Forget part of previous experiences and free the limited
memory capacity for adapting to the emerging new tasks. Exten-
sive experiments on eleven IQA datasets demonstrate that our
proposed method significantly outperforms the other state-of-the-
art methods in cross-task BIQA. The source code of the proposed
method is available at https://github.com/maruiperfect/SILF.

Index Terms—Cross-Task BIQA, relevance-aware incremental
learning, task relevance, parameter reuse, additional task learn-
ing.

I. INTRODUCTION

BLIND image quality assessment (BIQA) aims to evaluate
the perceptual quality of an image where the prior knowl-

edge of its reference image and distortion type is unavailable.
Due to the absence of pristine reference and the unpredictabil-
ity of various distortions in the open environment, BIQA is
highly desired in many practical applications, such as image
quality monitoring, camera tuning, network adaptation, and
so on. Recently, many BIQA methods [1]–[10] have achieved
impressive performance in diverse task-specific evaluations,
including synthetic, authentic, and enhancement distortion
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evaluation tasks. However, in practical applications, the distor-
tion artifacts and evaluation criteria may keep changing with
the task scenario, which brings new demand for cross-task
BIQA. More specifically, we require a general-purpose model
to sequentially learn the perceptual preference across different
types of BIQA tasks, which mimics the continual knowledge
accumulation of the human, as shown in Fig. 1.

The most straightforward approach is to train a separate
model for every new task. Despite the best performance for
the cross-task scenario, this method requires a lot of storage
space and computing resources, which is challenging to apply
in practice. Another solution is to use only one static model
and fine-tune the old model to adapt to new tasks, whose
storage and computation overhead would not grow with the
increasing new tasks. Unfortunately, the model tends to forget
old knowledge after learning a new task. This phenomenon,
known as catastrophic forgetting [11], where the model tends
to change the weights necessary for previous tasks to adapt
to new tasks, occurs when the model learns multiple tasks
sequentially.

Recently, several pioneering works [12]–[14] have been
proposed to address the catastrophic forgetting problem in
cross-task BIQA. Zhang et al. [12] propose a simple yet
effective method for continually learning BIQA models by
training task-specific batch normalization parameters for each
task while keeping all pre-trained convolution filters fixed.
Based on a shared backbone network, Zhang et al. [13] add
a prediction head for a new dataset and enforce a regularizer
to allow all prediction heads to evolve with new data while
resisting old data catastrophic forgetting. Limited by the
hard parameter sharing of the backbone, these methods [12],
[13] are hard to apply to the BIQA tasks with significant
differences. LIQA [14] employs a generator conditioned on
the distortion type and the quality score to generate pseudo
features, which serve as a memory replayer when learning
new tasks. Despite the success of adapting to significantly
different BIQA tasks, LIQA requires additional computational
and memory resources for generating and reusing the paired
pseudo features and labels. Unlike the aforementioned hard
parameter sharing and replay strategies, in our previous work
[15], we proposed a remember and reuse network (R&R-
Net) to separate all model parameters into predefined subsets
according to the specified task capacity. This rigid parameter
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Fig. 1. Cross-task blind image quality assessment process. The model sequentially evaluates different types of BIQA tasks. Zoom in to observe better the
distorted details of the images for various tasks.

isolation strategy efficiently avoids catastrophic forgetting with
limited memory. However, in the meantime, it also prevents
R&R-Net from learning additional tasks which exceed the
specified task capacity.

This paper extends R&R-Net with the dynamic parameter
isolation strategy and scalable memory unit. Specifically, we
set two pruning ratios for each preset task: the first and second
pruning ratios. The first pruning aims to release the redundant
parameters of the current task for subsequent preset tasks. The
second pruning enables the scalability of our model to learn
additional tasks that exceed the preset task capacity. After two
prunings, we obtain two candidate models corresponding to the
current task, which we call the maximum and minimum mod-
els. During fine-tuning, we train the two models alternately.
In practical applications, if there are no additional tasks, the
preset tasks can employ their corresponding maximum models
to achieve the best performance. Otherwise, the preset tasks
can exploit their related minimum models to free the memory
of the scalable memory unit to learn the additional tasks. By
means of negligible sacrifice on the preset tasks, our model
can increase the task capacity without expanding the memory
capacity.

Compared to our previous work, the additional contributions
of this paper are summarized in the following:

1) We propose a scalable incremental learning framework
(SILF). By gradually and selectively pruning unimpor-
tant neurons from previously settled parameter subsets,
we develop a scalable memory unit, which enables us to
forget part of previous experiences and free the limited
memory capacity for adapting to emerging new tasks. In
this way, we effectively extend the task capacity of the
model without increasing its memory capacity.

2) We conduct extensive experiments to evaluate the pro-
posed method on eleven IQA databases, including the
synthetic, authentic, and enhancement distortion evalu-
ation tasks. The results demonstrate that our proposed
method significantly outperforms many state-of-the-art
methods, even for the additional tasks.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the proposed
method. Section IV introduces experimental results and their
analysis. Finally, Section V concludes the paper.

II. RELATED WORK

This section briefly reviews representative BIQA and incre-
mental learning methods closely related to our work.

