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Abstract—We address the challenging task of human reaction
generation, which aims to generate a corresponding reaction
based on an input action. Most of the existing works do not
focus on generating and predicting the reaction and cannot
generate the motion when only the action is given as input.
To address this limitation, we propose a novel interaction
Transformer (InterFormer) consisting of a Transformer network
with both temporal and spatial attention. Specifically, temporal
attention captures the temporal dependencies of the motion of
both characters and of their interaction, while spatial attention
learns the dependencies between the different body parts of each
character and those which are part of the interaction. Moreover,
we propose using graphs to increase the performance of spatial
attention via an interaction distance module that helps focus on
nearby joints from both characters. Extensive experiments on the
SBU interaction, K3HI, and DuetDance datasets demonstrate the
effectiveness of InterFormer. Our method is general and can be
used to generate more complex and long-term interactions. We
also provide videos of generated reactions and the code with pre-
trained models at github.com/CRISTAL-3DSAM/InterFormer.

Index Terms—Interaction, Transformer, Human Reaction Gen-
eration.

I. INTRODUCTION

Modeling the dynamics of human motion is at the core
of many applications in computer vision and robotics. Most
works on human motion generation ignore human interactions
and focus rather on the generation of actions of a single person.
In addition, only a few works investigating human interaction
generation [1] look at the reaction generation problem. What
makes human reaction generation a challenging problem is the
non-linearity in the temporal evolution of human motion and
the two sources that condition the motion: the action and its
corresponding reaction. The first issue arises because human
motion is generally performed at varying evolution rates. In
other words, a person performing the same activity will go
roughly through the same stages but at slightly different rates

B. Chopin is with Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL,
F-59000 Lille, France. E-mail:. baptiste.chopin@univ-lille.fr

Hao Tang is with the Department of Information Technology and
Electrical Engineering, ETH Zurich, Zurich 8092, Switzerland. E-mail:
hao.tang@vision.ee.ethz.ch

N. Otberdout is with Ai movement - University Mohammed VI Polytechnic,
Rabat, Morocco, E-mail: naima.otberdout@um6p.ma

M. Daoudi is with IMT Nord Europe, Institut Mines-Télécom, Univ. Lille,
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Fig. 1: Example of reaction generation. In blue the action
motion is used as a condition. In other colors, the reaction
is either from the ground truth or generated by the different
models. Example from the kicking class of the SBU dataset.
Our model generates a more realistic motion than the compet-
ing approaches.

every time. In addition, as stated by [2], unlike simple actions
such as walking or running, complex human interactions such
as duet dancing generate highly complex pose sequences
operating close to the limit of human kinematics with very low
periodicity. The second issue arises because the same action
can have a different reaction depending on the interaction
context, e.g., when reacting to a punch depending on the
position, one can react more or less strongly. These two
issues make the problem of reaction generation and evaluation
challenging. Several questions arise as we try to tackle this
challenge. How to translate action to reaction? How to model
the long-term sequence? How to represent a complex action-
reaction sequence?

Our goal is to learn the reaction from a training sequence
of actions and reactions by using Transformer architectures.
The breakthroughs from Transformer networks in Natural Lan-
guage Processing (NLP) domain have sparked great interest
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Fig. 2: Left: InterFormer during testing: given an action sequence (blue) and the first frame of a reaction sequence (red), we
generate the full reaction sequence. We predict one frame at a time based on the previously generated frames. Right: Overview
of InterFormer during training. The motion encoder takes an action sequence as the input and outputs a latent encoding. The
motion decoder takes as inputs the reaction sequence corresponding to the action sequence and the latent encoding from the
encoder. The motion decoder outputs a generated reaction sequence. Both the encoder and decoder contain several attention
modules. Top Right: The skeleton adjacency and interaction distance modules interact directly with spatial attention.

in computer vision. Transformer architectures are based on a
self-attention mechanism that learns the relationships between
elements of a sequence. Unlike recurrent networks that process
the elements of the sequence recursively, Transformers can
attend to complete sequences and thereby are able to learn
spatial and temporal relationships making them a good can-
didate for modeling human motion. In this paper, we propose
InterFormer, which with its spatial and temporal attention
modules, is able not only to model the spatial and temporal
dependencies in the action and in the reaction but also in the
interaction between the two humans providing a solution to
the two previously mentioned issues. Figure 2 (Left) shows
how our InterFormer can generate a proper reaction sequence
(red skeleton) by taking as input an action sequence (blue
skeletons) and the initial position of the reaction sequence.
Green circles highlight the reaction parts of the motion: the
head goes backward in reaction to the punch; the hand is raised
as the body continues to move backward to keep its balance.
Figure 1 shows a generated reaction from the “kicking” class
of the SBU dataset. Our method is able to generate a proper
motion.

Our major contributions are as follows:

• We propose a novel Interaction Transformer framework
for the challenging human reaction generation task. To
the best of our knowledge, this is the first work that
challenges the task of human reaction prediction given
the action of the interacting skeleton using a Transformer
based architecture.

• We formulate the reaction generation problem as a trans-
lation problem, where we translate a given action of a
skeleton to its corresponding reaction such that the entire
interaction looks coherent and natural.

• We adopt a graph representation for self-attention to

better exploit the skeleton structure while we ignore
this representation for computing the attention between
the two interacting skeletons. In this case, instead of a
graph representation, we exploit the distance between
the interacting joints assuming that closer joints involve
stronger interaction. By introducing this distance, we
provide the prior knowledge that helps to model the
interaction.

• While the previous methods for interaction generation
address limited and simple short-term interactions, we
evaluate our method on the DuetDance dataset that pro-
vides more complex and long-term interactions.

