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Abstract—Image-text retrieval (ITR) is a challenging task in
the field of multimodal information processing due to the seman-
tic gap between different modalities. In recent years, researchers
have made great progress in exploring the accurate alignment
between image and text. However, existing works mainly focus on
the fine-grained alignment between image regions and sentence
fragments, which ignores the guiding significance of context
background information. Actually, integrating the local fine-
grained information and global context background information
can provide more semantic clues for retrieval. In this paper, we
propose a novel Hierarchical Graph Alignment Network (HGAN)
for image-text retrieval. First, to capture the comprehensive
multimodal features, we construct the feature graphs for the
image and text modality respectively. Then, a multi-granularity
shared space is established with a designed Multi-granularity
Feature Aggregation and Rearrangement (MFAR) module, which
enhances the semantic corresponding relations between the local
and global information, and obtains more accurate feature repre-
sentations for the image and text modalities. Finally, the ultimate
image and text features are further refined through three-level
similarity functions to achieve the hierarchical alignment. To
justify the proposed model, we perform extensive experiments
on MS-COCO and Flickr30K datasets. Experimental results
show that the proposed HGAN outperforms the state-of-the-art
methods on both datasets, which demonstrates the effectiveness
and superiority of our model.

Index Terms—Image-text retrieval, feature aggregation, graph
convolution network, hierarchical alignment

I. INTRODUCTION

IN recent years, with the rapid growth of multimedia data,
multimodal information processing has become more and

more important. As the two most commonly-used modalities,
the image and text have prompted many researchers to study
cross-modal tasks, including cross-modal retrieval [1], visual
question answering [2], image captioning [3], etc. In particular,
image-text retrieval (ITR) [4] task focuses on measuring the
semantic similarity between images and texts. Although great
progress has been made in recent years, the heterogeneous dif-
ferences caused by the inconsistent forms of images and texts
seriously hinder the performance of ITR in complex scenarios,
thus the ITR task still remains a great challenge. To establish
the intrinsic connection between images and texts, early works
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such as [5] extract image and text features separately using
existing visual and language models used for other tasks,
then directly convert them to the same dimensions as global
representations. After that they measure the similarity of the
global representations in this shared space, and subsequently
optimize the model parameters based on matching facts.
However, these methods only focus on global matching, that
is, the alignment of the whole image and the whole sentence,
and do not fully consider the potential relationship between
the regions of image and the words of sentence, resulting
in limited performance improvement and low interpretability.
Due to the development of language representation models
such as BERT [6], fine-grained features of text are readily
available. Meanwhile, for the image modality, object detection
methods such as Faster-RCNN [7] have also shown superior
performance in extracting the fine-grained features. SCAN
[8] is the first attempt to introduce object detection method
into ITR task, and point out that there is an underlying
alignment relationship between image regions and sentence
fragments, which triggered a lot of researches on the fine-
grained image-text alignment. For example, by generating a
guidance vector from the initially extracted fine-grained fea-
tures, an adaptive feature optimization is accomplished in [9],
which modifies the representation of the fine-grained features
in another modality.Aiming to achieve more precise semantic
alignment, some researchers optimize feature representations
by attention mechanisms, such as [10] to discriminate negative
pairs with similar semantic content but slightly different con-
textual information, improve information interactions between
modalities based on cross-attention, and employ a multi-level
alignment strategy with progressive matching to acquire more
complementary and adequate semantic cues. Other researchers
dedicate to exploring additional cues using graph convolutional
networks, as in [11], they construct a vision graph from
region features, infer the relationship between regions using
GCN, and then input node features to GRU to produce more
discriminative image features.