A. Blind Image Quality Assessment

Existing BIQA methods can be divided into opinion-aware
BIQA and opinion-unaware BIQA, depending on whether
opinion scores are required during the training process.

Opinion-aware BIQA methods learn regression models
based on training images and subjective evaluations of the
people involved to predict the perceptual quality of the test im-
ages. Traditional opinion-aware BIQA methods extract hand-
crafted quality-aware features and then convert these features
into quality scores employing a regression function. Natural
scene statistic (NSS) based methods [16]–[23] are the most
common of these methods. Some learning-based methods
[24], [25], which learn features from training data, have also
been developed to overcome the limitations of hand-crafted
features. The convolutional neural network (CNN) has recently
achieved great success in various computer vision tasks, such
as image classification, object detection, and semantic seg-
mentation. Due to its robust feature representation capabilities,
the CNN-based BIQA methods [26]–[34] have shown superior
prediction performance over traditional methods. Inspired by
the deep residual model [35], Bare et al. [29] add two sum
layers to a simple CNN network for BIQA. Bosse et al.
[28] modify VGGNet [36] to learn local weights to measure
the importance of the local quality of each image patch
and employ weighted average patch aggregation as a pooling
method. Zhang et al. [31] propose a deep bilinear CNN-
based (DB-CNN) BIQA model by conceptually modeling both
synthetic and authentic distortions as two-factor variations by
bilinear pooling. Inspired by deep meta-learning [37], Zhu et
al. [33] propose an optimization-based meta-learning method
for BIQA, which applies several distortion-specific NR-IQA
tasks to learn prior knowledge of multiple distortions in
images.

Opinion-unaware BIQA methods do not require subjective
human opinions for training. Nature image quality evaluator
(NIQE) [38] extracts local features from an image and fits
the feature vectors to a multivariate Gaussian model (MVG).
It then predicts the quality of the test image based on the
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distance between its MVG model and the MVG model learned
from a corpus of new naturalistic images. Zhang et al. [39]
then extend NIQE to integrated local NIQE (IL-NIQE). The
IL-NIQE model extracts five types of NSS features from a
collection of original natural images and then applies them to
learn an MVG model of original images as a reference model
for predicting the quality of the image patches. Given a test
image, the model evaluates the scores of its patches separately
and then employs the mean of these scores as the score of the
test image. Wu et al. [40] propose a local pattern statistics
index (LPSI) characterized by its good generality to various
distortions. Liu et al. [41] propose natural scene statistics
and perceptual characteristics-based quality index (NPQI) by
investigating the human brain’s NSS and perceptual features
for visual perception.

B. Incremental Learning

Incremental learning has been a long-standing research
problem in machine learning, focusing on learning efficient
models from sequentially arriving data. Existing incremental
learning methods can be summarily grouped into the fol-
lowing categories: namely, regularization-based, replay-based,
dynamic architecture-based, and parameter isolation-based.

Regularization-based methods introduce regularization
terms into the loss function to penalize network parameter
changes when learning the current task to prevent catastrophic
forgetting. Learning without forgetting (LwF) [42] attempts to
prevent model parameters from changing while training the
current task by applying a cross-entropy loss regularized by a
distillation loss [43]. Elastic weight consolidation (EWC) [44]
limits the change of essential parameters for previous tasks by
imposing a quadratic penalty term that encourages weights to
move in directions with low Fisher information. Schwarz et al.
[45] then propose online EWC (OEWC), which optimizes the
EWC by reducing the cost of estimating the Fisher information
matrix.

Replay-based methods store representative examples of
previous tasks in a replay buffer [46]–[48] or train a generative
model to generate samples of previous tasks [49]–[51]. The
model is jointly trained by combining the stored data with
the data from the current task. Rebuffi et al. [46] select the
samples closest to the average sample of each task as the
replay subset. Belouadah et al. [47] introduce second memory
to store statistics of previous tasks. Another popular strategy
is to train a generative adversarial network (GAN) [52]. GAN
can be employed to synthesize exemplars for previous tasks.
Shin et al. [49] propose a cooperative dual model architecture
consisting of deep generative and task-solving models. Xiang
et al. [51] propose an incremental learning strategy based on
conditional adversarial networks.

Dynamic architecture-based methods adapt new incoming
tasks by modifying/expanding the network structure [53]–
[58]. Progressive neural networks (PNN) [53] develop a new
column of the entire neural network for each task and trans-
fer previously learned task features via lateral connections.
Dynamically expandable networks (DEN) [54] expand the
network capacity by the number of units required for each

task arrival. Rajasegaran et al. [57] propose a randomized path
selection method called RPS-Net, which applies a randomized
path selection method for each task.

Parameter isolation-based methods assign diverse param-
eters to different tasks to prevent catastrophic forgetting [59]–
[63]. Serra et al. [60] introduce a task-based intricate attention
mechanism that preserves the information of previous tasks
without affecting the learning of the current task. Mallya et
al. [61] propose PackNet for learning multiple tasks using
iterative pruning. Ebrahimi et al. [63] propose an incremental
learning formulation with Bayesian neural networks, which
utilizes uncertainty predictions to conduct incremental learn-
ing. Essential parameters are either fully preserved by a stored
binary mask or modified according to their uncertainty for
learning new tasks.