II. RELATED WORK

Human Action Generation. Human action recognition and
prediction from 3D skeletons is a popular topic [3]–[9].
Inspired by the recent advances in generative models, several
works [10]–[13] proposed human action generation models in
order to generate a consecutive sequence of human motions.
Recently there has been an increase in motion generation
based on different modalities, [14] use control signals such
as the global trajectory of the person to generate human
motion in long-term horizons while [15] and [16] generate
motion based on speech audio. Meanwhile, others use only
knowledge of the past motion which allows them to work
in real-time but on shorter motion [4], [5], [17]. However,
these works only focus on the generation of individual actions.
More recently, interaction prediction and generation have also
been addressed [1], [2]. For instance, [1] use a multimodal
variational recurrent neural network to predict the future
motion of both participants in an interaction based on pasts
sequences of motion. To complement the existing dataset with
interactions [18], [19], different types of complex interaction
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datasets have also emerged like [20] and their collection of
conversational hand motions or triadic interactions [21]. Some
works also look at human reaction with other modalities such
as walking trajectories [22] or conversational data [23]–[25].
More recently, a lot of focus has been devoted to human pose
and motion generation from text or action labels, as well as its
reciprocal task [26], [27]. However, our approach proposes to
generate and predict human motion reactions from an action.
In addition, these papers focus only on one person, while
our approach is dedicated to the generation of reactions in
two-person interaction. However, there are very few works on
human reaction generation. In this paper, we focus on this and
propose InterFormer, a novel Transformer architecture. This
idea has not been investigated by any other existing work.
Graph Representation has been widely used for 3D clas-
sification and segmentation [28], [29], visual question an-
swering [30], human interaction recognition [31], [32]. For
instance, [31] proposed a Dyadic Relational Graph Convo-
lutional Network (DR-GCN) for skeleton-based interaction
recognition. When dealing with 3D skeletons, it is natural to
use a graph representation as the graph of the skeleton exists
physically in the form of segments linking joints. While most
works use the graph representation of the skeleton directly
as an input, doing so when dealing with interaction leads to
losing information. We propose to use the graph as part of the
attention module to take advantage of the graph representation
without losing the information about the interaction. Experi-
ments show the effectiveness of the proposed InterFormer over
existing methods.
Vision Transformers. Transformers were introduced in [33]
as a new attention-based building block for machine trans-
lation. Because the architecture was powerful and flexible,
it was quickly adapted to other natural language processing
tasks like language modeling [34], [35]. They also have
recently demonstrated good performance on a broad range of
tasks such as image classification [36], image generation [37],
[38], object detection [39], [40], human pose estimation [41],
depth estimation [42], [43], 3D pose transfer [44], [45], and
action recognition [32], [46]. Closer to our problem, works
have used Transformer to generate human motion: [47], [48]
generate human motions based on the class labels while
[49] use them to predict future motion based on a historical
sequence. Different from these methods, we use a Transformer
architecture with temporal and spatial attention for solving the
reaction generation task. Generating a reaction responding to
an action can be seen as a translation problem: translating
from a language “action” to a language “reaction”. The per-
formance of the Transformer on natural language translation
tasks and its use of temporal information is a good fit for our
task of reaction generation. By adding spatial attention and
graph information, we can produce a realistic reaction to an
action. To the best of our knowledge, InterFormer is the first
Transformer architecture used to solve the problem of human
reaction generation.

III. THE PROPOSED INTERACTION TRANSFORMER

Let us consider Pt the positions of k distinct joints at
time t. Consequently, an action sequence P of T frames,

can be described as a sequence P={P1, P2, . . . , PT }, where
Pt∈Rd and d=3×k, where Pt=[J1(t), . . . , Jk(t)], with k the
number of joints in the skeleton, and Ji(t)=[xi(t), yi(t), zi(t)]
the 3D coordinates of joint i. The goal is to generate a
reaction Y={Y1, Y2, . . . , YT } a sequence of skeleton poses
from X={X1, X2, . . . , XT } a sequence representing the ac-
tion motion.

Our overall architecture of InterFormer is illustrated in
Figure 2 and consists of four modules: a motion encoder, a
motion decoder, a skeleton adjacency module, and an interac-
tion distance module. The motion encoder encodes the motion
of the skeleton using a self-spatial skeleton and self-temporal
motion attention. Both aim to find the important spatial and
temporal relations within the input action motion to transmit
them to the decoder. The motion decoder generates the re-
action motion using the encoding from the motion encoder
and consists of self-spatial skeleton attention, self-temporal
motion attention, interaction spatial skeleton attention, and
interaction temporal motion attention. Moreover, the skeleton
adjacency and interaction distance modules help the different
spatial attentions to focus on the most important parts of the
skeletons and of the interaction.

A. Motion Encoder

The motion encoder takes as input an action sequence X to
which we add positional encoding defined by [33]. This posi-
tional encoding encodes temporal information of each frame
in the sequence. Inspired by [33] we use temporal attention to
capture the temporal relationships within the motion of the
skeleton. However, the motion contains both temporal and
spatial information. Thus, we add a spatial attention module
to complement the temporal attention to help find the spatial
dependencies within the skeleton.
Self Spatial Skeleton Attention. For our self-spatial skeleton
attention module, we consider each frame independently and
look at the relation between the position of each joint. We use
the scaled dot-product attention from [33]:

Attention(Q,K,V) = softmax

(
QKT

√
dim

)
V, (1)

where Q, K, and V are the query, key, and value matrices
of sizes dim×|Pt| which contain a set of queries, keys, and
values (one for each joint in the skeleton for a given frame) of
sizes dim which is for spatial attention |J1(t)|. These queries
qi, keys ki, and values vi are obtained by multiplying an input
ai, bi, and ci by weight matrices Wq , Wk, and Wv of size
dim×dim:

qi = aiWq, ki = biWk, vi = ciWv. (2)