These methods have greatly promoted the progress of the
ITR task. However, some intractable problems still exist.
When studying the fine-grained alignment, many researchers
ignore the importance of non-object elements such as the
context background information. As shown in Fig. 1 (a), the
fine-grained alignment method might match the sentence “A
man is standing on a snowy path surrounded by evergreen
trees” with both the left and right images since they both
contain the objects “man”, “snow path”, and the relation
“standing”. But the matching result with the image on the
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right is wrong due to the difference in the context background
information of the image and text. Therefore, ignoring non-
object elements such as context background information may
cause false matching results, especially for negative samples
with similar objects but slightly different context background.
Accordingly, this motivates us to explore the hierarchical
alignment approach shown in Fig. 1 (b), where hierarchi-
cal alignment refers to multi-level alignment with different
granularity features, that is, not only aligning fine-grained
features but also taking into account the correspondence be-
tween coarse-grained features and mixed coarse-fine-grained
intermediate granularity features. This strategy of focusing on
multi-granularity characteristics has yielded excellent results
in applications such as object recognition [12], visual classi-
fication [13], and text-based question answering [14]. In the
task of image-text matching, this method fully considers object
elements and non-object elements, which encourages more
accurate matching of images and texts, and reduces the impact
of the tremendous useless information existing in semantic
alignment. Regarding the intermediate granularity, one way
is to fuse coarse-grained and fine-grained features as hybrid
multi-granularity features [15], and another way is to obtain
features of different granularity by setting different sizes of
the visual field to the feature extraction network [16]. The
first method is straightforward and direct, but it necessitates
the design of a suitable fusion process, whereas the second one
is affected by the choice of the size of each visual field and
demanding that the feature extraction module is not a black
box. Moreover, researchers usually aggregate the features of
image and text modality through max pooling [17] or average
pooling [18] in the vision-language shared space, which both
ignore the importance of the synergistic relationship of local
object and global context. Specifically, these methods learn the
local and global features separately and do not consider the
impact of the object-context-fused information on ITR task.
In summary, existing methods have two notable problems.
First, most researchers consider the semantic alignment of
images and texts from one perspective, such as the fine-
grained alignment or global alignment, and rarely take multi-
granularity feature fusion into account. Second, the existing
feature aggregation approaches in the shared semantic space,
which largely ignore the object-context information interaction
of multimodal features, need to be further improved.

To address these issues, this paper proposes a novel Hier-
archical Graph Alignment Network (HGAN) for image-text
retrieval, which establishes a multi-granularity shared space
with multi-granularity feature aggregation and rearrangement
(MFAR) module and performs hierarchical image-text align-
ment through three-level similarity functions. Specifically, we
first fuse the global and local features of the image, and
construct the feature graphs for the image and text modality re-
spectively. The feature graphs can preserve relative positional
relationships, which is beneficial to explore the comprehensive
multimodal representation. Then, a multi-granularity shared
space is established with multi-layer MFAR module, which
optimizes the image and text features through feature aggrega-
tion and feature rearrangement to accomplish multi-granularity
feature fusion. The MFAR module can filter out the noisy
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Fig. 1. An illustration of retrieval examples of the fine-grained and hierarchi-
cal image-text retrieval. (a) represents the retrieval examples of fine-grained
alignment, in which objects and relationships between images and texts are
matched, but the result is wrong. (b) represents the retrieval examples of
hierarchical alignment, which considers background context information and
can distinguish negative samples with similar semantics but slightly different
background. Note that “T” and “F” denote the correct and wrong matching
between the image and text, respectively.

parts of the global-local semantic alignment and retain the
dominate parts to enhance the semantic alignment with object-
context-fused information. Finally, we design three similarity
functions corresponding to three levels of fine-grained feature,
unified feature and multi-granularity feature. The ultimate
image and text features are further refined through three-level
similarity functions to achieve hierarchical alignment in the
multi-granularity shared space.

The main contributions of this paper are summarized as
follows:

• We establish a multi-granularity shared space with the de-
signed Multi-granularity Feature Aggregation and Rear-
rangement (MFAR) module to achieve multi-granularity
feature fusion. The MFAR module explores the multi-
granularity feature denoising, which is dedicated to filter
out the noisy parts and retain the dominate parts of the
object-context-fused information.

• We propose a novel Hierarchical Graph Alignment Net-
work (HGAN) to achieve the multi-level image-text align-
ment. The HGAN model aligns image and text features
through multiple similarity functions to further improve
the matching accuracy in the multi-granularity shared
space.

• The proposed HGAN outperforms state-of-the-art image-
text retrieval methods on several benchmark datasets, e.g.
MS-COCO (1K and 5K) and Flickr30K.

The rest of this paper is organized as follows. In Section
II, we introduce the related work. Then all the details of the
proposed method and the experiments are presented in Section
III and Section IV. Finally, the conclusion is described in
Section V.