Algorithm 1 Scalable Task Incremental Learning Algorithm

Input: Datasets: {Dt}n+k
t=1 ,

task capacity: n, scalable task capacity: k,
first pruning ratios: P = {p1, p2, · · · , pn},
second pruning ratios: P ′

=
{
p

′

1, p
′

2, · · · , p
′

n

}
,

Initialization: Initial model: f0, initial mask: M0,
1: # Sequential tasks
2: for task Tt ∈ {T1, T2, · · · , Tn+k} do
3: if t = 1 then
4: # First task
5: Train f0 on D1, get f1;
6: Sequentially prune f1 with ratios p1 and p

′

1, get
masks M1 and M′

1;
7: Apply M1, M′

1 to f1, successively, and fine-tune
several epochs on D1;

8: Save f1, M1, and M′

1;
9: else if 1 < t ≤ n then

10: # Preset tasks
11: Apply Algorithm 2 to exploit the relevance between

Tt and {T1, T2, · · · , Tt−1}, get f
′

t−1;
12: Train f

′

t−1 on Dt, get ft;
13: Sequentially prune ft with ratios pt and p

′

t, get masks
Mt and M′

t;
14: Apply Mt, M

′

t to ft, successively, and fine-tune
several epochs on Dt;

15: Save ft, Mt, and M′

t;
16: else if n < t ≤ n+ k then
17: # Additional tasks
18: Apply Algorithm 2 to exploit the relevance between

Tt and {T1, T2, · · · , Tt−1}, get f
′

t−1;
19: if t = n+ 1 then
20: Initialize M′

t−1 to Mt;
21: else
22: Initialize Mt−1 to Mt;
23: end if
24: Apply Mt to f

′

t−1, then fine-tune several epochs on
Dt, get ft;

25: Save ft and Mt;
26: end if
27: end for
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Fig. 2. The training process of SILF, where (a)-(b) belong to the preset stage and (c)-(d) belong to the additional stage. The numerous circles in those rounded
rectangles indicate the parameters of the model. The circle’s color corresponds to the task index it belongs to (e.g., blue corresponds to task 1). The dashed
circles indicate that these parameters are available for the additional stage.

Algorithm 2 Task Relevance Guided Reuse Algorithm
Input: Current dataset: Dt = {Xt, Yt},

previous model: ft−1, masks: {M1,M2, · · · ,Mt−1},
1: for i ∈ {1, 2, · · · , t− 1} do
2: Apply Mi to ft−1, get fi = ft−1 · Mi;
3: Input Xt into fi, get scores St,i = fi(Xt);
4: Calculate SRCCt,i;
5: Calculate the reuse ratio Rt,i;
6: Keep important parameters for Tt in Ti with a ratio of

Rt,i, and prune the rest;
7: end for

III. THE PROPOSED METHOD

A scalable incremental learning framework (SILF) for cross-
task BIQA is proposed in this section. The training process
of SILF can be divided into two stages, as shown in Fig. 2.
The first is the preset stage. The initial model progressively
remembers preset tasks, as shown in Fig. 2(a)-(b). With
a sequentially remember and reuse strategy, our proposed
network not only avoids the catastrophic forgetting problem in
cross-task BIQA but also improves the performance of BIQA
by selectively reusing some parameters of the learned tasks.
The second is the additional stage, which is shown in Fig. 2(c)-
(e). Thanks to the scalable learning strategy, our model can
adapt to additional tasks by forgetting some of the parameters
of the learned tasks.

Without loss of generality, our work follows a sequential
task incremental learning setting, a familiar setting in incre-
mental learning. The training details of SILF are summarized
in Algorithm 1. The schematic diagram of a 4∗4 filter update
process in SILF during the training process is shown in Fig.
3. In the remainder of this section, we present our approach
in the form of sequential tasks.

A. Remember Preset Tasks

Input and Initialization: Given initial model f0 pre-trained
on ImageNet [64], initial maskM0 filled with 1, and datasets
D. We pre-set the task capacity as n, the scalable task capacity
as k, the first pruning ratios as P , and the second pruning ratios
as P ′

. We divide D into datasets of preset tasks {Dt}nt=1 and
datasets of additional tasks {Dt}n+k

t=n+1.
Task 1: First, we train f0 on D1 and optimize all parameters

of f0. The optimized model is defined as f1.

Second, we successively perform two sequential prunings
on f1. The pruning ratio of the two prunings is set to p1 and
p

′

1 respectively. We obtained masks M1 and M′

1 after two
pruning sessions.

Fig. 3(a) shows the change process of a filter during the
training of T1. The left side of Fig. 3(a) shows the initial
mask filled by 1, which belongs to M0. The middle of Fig.
3(a) shows the result after the first pruning, which belongs to
M1, with the pruned part filled by 0. The right side of Fig.
3(a) is the result after the second pruning, which belongs to
M′

1, part of the parameters belonging to T1 is pruned, and the
pruned part is changed from dark to light blue.