For self-attention ai=bi=ci and for spatial attention they
represent the 3D coordinates of joint i at a given time, either
directly or through the value corresponding to the coordinates
after going through the previous attention layers. We use the
multi-head version of the attention [33] where the inputs are
split into smaller parts according to the input size of each
head. Each part is treated by its own attention module and
the outputs of these modules are concatenated. For spatial
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attention, we fix the number of heads at |J1(t)|, one for each
dimension of the 3D coordinates.
Self Temporal Motion Attention. For the self-temporal mo-
tion attention, we consider the entire skeleton and observe the
motion of its joints over time, i.e., we try to find the links
between the position of the joints from one frame to another.
This is performed in the same way as for self-spatial skeleton
attention by using Eq. (1) and Eq. (2). However, here ai=bi=ci
represent the entire skeleton at time t=i, dim=d and Q, K,
and V are of size dim×T . We also use the multi-head version
of the attention, but here the number of heads can be set as a
hyperparameter.

B. Motion Decoder

The decoder receives the encoder’s output Z as well as the
reaction sequence Y . It is composed of four attention modules
as illustrated in Figure 2. The self-attention modules work in
the same way as the encoder but take Y to which we add the
positional encoding as input.
Interaction Spatial Skeleton Attention. The interaction spa-
tial skeleton attention module looks at the relations between
the joints of the interacting skeletons at a given frame. The
attention is also computed using Eq. (1) and Eq.(2) but here
the query matrix Q comes from the reaction sequence Y and
the key and value matrices K and V come from the encoder
output Z.
Interaction Temporal Motion Attention. The interaction
temporal motion attention module looks at the relations be-
tween the frames from the action sequence and the frames
from the reaction sequence. Discovering these relations enable
the synchrony of the generated reaction. Likewise, the query
matrix Q comes from the reaction sequence Y but the key and
value matrices K and V come from the encoder output Z.

In both the encoder and decoder, before each attention
module, the input is normalized, and after each module, the
output is also normalized and added to a residual connection
of the non-normalized module input like in [33]. The spatial
and temporal attentions are computed in parallel and are added
after passing through all modules. This final output then goes
through a feed-forward layer and is added to the residual
connection. The architectures described here for the encoder
and the decoder correspond to a single layer of the encoder
and one single layer of the decoder. There are N=6 of each of
these layers, and the input of layer h is the output of layer h−1.
Finally, after the last decoder layer, the output goes through a
final linear layer to get the reaction sequence.

C. Skeleton Adjacency and Interaction Distance

Recently many works using skeletons also use a graph
representation which was proved to be a particularly efficient
representation for action recognition [31], [32]. Building a
graph for a skeleton is particularly intuitive in that the joints
of the skeletons are already linked together by body segments.
However, in our case, using a graph representation might
be ill-fitted. Indeed while graphs provide information about
the skeleton structure and help us concentrate on the most
interesting parts of the skeleton, they would limit us when

modeling the interaction. The information we have about the
interaction is contained in the attention between the encoder
and the decoder and the relations in the skeleton graph are
very different from the relations between the joints of the two
skeletons (all relations are possible). However, graphs can still
provide important information that we can use to improve our
generation.
Skeleton Adjacency Module. We can use the information
contained in the graph representation by looking at the adja-
cency matrices of the joints. We use three adjacency matrices
that we combine to create a mask. The three matrices are
based on the ones used by [32]: (i) the identity matrix I used
to represent the joints themselves; (ii) the matrix of inward
relations In which are the paths from the extremities (head,
hands, and feet) to the root joint (torso or pelvis), and (iii)
the matrix of outward relations Out which represents the
paths from the root joint to the extremities. The three matrices
of sizes |Pt|×|Pt| are then added to get the mask matrix
M=I+In+Out that we apply to the attention matrix Att
of size |Pt|×|Pt| to hide values that are not part of the graph
as illustrated in the top right part of Figure 2.

Atti,j =

{
Atti,j , if Mi,j ̸= 0

0, if Mi,j = 0
(3)

Interaction Distance Module. Interaction attention, which is
also the attention between the encoder and the decoder, can
also use a graph representation [31], but this graph cannot
be fixed since the interesting links between joints vary from
class to class e.g., for “punching” we are interested in the
link between the hand and the head but not for “kicking”.
Ultimately, it is the spatial attention between the encoder and
decoder that discovers the important links between the two
skeletons. However, as suggested by [31] we can add prior
knowledge to the attention to help us model the interaction
for some classes. This information is the distance between the
joints of both skeletons, i.e., joints that are close to each other
are more likely to interact than those that are far away:

Disti,j = −∥J i
action(t)− Jj

reaction(t)∥2, (4)

where J i
action(t) and Jj

reaction(t) are the joint i and j of the
action and reaction skeletons at time t, Dist is a matrix of size
|Pt|×|Pt|. Unlike the graph for self-spatial attention, we do
not use the distance matrix to create a mask because some of
the relations between the two skeletons are not defined by the
distance between the joints (e.g., waving and waving back),
thus using the distance matrix as a mask would prevent such
relations from being discovered. We add softmax(Dist) to
the attention matrix to keep all the information that interests
us, as illustrated in the top right part of Figure 2. By using
the softmax function on the distance matrix, we add values of
the same order to the attention matrix while making shorter
distances more important.