II. RELATED WORK

In this part, we will further introduce the related work
including image-text retrieval and graph convolution network.
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A. Image-Text Retrieval

Image-text retrieval aims at calculating the similarity be-
tween the images and texts, which can be mainly divided
into three categories, global matching, regional matching and
multi-level matching methods Global matching methods nor-
mally embed the global features of images and texts into
a common embedding space, and then employ a ranking
loss calculating the distance between image-text pair. Kiros
et al. [19] utilize the convolution neural network (CNN)
for image encoding as well as the recurrent neural network
(RNN) for text encoding, and Faghri et al. [20] employ
the ResNet152 and GRU modules to encode images and
texts respectively. Regional matching methods cast lights on
the fine-grained alignment of the regions of image and the
words of sentence. Qu at ul. [21] adopt pyramid dilated
convolution to obtain a multi-view representation from image
region features, using the viewpoint that best matches the
text feature to measure similarity. Chen et al. [22] design
a generalized pooling operator to replace average pooling
and max pooling, which can adaptively aggregate visual
and language features to improve the performance of cross-
modal retrieval. Multi-level matching methods consider multi-
granularity feature alignment of image and text, or matching of
global feature, region feature, and other intermediate feature.
The second is similar to the ontology depicted in [23], whose
hierarchical levels map different granularity of features. Qi et
al. [24] consider not only the global and local alignments but
also the relation alignment across images and texts, which
can learn more precise cross-modal relevance. Zeng et al.
[25] propose a multi-layer graph convolutional network with
object-level, object-relational-level, and higher-level learning
sub-networks to learn hierarchical semantic correspondences
by both local and global alignment. Huang et al. [26] propose
a bi-directional spatial-semantic attention network, which uses
the word-to-regions relation to deduce the most relevant image
regions, and employ the visual object to words relation to infer
the close words for visual objects in the images. Recently,
Diao et al. [27] use similarity graph reasoning and similarity
attention filtration module to reason about the relationship
between global-local alignment information, focusing on more
informative alignments and have achieved SOTA performance.

B. Graph Convolution Network

Graph convolution network (GCN) has been successfully
applied into many tasks in the cross-modal fields such as cross-
modal retrieval [28], [29], image captioning [30], [31], visual
question answering [32], [33] and visual entailment [34],
[35]. Rather than merely focus on the similarities in content,
GCN can discover the potential semantic relationships among
different modalities and integrate the information of neighbor
nodes. As a result, GCN is adopted into the field of cross-
modal retrieval to learn the representations across different
modalities, as it will be more accurate when learning local
and stationary features on graphs. Yu et al. [36] adopt GCN
to enhance the representation of text features, combining the
strengths of structural information with semantic information.

Li et al. [11] utilize GCN in feature reasoning to generate
image features with semantic relationship between image
regions, as response of each node is computed based on its
neighbour nodes. Yao et al. [37] utilize a GCN-based encoder
to refine the representations of each region proposed on objects
with the learned region-level features. Yang et al. [38] delve
into the details of improving semantic navigation using GCN
by incorporating prior knowledge and updating it dynamically
as the agent receives the current environment information.
Wen et al. [39] design the dual semantic relation module
through the graph attention network (GAT) [40], which aims
to enhance the regional and global relations for more accurate
visual and text representations. Liu et al. [41] design the graph
structure for both the image and text to perform node-level and
structure-level matching.

III. PROPOSED METHOD

In this section, we present the proposed Hierarchical Graph
Alignment Network (HGAN) in detail. As shown in Fig. 2, the
model consists of four parts: the image feature graph (Section
III. A), the text feature graph (Section III. B), the multi-
granularity feature aggregation and rearrangement module
(Section III. C) and the loss function (Section III. D).

A. Image Feature Graph

Since there exist abundant semantic information in images,
we try to learn image representations by jointly considering
the global and local features. Different feature encoders are
employed to obtain the global and local features respectively,
and then a unified image representation is obtained by using
concatenate operation to construct the image feature graph.

1) Global Image Representation: We use ResNet152 [42]
as an encoder for extracting the global feature of images. It is a
model trained on ImageNet [43] to accurately extract the pixel-
level features of the image. We discard the last fully connected
layer of the ResNet152 and perform the reshape operation
to get the output features, G = {g1, g2, ..., gm}, gi ∈ RD0

,
where D0 represents the dimension of each pixel, and m
is the reshaped size of the feature map. Then we use a
fully connected layer to project gi into the D-dimensional
embeddings:

VG =WgG+ bg, (1)

where VG is the global feature of the image. Wg ∈ RD×D0

represents the weight matrix with the bias bg , and they are
learnable parameters.