Take the first pruning process of a convolutional layer in
f1 as an example. We first sort all parameters of this layer by
absolute value and then calculate the pruning threshold based
on the pruning ratio p1. Parameters above the threshold are
considered essential for T1, and the corresponding value in
the mask is set to 1 (i.e., the current task index). Parameters
below the threshold are considered unimportant for T1, and the
corresponding value in the mask is set to 0. Similar operations
are performed at each layer of f1 to obtain M1. The second
pruning is done after the first, and the pruning process is
similar to the first.

Third, we cyclically train the model after the first and second
pruning. We first applyM′

1 to f1 and fine-tune several epochs
on D1, then apply M1 to f1 and fine-tune several epochs on
D1. After several cycles of the above training steps, we obtain
the scalable model f1. Finally, we save the fine-tuned model
f1, masks M1 and M′

1.
Task t (1 < t ≤ n): We call the learning stage of Tt(1 <

t ≤ n) the preset stage, denoted by SP . Before the training
of Tt, we apply Algorithm 2 to explore the relevance between
Tt and {T1, T2, · · · , Tt−1}. For Ti ∈ {T1, T2, · · · , Tt−1}, we
first apply Mi to ft−1:

fi = ft−1 ·Mi (1)

then we input the training set of Dt into fi to obtain the
prediction scores:

St,i = fi(Xt) (2)

where Xt is the training set of Dt. Then SRCCt,i (Spearman
Rank order Correlation Coefficient) is calculated based on



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 0 0

0 0 0 0

0 0 0 0

1 1 1 ത1
ത1 ത1 2 2

2 2 2 2

2 2 2 2

1 1 1 ത1
ത1 ത1 2 2

2 2 2 2

0 0 0 0

(b) Task2

First Prune

Reuse

1 1 1 4

4 4 2 2

2 5 5 5

3 3 6 6

P
re

se
t 

 

S
ta

g
e 

(𝑆
𝑃

)
Prune MuteTask 1 Task 2 Task 3 Task 4 Task 5 Task 6

1 1 1 ത1
ത1 ത1 0 0

0 0 0 0

0 0 0 0

Second Prune

1 1 1 ത1
ത1 ത1 2 2

2 ത2 ത2 ത2

0 0 0 0

…

1 1 1 ത1
ത1 ത1 2 2

2 ത2 ത2 ത2

3 3 ത3 ത3

…

(a) Task1 (c) End of 𝑆𝑃

First Prune Second Prune

1 1 1 4

4 4 2 2

2 ത2 ത2 ത2

3 3 ത3 ത3

(d) Task4

F
o

rg
et &

 In
itialize

1 1 1 4

4 4 2 2

2 ത2 ത2 ത2

3 3 ത3 ത3

(e) Task4

1 1 1 4

4 4 2 2

2 5 5 5

3 3 ത3 ത3

(f) Task5

1 1 1 4

4 4 2 2

2 5 5 5

3 3 ത3 ത3

(g) Task5

Reuse
Forget & 

InitializeReuse

(h) End of 𝑆𝐴

A
d

d
it

io
n

al
 

S
ta

g
e 

(𝑆
𝐴

)

Fig. 3. The evolution of a 4× 4 filter during training. Each square in the filter corresponds to a number. The number equal to 0 indicates that the parameters
of the position are pruned, and the number not equal to 0 represents the task label. The shaded square in the figure indicates that the parameters at this
position are not included in the calculation of the current task (i.e., ”Mute”).

predicted scores St,i and ground truth scores Yt. The reuse
ratio between Tt and Ti is defined as:

Rt,i =

{
1 + λ · SRCCt,i, if SRCCt,i < 0

1, otherwise.
(3)

where λ is a constant, which we set to 0.5 in this paper.
Equation (3) aims to quantify the parameter reuse ratio of
one task by considering its relevance to another task. More
specifically, we tend to increase the reuse ratio of the current
task from relevant knowledge and decrease the reuse ratio of
the current task from irrelevant knowledge. Since previous
tasks’ data are unavailable, we use the previous model’s
performance on current data, i.e., SRCC, to measure the task
relevance in continual learning, where a better performance
means higher task relevance and vice versa.

For each Ti ∈ {T1, T2, · · · , Tt−1}, Tt reuses the parameters
belonging to Ti in proportion Rt,i, and the rest of the param-
eters belonging to Ti are muted. In the subsequent training
of Tt, we temporarily ignore the muted part. The remaining
training steps for Tt are similar to T1 and will not be repeated
here.

Fig. 3(b) shows the update process of the filter during
the training of T2. Before the training of T2, we first apply
Algorithm 2 to calculate the reuse ratio R2,1 between T2 and
T1. Then we mute some parameters belonging to T1 according
to R2,1 (shaded squares in Fig. 3(b) are muted). The next steps
are similar to Task 1 and will not be repeated here.