D. Objective Optimization

We use two loss functions to direct our model. The first
one is the sequence loss (Ls) which compares the generated
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sequence with the corresponding ground truth using the Mean
Square Error (MSE) :

Ls =
1

T

1

k

T∑
t=1

k∑
i=1

(Ji(t)− Ĵi(t))
2, (5)

where Ji(t) is the position of the real joint i at time t and Ĵi(t)
the position of the generated joint i at time t. The second is the
first frame loss (Lff ) used to add constraints on the first two
frames by ensuring that the motion between the two is realistic
and limits the discontinuities that can happen at the beginning
of the sequences. This loss is necessary as otherwise the model
sometimes ignores the initial input frame and generates a
sequence based on its own inferred initial position. For this
loss, we also use the MSE but on the difference between the
two first frames:

Lff =
1

k

k∑
i=1

((Ji(2)− Ji(1))− (Ĵi(2)− Ĵi(1)))
2. (6)

E. Implementation Details

We train our InterFormer using Torch 1.8.1 on a PC with
two 2.3Ghz processors, 64G RAM, and an Nvidia Quadro
RTX 6000 GPU. We use the Adam optimizer [50] with
α=0.0001, β1=0.9, β2=0.98, and ϵ=1×10−9. The batch
sizes are set to 128 for SBU and DuetDance and 64 for
K3HI. InterFormer works even if we do not provide the
original position of the reaction sequence (the first frame of
the sequence) as input, but this can cause the generator to
produce a skeleton very far from its actual location, which
will lead to a bad generation. To solve this during testing, we
give as input to the decoder the first frame of the sequence
which gives information about the original location of the
skeleton. During testing, we generate sequences of variable
lengths depending on the length of the input action motion.
The sequences are generated in an auto-regressive manner
and the model generates an end-of-sequence value to indicate
the end of the motion generation. If the motion is generated
correctly, then this value will correspond to the end of the
input action sequence.

IV. EXPERIMENTS

We conducted comprehensive experiments to evaluate our
proposed approach by comparing state-of-the-art models on
three datasets. We also visualize the ability of action-reaction
generation. Finally, we perform ablation studies to evaluate
the effectiveness of using spatial attention and our skeleton
adjacency and interaction distance modules.

A. Datasets

SBU Dataset [19] contains 8 classes of simple interaction
motions: walking toward, walking away, kicking, pushing,
shaking hands, hugging, exchanging, and punching. The data
which are too noisy, and in particular the class “hugging”,
have been removed from this dataset. The “walking away” and
“walking toward” classes have the same reactions (standing
still), so we decided to fuse those two classes into a single

“walking” class. This leaves us with 6 classes, 195 training,
and 30 test samples.
K3HI Dataset [51] contains the same 8 classes as SBU aside
from the “hugging” class which is replaced by “pointing”.
Also, unlike SBU, “approaching” and “departing” have reac-
tions that are different, so we do not fuse the two classes.
We also removed the noisy samples from the dataset but this
time, we normalize the data in the same way as SBU was
normalized by the authors. This leaves us with 236 training
samples and 28 test samples.
DuetDance Dataset [2] contains 5 classes of dance motions:
cha-cha, jive, rumba, salsa, and samba. Given the nature of the
dataset, the motions are more complex than those in SBU and
K3HI, and there are a lot of intra-class variabilities. We do not
perform normalization, but since most samples are very long
sequences (up to 160s), we decided to cut each sequence into
smaller sequences of 50 frames (2s), leading to 273 training
samples and 3991 test samples.

For all three datasets, the poses are represented by their ab-
solute 3D coordinates, furthermore, training and testing splits
are selected randomly for fair comparisons. Duet-Dance was
provided with neither train/test split nor subject information,
and we used a random split. For the two others, the evaluation
proposed by their respective authors is made using k-fold
validation so we decided to split the dataset between train
and test, randomly for K3HI and by selecting all the samples
from a random subject for SBU.

B. Evaluation Metrics

We use metrics commonly used in motion generation.
Metrics used for motion prediction based on the distance
between the generated sample and the ground truth are not
fit for reaction generation as several different motions can
be considered good reactions to the same action. While this
choice of metric can seem contradictory with our losses that
use direct comparison with the ground truth, it is important to
understand that our evaluation metrics do not contain direct
information about the skeleton that our network is supposed
to generate and could not be efficiently used as losses.
Classification Accuracy measures how well our generated
samples are classified by a motion classifier. We use the
DeepGRU classifier [52]. We only train and test the classifier
on the reaction part of the interaction, so the results are not
influenced by the action, which is always the ground truth. We
report the percentage of correctly classified samples for each
class and the average over the entire test set.
Fréchet Video Distance (FVD) is an adaptation of the Fréchet
Inception distance (FID) [53] for video sequences [54]. FVD
computes the distance between the ground truth and the
generated data distribution.

FVD = |µgt − µgen|2 + tr
[
Cgt+Cgen−2 (Cgt ∗Cgen)

1/2
]
,

(7)
where µgt, µgen and Cgt and Cgen are the means and
covariance matrices of the deep features from ground truth
and the generated samples respectively, tr(·) is the trace. The
deep features are obtained from the classifier used for the
classification accuracy
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Diversity Score. Following the metric defined by [55], [56]
we compute the average deep feature distance between all
the samples generated by each method and then compare it
to the average deep feature distance of the ground truth. A
low diversity score means that the generated samples have a
diversity close to that of the ground truth and a high score
means that the diversity is either lower (all motions are more
similar) or higher (more noise in the generation). The average
deep feature distance is calculated as follows:

div =
1

b(b− 1)

b∑
i=1

b∑
j=1

||Fi − Fj ||2, (8)

where b is the number of samples considered, Fi and Fj are
deep features of the samples i and j, respectively. The score
is obtained using divgt the diversity distance of the ground
truth and divgen the diversity of the generated samples.