2) Local Image Representation: In order to enable a fea-
ture vector encoding a salient region, we use the bottom-
up attention [44]. Following the feature extraction method
in [8], [11], we employ the Faster-RCNN [7] as an encoder
to extract the region feature of images. It is a model pre-
trained on Visual Genomes DataSet [45] to accurately identify
objects in the image. Specifically, the features of image regions
are employed to represent the image. Therefore, the output
of the image region feature encoder can be represented as
L = {l1, l2, ..., lk}, li ∈ RD0

, where D0 represents dimension
of region feature, and k is the number of detected regions. For
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Fig. 2. An illustration of the proposed HGAN model, which consists of four parts. (1) Image Feature Graph. The global and local features are extracted using
ResNet152 and Faster-RCNN respectively, and then the image feature graph is constructed. (2) Text Feature Graph. The text feature is extracted using the
BERT, and then the text feature graph is constructed. (3) Multi-granularity Feature Aggregation and Rearrangement Module. We design a multi-granularity
feature aggregation and rearrangement module to aggregate global and local features by multi-granularity feature fusion. (4) Loss Function. The image and
text features are optimized through three similarity functions S1, S2 and S3.

each selected region i, we use the average pooling layer to get
li. Then we use a fully connected layer to project li into the
D-dimensional embeddings:

VL =WlL+ bl, (2)

where VL is the local feature of the image. Wl ∈ RD×D0

represents the weight matrix, and bl represents the bias.
3) Unified Image Representation: Previous works sepa-

rately considered on the global and local features of the im-
ages, and the important semantic relationship between the local
object and global context is ignored. Differently, we design a
unified representation of the global and local features of the
images, where coarse-grained and fine-grained information is
fused. And the unified image representation is constructed in
the form of graph, so as to use graph convolutional networks
to optimize multi-granularity feature fusion, thus enhance it
to learn more accurate image features. By using concatenate
operation, VG and VL form a unified image representation VU :

VU = VG‖VL, (3)

where ‖ denotes the concatenate operation. So we can get the
region-pixel unified feature VU = {v1U , v2U , ..., v

m+k
U }, viU ∈

RDU

. Then the relationship EU between viU and vjU is defined:

EU (v
i
U , v

j
U ) = viU � v

j
U , (4)

where � represents the element product. Finally, the features
viU and vjU are regarded as the nodes, and the relationship EU

between them is regarded as the edge to construct the image
feature graph GV = (VU , EU ).

B. Text Feature Graph

The traditional text feature representation methods use the
RNN-based models such as LSTM [46] or GRU [47], and treat
the output of the network as the sentence feature. The lan-
guage representation model BERT [6] uses the self-attention
based transformer structure, which is accomplished at learn-
ing semantic relationships. The model has powerful feature
extraction capabilities to generate deep bidirectional linguistic
representations for word tokens. In this paper, we employ the
BERT as the text encoder. First, the sentence is tokenized by
WordPiece, and then the features of the word are extracted
through the BERT model. Therefore, the output of the text
encoder can be represented as S = {s1, s2, ..., sl}, si ∈ RD1

,
where D1 represents the dimension, and l is the maximum
number of words in the sentence. Then we use a fully con-
nection layer to project ti into the D-dimensional embeddings:

TS =WsS + bs, (5)

where TS is the feature of the texts. Ws ∈ RD×D1

represents
the weight matrix, and bs represents the bias. The text feature
can be represented as TS = {t1S , t2S , ..., tlS}, tiS ∈ RDS

.
Then in order to build the text feature graph, we define the
relationship ES between tiS and tjS :

ES(t
i
S , t

j
S) = tiS � t

j
S , (6)

where � represents the element product. Finally, the features
tiS and tjS are regarded as the nodes, and the relationship ES

between them is regarded as the edge to construct the text
feature graph GT = (TS , ES).
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C. Multi-granularity Feature Aggregation and Rearrangement
Module

In this section, we introduce the designed multi-granularity
feature aggregation and rearrangement (MFAR) module, which
filters out the noisy parts of the global-local semantic align-
ment and retains the useful parts to accomplish multi-
granularity feature fusion. For image and text feature graphs,
we both use the MFAR module to conduct feature aggregation
and rearrangement. Here the image modality is taken as an
example to illustrate the details of MFAR module.