B. Remember Additional Tasks by Forgetting

Task t (n < t ≤ n + k): We call the learning stage of
Tt(n < t ≤ n + k) the additional stage, denoted by SA. In
preset stage SP , the second pruned mask of Tt(1 < t ≤ n) is
saved as M′

t. The locations of mask = t and mask = t̄ in
M′

t indicate that the parameters at these locations belong to
Tt(1 < t ≤ n), where the locations of mask = t̄ indicate that
the parameters corresponding to these locations can be used for
subsequent additional tasks. In Fig. 3, dark and light squares
of the same color belong to the same task, with light colors

indicating availability for subsequent additional tasks. Take
Fig. 3(a) as an example, the dark blue squares correspond to
mask = 1, and the light blue squares correspond to mask =
1̄.

Before the training of Tt(n < t ≤ n+ k), we first initialize
Mt by forgetting. Specifically, we initialize M′

t−1 to Mt if
t = n + 1, and we initialize Mt−1 to Mt if t > n + 1. The
initialization operation replaces the part of Mt−1 or M′

t−1
where mask = t− n is with mask = t. Fig. 3(c)-(d) show
the initialization process of M4 before the training of T4. We
initialize the part of M

′

3 with mask = 1 to mask = 4 so
that we can utilize this part of the parameters to learn the
additional T4.

Then we apply Algorithm 2 to explore the relevance be-
tween Tt(n < t ≤ n+k) and {T1, T2, · · · , Tt−1}. The opera-
tion of calculating the reuse ratio is the same as Tt(1 < t ≤ n).
It is not repeated here. Finally, we apply Mt to ft and fine-
tune it on Dt. Fig. 3(h) shows the state of the mask at the end
of SA. After all the learning steps in this section, our proposed
SILF completes the learning of SP and SA.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setups,
including IQA datasets, performance evaluation metrics, and
implementation details. Then we compare the performance of
the proposed with the state-of-the-art methods. Finally, we
conduct a series of ablation studies to compare the perfor-
mance of different settings.

A. Experimental Setups

1) Datasets: The main experiments are conducted on the
following datasets:

Synthetically distorted datasets, including LIVE [65],
CSIQ [66], LIVE-MD [67], TID2013 [68], and KADID-10k
[69]. LIVE-MD consists of two multi-distortion datasets with
a total of 450 distorted images. KADID-10k is a recently pub-
lished large-scale synthetic database containing 81 reference
images degraded by 25 distortion types in 5 levels for 10,125
distorted images.
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TABLE I
SUMMARY OF IQA DATASETS USED IN OUR EXPERIMENTS

Dataset Distort. Content # Distort. # Distort. Subjective Subjective YearType Types Images Environment Rating Type
LIVE [65]

Synthetic

29 5 779 Laboratory DMOS 2006
CSIQ [66] 30 6 866 Laboratory DMOS 2010
LIVE-MD [67] 15 4 450 Laboratory DMOS 2012
TID2013 [68] 25 24 3,000 Laboratory MOS 2013
KADID-10k [69] 81 25 10,125 Crowdsourcing MOS 2019

LIVE-CH [70]
Authentic

1,169 N/A 1,169 Crowdsourcing MOS 2016
KONIQ-10k [71] 10,073 N/A 10,073 Crowdsourcing MOS 2018
SPAQ [72] 11,125 N/A 11,125 Laboratory MOS 2020

SHRQ-Aerial [73]

Enhanced

30 N/A 240 Laboratory MOS 2019
SHRQ-Regular [73] 45 N/A 360 Laboratory MOS 2019
IVIPC-DQA [74] 206 N/A 1,236 Laboratory MOS 2019
LIEQ [75] 100 N/A 1,000 Laboratory MOS 2021

Authentically distorted datasets, including LIVE-CH [70],
KONIQ-10k [71], and SPAQ [72]. LIVE-CH contains 1162
images captured under highly diverse conditions by many
camera devices. KONIQ-10k and SPAQ are two recently
proposed large-scale datasets containing 10,073 and 11,125
authentic distortion images, respectively.

Enhancement distorted datasets including SHRQ [73],
IVIPC-DQA [74], and LIEQ [75]. SHRQ contains two subsets,
regular and aerial image subsets, respectively. We treat them
as two separate datasets, denoted by SHRQ-A and SHRQ-
R, respectively. IVIPC-DQA contains 1,236 derained images
generated from 6 single image rain removal algorithms. LIEQ
includes 1,000 light-enhanced images generated from 100 low-
light images using 10 low-light image enhancement algo-
rithms. Please refer to Table I for details of each dataset.

2) Performance Evaluation Metrics: We employ the com-
monly used metric SRCC [76] to evaluate BIQA performance.
The larger the value of SRCC, the better the performance
of BIQA. Following the criteria of [77], we evaluate the
performance of cross-task BIQA from three perspectives:
average accuracy, average forgetting, and average plasticity
in the SRCC. Average accuracy is the average SRCC of all
BIQA tasks at the end of their incremental learning process,
which is defined as:

AT =
1

T

T∑
i=1

SRCCT,i (4)

Average forgetting measures how much information the model
has forgotten about previous tasks, which is formulated as:

FT =
1

T − 1

T−1∑
i=1

maxt∈{1,...,T}(SRCCt,i − SRCCT,i) (5)

Average plasticity aims to evaluate the ability of the model to
adapt to new tasks, which is defined as:

PT =
1

T

T∑
i=1

SRCCi,i (6)

where T is the total number of learned tasks, SRCCm,n is
the SRCC of the nth task after learning the first m tasks
sequentially.