score = 100× |divgt − divgen|
divgt

. (9)

C. Baselines

To our knowledge, there is no work that deals with the
generation of the reaction to an action, so to be able to
compare our results to others from the literature, we employ
a method for human interaction generation and a method for
human motion prediction to show methods used on a range of
applications.
Zero Velocity baseline (ZeroV) [4] is a simple baseline where
all generated frames are the same (in our case the initial
pose), there is no motion for this baseline. Using ZeroV as
a comparison is useful to see what the quantitative result of
an obviously bad method are like and help see if the results
from the other methods are actually good. We do not show
the results for ZeroV in our qualitative evaluation as they are
uninteresting since no motion is produced. We do not use them
in our user study for the same reason.
Multimodal Variational Recurrent Neural Network
(VRNN) [1] deals with the prediction of the future frames of
a two-person interaction based on a historical sequence using
variational RNNs. The next frame of the reaction is predicted
using the past frames of the reaction and information on the
past frames of the action; the action is predicted in the same
way using the information on the reaction. The past frames
are the historical sequence at the beginning and later in the
sequence the generated frames. We modified the network to fit
our problem. Originally the network takes n historical frames
for both action and reaction as input and generates m frames
for both action and reaction. We modify some parameters so
the network takes n+m frames for the action but only 1 for
the reaction and we generate n + m − 1 frames of reaction
motion. Otherwise, we use the default settings provided by the
author for the hyper-parameters.
Mix-and-Match Perturbation (MixMatch) [57] uses a recur-
rent encoder-decoder network with a conditional variational
autoencoder block to predict the motion of a single person
based on a historical sequence. However, the authors present
their method as a general prediction method and the code they

Fig. 3: Qualitative results. In blue the action motion is used
as a condition. In other colors, the reaction is either from the
ground truth or generated by the different models. Shaking
hands class from the SBU dataset.

provide uses the first half of an image to predict the second
half. Since the specific code used for motion prediction is
not available we use the one provided by the author but with
3D skeletons data and with the values of the hyperparameters
mentioned in [57] for human motion prediction. To ensure
a fair comparison we need to base the generation of the
reaction on an initial frame but directly using 3D coordinates
led to strong discontinuities between the initial position and
the generation. To solve this and make the comparison fairer
we work with the speed of the motion that we then apply to
the skeleton corresponding to the initial position.
Progressively Generating Better Initial Guesses (PGBIG)
[58] is an architecture that uses Spatial Dense Graph Convo-
lutional Networks and Temporal Dense Graph Convolutional
Networks alternatively to extract spatio-temporal feature and
predict human motion. We use the code provided by the
authors unchanged and with the recommended parameters. We
give the action motion followed by the first frame as input and
predict the reaction motion.
Spatio-temporal Transformer (STT) [49] is a Transformer
based architecture that uses attention to find temporal and
spatial correlations to predict human motion. As for PGBIG,
we use the code provided by the authors without changes and
with the recommended parameters. As input, we use the action
motion followed by the first frame and predict the reaction
motion.

D. State-of-the-Art Comparisons

All presented evaluations were obtained on a model trained
on the considered dataset. This is true for our Interformer as
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TABLE I: Left: Classification accuracy for each class of the SBU, DuetDance, and K3HI datasets. Right: User study for each
class of the SBU, DuetDance, and K3HI datasets.

Method GT ZeroV [4] VRNN [1] MixMatch [57] STT [49] PGBIG [58] InterFormer GT VRNN [1] MixMatch [57] InterFormer

Classification Accuracy ↑ User Preference ↑
SBU

Walking 100.0 0.0 58.3 100.0 91.7 58.3 100.0 34.2% 21.4% 15.5% 28.9%
Kicking 66.7 66.7 0.0 0.0 0.0 0.0 33.3 38.8% 23.8% 5.6% 31.8%
Pushing 80.0 0.0 60.0 0.0 0.0 0.0 60.0 35.6% 19.7% 15.4% 29.3%

Shaking Hands 100.0 0.0 0.0 0.0 0.0 0.0 100.0 37.5% 21.8% 7.8% 32.9%
Exchanging 80.0 0.0 80.0 0.0 50.0 60.0 60.0 41.9% 19.4% 13.0% 25.7%
Punching 100.0 33.3 0.0 33.3 0.0 0.0 100.0 43.1% 19.3% 11.3% 26.3%
Average 90.0 10.0 46.7 43.3 40.0 33.3 80.0 38.5% 20.9% 11.4% 29.2%

DuetDance
Cha-Cha 28.0 1.8 26.4 19.2 37.1 28.6 26.7 45.9% 17.8% 5.5% 30.8%

Jive 24.6 0.4 13.8 25.8 16.7 19.7 22.8 48.4% 13.2% 6.7% 31.7%
Rumba 34.8 0.7 36.4 30.0 30.0 34.5 32.0 40.7% 16.9% 8.2% 34.2%
Salsa 27.8 93.1 29.5 28.9 10.0 20.2 28.1 49.3% 12.8% 7.1% 30.8%

Samba 22.2 18.6 21.0 17.2 18.2 24.4 24.4 44.5% 15.8% 6.3% 33.6%
Average 28.0 24.6 26.2 24.9 24.4 25.7 27.1 45.8% 15.3% 6.7% 32.2%

K3HI
Approaching 100.0 25.0 75.0 50.0 50.0 0.0 0.0 34.9% 23.1% 14.1% 27.9%

Departing 33.3 33.3 0.0 33.3 33.3 33.3 33.3 34.2% 24.2% 13.2% 28.4%
Kicking 40.0 80.0 0.0 40.0 40.0 0.0 60.0 31.8% 21.7% 18.8% 27.7%
Pushing 100.0 33.3 33.3 33.3 33.3 33.3 66.7 33.1% 24.8% 13.5% 28.6%
Shaking 50.0 0.0 50.0 50.0 100.0 100.0 50.0 36.9% 21.4% 10.8% 30.9%