1) Multi-granularity Feature Aggregation Module: The
node feature representation is optimized in this module. Con-
sidering that the nodes may contain redundant information,
we employ the attention mechanism to learn the correlation
between nodes and selectively aggregate neighboring nodes
based on the correlation to obtain optimized node features,
which filter worthless information and keep effective informa-
tion. Therefore, semantic interaction between global and local
information is realized throughout this process.

Given the image feature graph GV = (VU , EU ), VU =

{v1U , v2U , ..., v
m+k
U }, viU ∈ RDU

, where viU is the node feature,
and EU is the relationship of nodes. DU represents the
dimension of image feature. To obtain sufficient expressive
power, we parameterize node features through the weight
matrix, and then, use the self-attention mechanism to calculate
the attention coefficient for each node:

eij =
Wqv

i
U �Wkv

j
U√

DU
, (7)

where eij indicates the importance of node j to node i, Wq

and Wk are learnable weight matrices. � denotes the element
product. To make the weight coefficients are comparable
between different nodes, all choices of node j are regularized
using the softmax function:

αij = softmax j (eij) =
exp (eij)∑

k∈Ni
exp (eik)

, (8)

where Ni is the set of neighbor nodes of node i. At the
same time, in order to reduce the number of parameters, we
introduce the multi-head attention mechanism to calculate the
attention coefficients, which is faster and more space-saving.

MultiHead
(
viU , v

j
U

)
=Wo‖Hh=1(head1, ..., headh) (9)

headh = Softmax

(
Wh

q v
i
U �Wh

k v
i
U√

d

)
Wh

v v
j
U , (10)

where ‖ represents the concatenate operation, H stands for the
number of parallel attention layers, and d = D

H . Wo ∈ RD×D,
Wq ∈ RD×d, Wk ∈ RD×d and Wv ∈ RD×d are learnable
weight matrices. Then, the output of the multi-granularity fea-
ture aggregation module is obtained by the nonlinear activation
function:

vi
′

U = BN

ReLU

∑
j∈Ni

MultiHead
(
viU , v

j
U

) , (11)

where BN represents the batch normalization which can be
used to speed up training, ReLU is the activation function, and
Ni is the set of neighbor nodes of node i. For the convenience
of description, we simplify the output as vi

′
.

2) Multi-granularity Feature Rearrangement Module: This
module is used to better fuse multi-granularity semantics and
improve multi-granularity feature representation. Given that
each channel component of the node feature can be used as
a representation of the node at multiple saliencies, in this
module, firstly, the feature vector of the node is fine-tuned by
rearranging the channel values to align the feature components
of different saliencies in each node. Then, adaptive weights
are learned for each node to fuse the component under
varied saliency, thus optimized multi-granularity semantic fea-
tures are obtained. For the output features vi

′
of the multi-

granularity feature aggregation module, most of them use
average pooling to aggregate features, ignoring the information
interaction between global and local features. The average
pooling method obtains v by averaging the N feature vectors
as v = 1

N

∑N
i=1 v

i′. Therefore the value at channel k is
calculated by:

vk =
1

N

N∑
i=1

vi
′

k , (12)

where k = 1, ...,K is the channel number of v.
We design the multi-granularity feature rearrangement to

refine the feature vectors. First, we sort the feature vectors and
then learn a rearrangement coefficient for each vector, taking
the weighted sum of the vectors as the output:

vk =
1

N

N∑
i=1

θimaxk(v
i′),∀k. (13)

θi = f [i,N ], i = 1, ..., N. (14)

f is the rearrangement coefficient generator. θi represents
the rearrangement coefficient of the i-th node, which satisfies∑N

i=1 θi = 1. Therefore, the final image feature of the model
can be expressed as V = {v1, v2, ..., vk}, vi ∈ RDV

, where
DV represents the dimension of the image feature.