3) Implementation Details: Our proposed SILF is imple-
mented with the PyTorch library. All experiments are executed
on Ubuntu 18.04 with i9-9900k CPU and two NVIDIA GTX
TITAN XP GPUs. We utilize ResNeXt101 [78] as the back-
bone network of our SILF, and we replace the last two fully
connected layers of ResNeXt101 with one fully connected
layer of size [2048, 1]. The parameters of the backbone
network are initialized by the weights pre-trained on ImageNet
[64]. We add a sigmoid activation function after the fully
connected layer to make the score output by the network in
the range [0, 1]. We set the number of preset and additional
tasks to 3 and the first and second pruning ratios to [0.7, 0.5,
0] and [0.4, 0.4, 0.4], respectively. We adopt the L1 loss as
the loss function for each task and apply stochastic gradient
descent (SGD) as the optimizer. We set the initial learning rate
to 1 × 10−3 with a decay factor of 0.5 for every 10 epochs.
Following previous works [31], [34], we split 80% of each
dataset into training sets and the remaining 20% into test sets
without using validation sets. We stop training at a preset 40
epoch. During training, we crop each image into five 256∗256
patches (center and four corners) and take the average score
of these patches as the final score for this image. Following
the similar setting of [14], we repeat the random split three
times on each database and report the average SRCC result
across all trials.

B. Comparison Methods
We compared six methods, including two benchmarks

and four incremental learning strategies. The same backbone
network is applied to each method for a fair comparison.
The detailed settings of these methods are presented in the
following:
• Separate Learning (SL): Each task is trained with an

independent model. The results are usually considered
an upper bound on the performance of BIQA.

• NO Remember Learning (NO-RL): Retrain new tasks
directly on the old model, where all tasks share all
parameters of the same model. This approach usually
leads to catastrophic forgetting.

• NO Relevance Reuse (NO-RR): We set the value of λ in
(3) to 0. In this setting, the relevance between tasks is
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TABLE II
CROSS-TASK BIQA PERFORMANCE COMPARISON (AVERAGE ACCURACY) ON TASK SEQUENCE I

TasksMethod
1st(LIVE-CH) 2nd(CSIQ) 3rd(LIEQ) 4th(KONIQ) 5th(LIVE-MD) 6th(SHRQ-A) Mean

SL 0.8529 0.8953 0.8990 0.8990 0.9105 0.9191 0.8960
LWF 0.8260 0.3796 0.3565 0.4025 0.3543 0.2989 0.4363
PNN 0.6809 0.3159 0.2640 0.3764 0.2726 0.3044 0.3690
R&R-Net (3 tasks) 0.8163 0.8665 0.8667 / / / /
R&R-Net (6 tasks) 0.7910 0.8359 0.8560 0.8594 0.8206 0.8252 0.8314
NO-RL 0.8039 0.4663 0.4455 0.4001 0.4008 0.2775 0.4657
NO-RR 0.8494 0.8786 0.8694 0.8389 0.8591 0.8420 0.8562
Proposed (SILF) 0.8472 0.8779 0.8680 0.8569 0.8765 0.8645 0.8652

TABLE III
CROSS-TASK BIQA PERFORMANCE COMPARISON (AVERAGE ACCURACY) ON TASK SEQUENCE II

TasksMethod
1st(LIVE) 2nd(SPAQ) 3rd(KADID) 4th(IVIPC-DQA) 5th(TID2013) 6th(SHRQ-R) Mean

SL 0.9711 0.9420 0.9131 0.8366 0.8342 0.8364 0.8889
LWF 0.9628 0.2654 0.2292 0.2544 0.2497 0.2973 0.3765
PNN 0.8853 0.0796 0.2355 0.1997 0.2734 0.2673 0.3235
R&R-Net (3 tasks) 0.9577 0.9356 0.8967 / / / /
R&R-Net (6 tasks) 0.9452 0.9275 0.9014 0.7383 0.7281 0.7260 0.8277
NO-RL 0.9663 0.2073 0.2813 0.2844 0.3733 0.4253 0.4230
NO-RR 0.9576 0.9349 0.9081 0.7907 0.7823 0.7747 0.8580
Proposed (SILF) 0.9610 0.9339 0.9065 0.8094 0.7924 0.7914 0.8658

not considered during training. The rest are the same as
SILF.

• Learning without Forgetting (LwF) [42]: LWF incor-
porates knowledge distillation and fine-tuning to learn
new tasks while retaining outputs of old tasks. For each
new task, we add 256 neurons to the penultimate fully
connected layer of the network.

• Progressive Neural Networks (PNN) [53]: PNN keeps
a library of models during training and adds lateral
connections between models to extract features useful for
new tasks. We add a branch for each new task and use
lateral connections between branches.

• Remember and Reuse Network (R&R-Net) [15]: We
assign parameters equally to each task. It is worth noting
that this method requires us to set the number of tasks
in advance. In practice, R&R-Net is unable to learn
additional tasks.