Exchanging 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3% 20.5% 13.9% 29.3%
Punching 100.0 25.0 50.0 25.0 0.0 50.0 50.0 33.9% 21.7% 16.9% 27.5%
Pointing 100.0 50.0 100.0 0.0 25.0 25.0 100.0 37.3% 20.2% 16.1% 26.4%
Average 67.9 35.7 39.3 28.6 32.1 25.0 46.4 34.8% 22.2% 14.7% 28.3%

Fig. 4: Qualitative results. In blue the action motion is used as a condition. In other colors, the reaction is either from the
ground truth or generated by the different models. Cha-cha class from the DuetDance dataset.

well as the baselines.

Quantitative Evaluation. Table I (left) shows the classifica-
tion accuracy for SBU, DuetDance, and K3HI. Our method
outperforms the five others on all the datasets. For SBU,
we obtain results very close to the ground truth, and we
outperform the other methods on all classes but “exchanging”
where [1] get better results and vastly outperform the simple
ZeroV baseline. InterFormer is able to generate simple motions
that are realistic enough to be correctly classified. We can
see however that on “kicking” we score less than ZeroV,
this is due to the small size of the SBU dataset. A few
misclassifications will cause a sharp drop in classification
accuracy, and as we can see, “Kicking” is the class that
has the lowest accuracy on the ground truth as the reaction
can be similar to those of punching and pushing. The good

performance of ZeroV in some classes can be explained by
the fact that the overall accuracy is below chance (16.7%).
This means that the classifier is unable to properly classify the
motion from ZeroV as it only shows unmoving skeletons and
for some classes, the two skeletons start in a neutral position
that carries no information about the action. All these cause
the classifier to fail at classifying the sample and likely classify
many samples as “kicking”, including some that are from the
“kicking” class leading to the high score in this class.

For K3HI, we can see that the results are worse than for
SBU for all methods and even for the ground truth. This is
due to the very noisy nature of the K3HI dataset even after
removing the worse samples (that showed extreme deforma-
tion and no recognizable motion), the exchanging class has a
0% recognition rate even for the ground truth. However, our
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Fig. 5: Qualitative results. In blue the action motion is used
as a condition. In other colors, the reaction is either from the
ground truth or generated by the different models. Departing
class from the K3HI dataset.

method provides better results than the two others in all classes
except “approaching” which may be due to the noisy nature
of the data for this class. VRNN obtaining very high results in
this class might be a consequence of the wrong classification
present in many of the classes (a lot of samples are classified
as approaching). For shaking PGBIG and STT obtain better
results but since the results are worse overall quantitatively
and qualitatively this can be explained by the classifier putting
many samples in that class as we have explained for ZeroV.

For DuetDance, the classification accuracy for all methods
and the GT is much closer than for the other datasets. This
is due to the complex motions contained in the dataset with a
lot of intra-class variabilities. Furthermore, we use sequences
of 50 frames which are short enough that some sequences
from two different classes can be very similar. We can still
notice that our method provides results that are the closest to
the ground truth and that, unlike the five other methods no
class has a score below chance (i.e., 20%) which means that
our results are more consistent and closer to the ground truth,
despite being beaten on some individual class e.g., STT score
37.1% on “cha-cha” but only 10.0% on “salsa” while we score
26.7% and 28.1%, respectively.

In Table II we show the FVD and diversity score for all
methods on all datasets. We outperform VRNN, MixMatch
STT and PGBIG on the FVD measure, often by a large margin
meaning that the features extracted by the classifier are closer
to the features of the ground truth than for [1] and [57]. For the
diversity score, we also outperform the two other methods and
provide diversity that is close to that of the ground truth. We
can see a significant increase in K3HI. This is due to the noisy

TABLE II: FVD and diversity on all datasets.

Method FVD ↓ Diversity ↓
SBU DuetDance K3HI SBU DuetDance K3HI

ZeroV [4] 493.3 41058.1 392.1 65.1 47.2 19.3
VRNN [1] 113.61 789.23 195.47 11.5 6.1 16.8

MixMatch [57] 314.38 1460.44 406.63 45.3 0.9 32.2
STT [49] 321.04 2610.95 7579.87 47.8 3.9 27.6

PGBIG [58] 267.27 317.0 379.4 35.7 1.5 10.1
InterFormer (Ours) 48.78 31.81 125.40 0.9 0.4 13.7

nature of the dataset, which means that the diversity distance
of the ground truth takes into account the noise of the sample,
we, however, manage to score the closest to the diversity of
the ground truth when compared to the other methods, without
generating noisy samples. This can also explain why PGBIG
diversity is better than ours despite performing much worse in
terms of classification and qualitative results.
User Study. To evaluate the quality of the generated videos,
we also conduct a user study. Specifically, the users are
given four videos (two generated by existing methods VRNN
and MixMatch, one generated by our proposed InterFormer,
and one real video) with the corresponding class label. Each
participant needs to answer one question: ‘Which video is
more realistic regardless of the input label?’. 20 users have
unlimited time to select their choices. PGBIG and STT are
not represented in this study due to the extremely low quality
of the results, as illustrated by our qualitative results. The
results are shown in Table I (right). We can see that the
users show more preference for our method than the other
two methods, which indicates the results generated by ours
are more realistic.
Qualitative Evaluation. We show in Figures 3, 4, 5, and 6
visualizations of the generated sequences on the SBU (two
sequences) DuetDance and K3HI datasets respectively. We
show from top to bottom: the ground truth, results for [57],
results from [1], results from [58], results from [49] and results
from our InterFormer. In blue is the action motion, which
serves as a condition and is in all cases the ground truth. Green,
black, magenta, yellow, orange, and red are the reactions for
the GT and the five methods. More visualizations, as well as
animations, are available in our supplementary materials.