C. Main Results

To evaluate the cross-task BIQA performance of different
methods, we divide the twelve tasks into two task sequences
and conduct experiments on them. Tables II and III show
the average accuracy results for Sequence I and Sequence
II, respectively. The results in Tables II and III first row are
for separate learning (SL), which is usually considered the
upper bound of BIQA performance and is marked in bold. In
addition, we employ red and blue fonts to indicate the first and
second ranking of performance among the remaining methods,
respectively.

There are several valuable findings from the analysis of
Tables II and III. First, NO-RL performance on learned tasks
decreased significantly with the sequential learning process

due to the inability to remember learned tasks (i.e., expe-
rienced catastrophic forgetting during incremental learning).
Second, LWF and PNN are usually used for classification
scenarios that are relatively similar between tasks. The cross-
task BIQA results of LWF and PNN are unsatisfactory due
to the significant differences among tasks in cross-task BIQA.
Third, R&RNet shows a remarkable ability to avoid forgetting.
Still, its average accuracy on multiple tasks is lower than NO-
RR and SILF because it employs only fixed first pruning.
Last, our proposed SILF can effectively exploit the inter-task
relevance information to improve the performance of cross-
task BIQA compared to NO-RR. In Tables II and III, the mean
values of SILF average accuracy are improved by 1.05% and
0.91% compared to NO-RR.

Table IV shows the cross-task BIQA results for task se-
quence I. The second and third columns in Table IV show
the sequential training datasets and the comparison methods,
respectively. The model for each method was tested on all
learned tasks as each new task was completed. The test results
are SRCC values, as shown in Table IV. The second row of
Table IV shows the results of separate learning (SL), which
can be considered an upper bound on the performance of each
task. Rows 3-9 in Table IV show the results of each method
learned sequentially and tested on learned tasks.

D. Ablation Experiments

In this subsection, we conduct a series of ablation exper-
iments to evaluate the factors that affect the performance of
our method.

1) The Impact of Training Order: To evaluate the robust-
ness of our method to the training order, we adjusted the order
of the tasks in Sequence I. Sequence I contains two tasks
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TABLE IV
CROSS-TASK BIQA PERFORMANCE COMPARISON (SRCC) ON TASK SEQUENCE I

Sequence Dataset Method LIVE-CH CSIQ LIEQ KONIQ LIVE-MD SHRQ-A
- All SL 0.8529 0.9377 0.9064 0.8991 0.9564 0.9620

1st LIVE-CH

LWF 0.8260 - - - - -
PNN 0.6809 - - - - -
R&R-Net 0.7910 - - - - -
NO-RL 0.8039 - - - - -
NO-RR 0.8494 - - - - -
Proposed (SILF) 0.8472 - - - - -

2nd CSIQ

LWF 0.6621 0.0971 - - - -
PNN -0.1681 0.7998 - - - -
R&R-Net 0.7910 0.8807 - - - -
NO-RL 0.0668 0.8658 - - - -
NO-RR 0.8494 0.9077 - - - -
Proposed (SILF) 0.8472 0.9086 - - - -

3rd LIEQ

LWF 0.6599 -0.2293 0.6389 - - -
PNN 0.0446 0.1965 0.5510 - - -
R&R-Net 0.7910 0.8807 0.8963 - - -
NO-RL 0.1920 0.2592 0.8852 - - -
NO-RR 0.8494 0.9077 0.8512 - - -
Proposed (SILF) 0.8472 0.9086 0.8481 - - -

4th KONIQ

LWF 0.7706 -0.5298 0.6326 0.7365 - -
PNN 0.7428 -0.6403 0.5367 0.8665 - -
R&R-Net 0.7910 0.8807 0.8963 0.8694 - -
NO-RL 0.7973 -0.7429 0.6487 0.8973 - -
NO-RR 0.7929 0.8880 0.7830 0.8916 - -
Proposed (SILF) 0.8045 0.8984 0.8343 0.8902 - -

5th LIVE-MD

LWF 0.6347 0.1613 0.3391 0.5302 0.1060 -
PNN 0.1820 0.4289 0.1869 0.1097 0.4556 -
R&R-Net 0.7910 0.8807 0.8963 0.8694 0.6657 -
NO-RL 0.2769 0.5638 -0.1346 0.3627 0.9354 -
NO-RR 0.7929 0.8880 0.7830 0.8916 0.9402 -
Proposed (SILF) 0.8045 0.8984 0.8343 0.8902 0.9553 -

6th SHRQ-A

LWF 0.6280 -0.2274 0.4695 0.5440 -0.3616 0.7411
PNN 0.3803 -0.2211 0.5078 0.4398 -0.0952 0.8145
R&R-Net 0.7910 0.8807 0.8963 0.8694 0.6657 0.8478
NO-RL 0.5931 -0.7045 0.5703 0.5866 -0.2739 0.8935
NO-RR 0.7929 0.8880 0.7830 0.8916 0.9402 0.7565
Proposed (SILF) 0.8045 0.8984 0.8343 0.8902 0.9553 0.8045

TABLE V
DIFFERENT TRAINING ORDERS. A, S, AND E ARE ACRONYMS FOR AUTHENTIC, SYNTHETIC, AND ENHANCEMENT RESPECTIVELY

Order 1st 2nd 3rd 4th 5th 6th

I A (LIVE-CH) S (CSIQ) E (LIEQ) A (KONIQ) S (LIVE-MD) E (SHRQ-A)
II A (LIVE-CH) E (LIEQ) S (CSIQ) A (KONIQ) E (SHRQ-A) S (LIVE-MD)
III S (CSIQ) A (LIVE-CH) E (LIEQ) S (LIVE-MD) A (KONIQ) E (SHRQ-A)
IV S (CSIQ) E (LIEQ) A (LIVE-CH) S (LIVE-MD) E (SHRQ-A) A (KONIQ)
V E (LIEQ) A (LIVE-CH) S (CSIQ) E (SHRQ-A) A (KONIQ) S (LIVE-MD)
VI E (LIEQ) S (CSIQ) A (LIVE-CH) E (SHRQ-A) S (LIVE-MD) A (KONIQ)

for each of the three task types. Please refer to Table I for
the specific distortion type of each task. By permuting three
different distortion types, we obtained six different training
orders for Sequence I, as shown in Table V.

Table VI reports the results of the ablation experiments with
different training orders. Each metric’s best and worst values
are marked in red and blue, respectively. We apply the range of
fluctuations and standard deviations to measure the robustness
of our proposed model to the training order. The difference
between the three metrics’ maximum and minimum values are
0.0256, 0.0179, and 0.0114, and their standard deviations are
0.0094, 0.0076, and 0.0042, respectively. We can infer from
the above analysis that our proposed model is insensitive to

TABLE VI
ABLATION EXPERIMENTAL RESULTS ABOUT THE TRAINING ORDER

Training
Order

Average
Accuracy

Average
Plasticity

Average
Forgetting

I 0.8652 0.8757 0.0104
II 0.8698 0.8686 0.0077
III 0.8651 0.8578 0.0186
IV 0.8685 0.8594 0.0072
V 0.8442 0.8667 0.0087
VI 0.8606 0.8754 0.0088

the training order and has high robustness.
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TABLE VII
ABLATION EXPERIMENTAL RESULTS ABOUT THE SECOND PRUNING RATIO

Second Pruning
Ratio

Average
Accuracy

Average
Plasticity

Average
Forgetting

0.1 0.8562 0.7935 0.0029
0.2 0.8662 0.8366 0.0035
0.3 0.8632 0.8498 0.0051
0.4 (SILF) 0.8652 0.8757 0.0104
0.5 0.8514 0.8748 0.0301
0.6 0.6633 0.8855 0.3326
0.7 - - -

TABLE VIII
ABLATION EXPERIMENTAL RESULTS ABOUT THE RELEVANT CONSTANT

Relevant
Constant

Average
Accuracy

Average
Plasticity

Average
Forgetting

0 (NO-RR) 0.8562 0.8661 0.0226
0.1 0.8636 0.8614 0.0117
0.3 0.8547 0.8474 0.0078
0.5 (SILF) 0.8652 0.8757 0.0104
0.7 0.8564 0.8752 0.0125
0.9 0.8183 0.8737 0.0714

2) The Impact of Second Pruning Ratio: Table VII shows
the performance of our proposed model under different second
pruning ratio settings. The top three values of each metric are
marked in red, green, and blue.

We can summarize the following points from Table VII.
First, the average accuracy takes higher values at second
pruning ratios of 0.2, 0.3, and 0.4, decreasing significantly
when the second pruning ratio is 0.6. When the second
pruning ratio is 0.7, the model cannot infer due to insufficient
remaining parameters. Second, average plasticity and average
forgetting were positively correlated with the second pruning
ratio. Considering the two points mentioned above, we take
0.4 as the second pruning ratio of our proposed model.

3) The Impact of Relevant Constant: Here, we evaluate the
effect of λ in (3). Table VIII demonstrates the performance of
our proposed model under different relevant constant settings.
The top three values of each metric are marked in red, green,
and blue.

Table VIII shows that the average accuracy and average
plasticity metrics are both highest at a relevant constant of
0.5, and the average forgetting metric is the second highest.
In addition, our proposed SILF improves by approximately
1.05%, 1.11%, and 1.22% for the three metrics, respectively,
compared to the relevant constant taking a value of 0 (i.e.,
NO-RR).

V. CONCLUSION

The R&R-Net proposed in our previous work addresses
catastrophic forgetting in cross-task BIQA. However, R&R-
Net cannot learn additional tasks due to a rigid parameter
assignment strategy. This paper presents a scalable incremental
learning framework (SILF) to extend R&R-Net by utiliz-
ing a scalable incremental learning strategy. Specifically, by
gradually and selectively pruning unimportant neurons from

previously settled parameter subsets, we develop a scalable
memory unit, which enables us to forget part of previous
experiences and free the limited memory capacity for adapting
to emerging new tasks. Extensive experiments on eleven IQA
datasets demonstrate that our proposed method significantly
outperforms the other state-of-the-art methods in cross-task
BIQA.
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