In Figure 3, we show an interaction from the “shaking
hands” class of SBU. It shows that our method is able to
generate the motion better than the two other methods. For
[57], the character raises its hand to shake but never comes
really close to the other character’s hand and also shifts its
entire body backward toward the end of the sequence. [1]
generates a motion that raises slightly the hand but is then
stuck in this position. [58] does not generate a shaking hand
motion and fails to generate poses for the entire length of
the action. STT [49] also fails to generate a shaking hand
motion. Our method generates motion that is very close to the
ground truth and contains the three main steps of the motion:
raising the hand, shaking, and going back to starting position.
Figure 6 shows a sample from the “punching” class from the
SBU dataset. We see that we generate a better motion even
if there are differences with the ground truth. The character
is pushed to the side by the punch and then comes back to a
normal position at the end of the sequence. The two other
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Fig. 6: Qualitative results. In blue the action motion is used as a condition, in other colors, the reaction is either from the
ground truth or generated by the different models. Punching class from the SBU dataset.

methods also generate a reaction to the punch, [1] moves
slightly backward, and [57] moves its upper body to avoid
the punch. [58] does not generate a motion that looks like
a reaction to the punch and presents noise with the vertical
position of the skeleton suddenly changing from one frame
to the other. [49] generates a slight motion of being pushed
back but the motion continues without trying to go back into
a neutral position. It seems, however, that the upper body
also became smaller during this motion. The two methods
also stay in this avoiding pose and do not go back to a more
normal position. In Figure 4 we show a sample of the “cha-
cha” class from the challenging DuetDance dataset. We can
see that [57] produce a motion that resembles a dance even if
different from the ground truth, however as the action character
moves backward (better seen in the animated sequence in our
supplementary material), the generated reaction stays in place,
and the distance between both characters grows over time.
With [1], the distance between the two characters does not
grow, but there is barely any motion for the entire sequence.
In motion, it looks like the reaction character is gliding
toward the action character (better seen in the animation in
our supplementary material). Here [58] and [49] generate
something close to [1] with little motion, but the distance
between the two skeletons does not grow. [49] also present
deformations in the arms. Our method is able to generate a
motion that stays close to the ground truth and follows the
action character in space without gliding like [1] this can be

seen by the change of position of the legs across the sequence.
It is only toward the end that the motion differs from the
ground truth and even then, the motion still resembles dancing.

In Figure 5, we see a sample of the departing class from
the K3HI dataset. It shows both characters walking away
from each other. This behavior is always reproduced in the
samples generated by the three methods, but [1] does not
show much motion and simply glides away while [57] shows
more motion of the legs but keeps the noise present in
the first frame during the entire sequence. Once again [58]
does not generate a proper motion, and this time it shows
deformation in the skeleton that stays for the entire duration
of the motion. Likewise, [49] is unable to generate a proper
walking motion.Our method, on the other hand, generates a
realistic walking motion with both arms and legs moving to
move apart from the first character.

The very poor performances of PGBIG [58] and STT [49],
our two baselines with unmodified code, can be explained by
the fact that they were designed for human motion prediction.
With human motion prediction, we seek to reduce as much as
possible the discontinuities between the input and the output
while we want to generate a different skeleton to the one
used as input which implies a very strong discontinuity. Also,
methods for human motion prediction are typically trained
to always take the motion of the same duration as input
and predict sequences that always have the same length e.g.,
the input of 500ms to predict 1s of motion. With reaction
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Fig. 7: Multi-modality results on SBU kicking class with
noise. We show three different motions generated by our
Interformer based on the same input motion.

Fig. 8: Multi-modality results on SBU Punching class with
noise. We show three different motions generated by our
Interformer based on the same input motion.

generation, the length of the sequences can vary (greatly in the
case of K3HI) and the unmodified motion prediction method
might struggle with the varying lengths. This is illustrated by
the early stop in the generation of [58] in Figure 3 but also by
the fact that [49] is unable to stop generating until it reaches
the maximum sequence length of the dataset (not pictured in
our figures).
Multi-Modality Generation. The main issue with Trans-
former models is that their output is deterministic. To counter
this we can add noise to the encoder input before the first
feed-forward layer. This allows us to generate diverse outputs
for the same input motion. We show in Figure 7 and Figure 8
the ability of our method to generate diverse motions with a
single input when adding noise in the encoder.

E. Ablation Study

To validate the effectiveness of each proposed component,
we report the ablation studies on SBU with classification
accuracy and diversity.
Ablation Models. Our Interformer has four versions (i.e., S1,
S2, S3, S4) as shown in Table III. (i) S1 means only using
the original NPL Transformer network from [33] modified
to take as input and generate skeletons without any of our

TABLE III: Ablation study of Interformer on the SBU dataset.
Setup Accuracy ↑ Diversity ↓

S1 Transformer 53.3 9.5
S2 S1 + Spatial Attention 66.7 3.9
S3 S2 + Skeleton Adjacency 73.3 1.7
S4 S3 + Interaction Distance 80.0 0.9

TABLE IV: Ablation study of Interformer on the K3HI dataset

.

Setup Accuracy ↑ Diversity ↓

S1 Transformer 14.3 32.9
S2 S1 + Spatial Attention 28.6 16.7
S3 S2 + Skeleton Adjacency 42.9 9.3
S4 S3 + Interaction Distance 46.4 13.7

improvements. (ii) S2 adds to the global Transformer the
spatial attention modules (self-spatial attention and interaction
spatial attention). (iii) S3 adds the skeleton adjacency module
to the self-spatial attention. (iv) S4 is the full model and in-
cludes both the skeleton adjacency module and the interaction
distance module.
Effect of Spatial Attention. We validate the effect of spatial
attention, as shown in Table III. Introducing the spatial
attention results in significant improvement in classification
accuracy by 13% and diversity by 5.6, which means we
improve the quality of the action-reaction sequences.
Effect of Skeleton Adjacency. Using a skeleton adjacency
graph on attention improves the classification accuracy and
diversity by 7% and 2.2, respectively. This improvement means
that the model learns better relations between the different
joints inside a skeleton.
Effect of Interaction Distance. By adding the interaction
distance module, we increase the results obtained by the
skeleton adjacency module by 7% on classification and 0.8
on diversity. These results show that the interaction distance
module is able to help spatial interaction attention find the
most interesting relations between the two skeletons and thus
help generate better motions.
Abaltion on K3HI. Table IV shows the ablation for the K3HI
dataset and confirm our finding from the SBU ablation. The
only difference is a lower diversity when using the graphs but
not the interaction distance. We believe this to be due to the
more noisy nature of the K3HI dataset, which deteriorates the
diversity measures.
Effect of Loss on The First Frames. If we remove the loss on
the first frames that allow us to keep a good coherency between
the input initial position and the generation, we see a decrease
in the generation quality: -3.3% in classification accuracy and
-5.2 in diversity score when compared to S4. When the input
initial position is not properly taken into account the generated
reaction skeleton can be far from the action skeleton. In SBU,
for all action classes, the interactions consist of two persons
close to each other. Since the model is not trained with samples
where people are far from each other when we try to generate
the reaction motion of a skeleton far from the action skeleton,
little to no motion is generated. This explains the increase in
performance brought by the use of the first frame loss.
Effect of Multihead attention. Our Interformer uses the
multihead version of attention for both temporal and spatial
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T multihead S multihead Accuracy ↑ Diversity ↓
- - 60.0 10.6
✓ - 70.0 2.0
- ✓ 60.0 5.1
✓ ✓ 80.0 0.9

TABLE V: Ablation study of Interformer on the SBU dataset.

T multihead S multihead Accuracy ↑ Diversity ↓
- - 21.4 11.0
✓ - 42.6 5.3
- ✓ 35.7 5.7
✓ ✓ 46.4 13.7

TABLE VI: Ablation study of Interformer on the K3HI dataset
.

attention. These choices were made following results from
the original Transformer network [33] and our experiments
which we report in Table V. The results are obtained by
modifying the number of heads for the different attention
modules on the full Interformer model (S4 from the main
paper ablation study). These experiments show that using
the multihead temporal attention (T multihead) increases the
classification accuracy by 10% and diversity by 8.6. By using
only the spatial multihead attention (S multihead) we increase
the diversity by 5.5. Using the multihead attention for both
spatial and temporal attention led to an increase of 20% in
classification accuracy and 9.7 in diversity. This confirms
our choice to use this configuration for Interformer. Table
VI shows the same ablation for the K3HI dataset and we
observe the same behavior as for SBU except for the diversity
where other configurations have lower values than using both
multihead attention. We believe this to be due to the more
noisy nature of the K3HI dataset, which deteriorates the
diversity measures.

V. LIMITATIONS

InterFormer presents two main limitations: (i) Due to the
huge variability of complex motions, it is hard to stay true
to the ground truth, making it difficult to evaluate the results
in these cases; (ii) We are able to generate realistic motion
for long sequences (tested up to 40 seconds) To do this
we cut the action sequence into smaller sub-sequences that
we use for generation. We then generate all these sequences
the same way as we do for shorter sequences. Only for the
second sub-sequence onward the first frame used to give the
initial position does not come from ground truth but instead
is the last generated frame from the previous sub-sequence.
We can see in “DuetDance-long.mp4” from our supplementary
material that this way InterFormer is able to generate reaction
sequences for long motion. However, due to the accumulation
of errors over time, the generation diverges more and more
from the ground truth up to the point where it is hard to know
how much action is taken into account in the generation. It
is even more true that very long motions are usually complex
ones, which means we also face the first limitation.

VI. CONCLUSION

We present InterFormer, a novel human reaction generation
Transformer. InterFormer is the first Transformer architecture
used to solve the problem of human reaction generation
challenge. InterFormer consists of four modules: a motion
encoder, a motion decoder, a skeleton adjacency module, and
an interaction distance module. The ablation study on SBU
has shown the effectiveness of the four components of the
InterFormer. We have both qualitatively and quantitatively
evaluated our reaction generation framework. The results show
that InterFormer outperforms state-of-the-art approaches in
terms of FVD, classification, and diversity score on three chal-
lenging datasets SBU, K3HI, and DuetDance. The qualitative
results show also the ability of InterFormer to generate realistic
human reactions. Interformer is a deterministic approach.
Although we have proposed an approach to mitigate this
problem, the diversity of responses generated remains limited
and should be improved. It is still difficult to generate complex
human motion. Although our results on the dance dataset
show that we are able to generate dance movements, we are
still not able to generate more subtle motions present in the
dataset. The lack of large interaction datasets makes it difficult
to evaluate feedback generation. Although large interaction
datasets exist, such as some classes of NTUs, they are not
annotated to separate action from reaction motion. It is difficult
to evaluate the performance on long-term motion due to the
lack of appropriate data.
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