Specifically, the multi-granularity feature rearrangement
module consists of two components, a trigonometric function-
based position encoder for generating the position indices and
a bidirectional gated recurrent unit (BiGRU) based sequence
model for generating rearrangement coefficients. To make full
use of the prior information contained in the position indices,
following [48], the trigonometric positional encoding strategy
is employed to vectorize the positional indices:

pi(i, 2j) = sin

(
i

100002j/dp

)
, (15)

pi(i, 2j + 1) = cos

(
i

100002j/dp

)
, (16)

where pi is the position vector, and dp is the dimension
of the position vector. After converting the position indices
into vector representations, the sequence model is adopted to
generate the rearrangement coefficients:
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TABLE I
THE INTRODUCTION OF THE BASELINE MODELS, INCLUDING THE YEAR OF PUBLICATION, ADVANTAGES, DISADVANTAGES, AND MAIN CONTENT.

model year pros cons main content

VSE++ [20] 2017 Introduce the hard negatives into the
loss function.

Ignore local alignment of images and
text.

This method introduces the hard negatives into the common loss
functions used for image-text retrieval. The improved loss can better
guide the more powerful image and text encoders.

SCAN [8] 2018 Introduce object detection method
into ITR task.

Ignore interactions between image
and text modals.

This is the first method to introduce object detection method into ITR
task, and point out that there is an underlying alignment relationship
between image regions and sentence fragments.

CAMP [49] 2019
Consider fine-grained image-text in-
teractions and adaptively control the
cross modal information flow.

Ignore abstract objects, such as de-
scriptions of certain behaviors.

This method considers comprehensive and fine-grained image-text in-
teractions, and handles negative pairs and unrelated information with
an adaptive gating module.

RDAN [50] 2019 Introduce the multi-level image-text
alignments into cross-modal retrieval.

Ignore the effects of intra-modal rela-
tionships.

This is a relation-wise dual attention model, which encodes the local
and the global correlations between regions and words by training the
image-text retrieval network.

VSRN [11] 2019 Focus on relational reasoning in im-
ages firstly.

Only consider reasoning within the
image modality, ignoring text modal-
ities.

This method uses the gate and memory mechanism to perform global
semantic reasoning on the relationship representation and gradually
generate the image feature.

MMCA [51] 2020
Explore intra-modality and the inter-
modality relationship through a cross-
attention mechanism.

Lack of research on semantic corre-
spondence and semantic association.

This method designs a novel cross-attention mechanism, which exploit
the intra-modality and the inter-modality relationship to enhance and
complement each other for image-text retrieval.

CAAN [52] 2020
Propose a context-aware attention
network to selectively focuses on crit-
ical local fragments.

Ignore high-level semantic informa-
tion between modalities.

This method selectively focuses on pivotal local features by aggregating
the global context to discover latent semantic relations.

IMRAN [53] 2020 Explore fine-grained correspondences
using the attention mechanism

Ignore the alignment of phrases and
image regions.

This is a fine-grained matching method, which introduces an iterative
matching strategy with recurrent attention memory to explore the fine-
grained alignment progressively.

GSMN [41] 2020 Derive fine-grained image-text asso-
ciations through node-level matching

Extra work to build the visual graph
and textual graph.

This is a graph matching method, which models object, relation and
attribute as a structured phrase to learn correspondence of object,
relation, attribute and structured phrase separately.

CAMERA [21] 2020
Design a context-aware multi-view
summarization network to meet the
multi-view description challenge

Summarize text information from
multiple views, easily mixed with
noise.

This is a state-of-the-art image-text retrieval method on the Flickr30K
dataset in 2020, which summarizes context-enhanced image region
information from multiple views.

Meta-SPN [54] 2021 propose a meta self-paced network to
accelerate model training.

Just a training acceleration algorithm
based on existing models.

This method designs a meta self-paced network, which automatically
learns the weight coefficients from data for image-text retrieval.

SMFEA [55] 2021
Build a tree of images and texts to
obtain the structured semantic repre-
sentation.

The constructed tree is coarse-grained
and cannot distinguish data with high
similarity.

This is a structured tree based image-text retrieval model, which models
the relations of the image and text fragments by constructing structured
tree encoders.

SHAN [10] 2021 Realize image-text matching through
multi-step cross-modal inference.

Ignore the shared semantic concepts
that potentially correlated the differ-
ent modalities.

This is a hierarchical alignment model, which decomposes image-text
retrieval into multi-step cross-modal reasoning processes.

SGRAF [27] 2021
Making full use of alignment infor-
mation through graph inference to in-
fer more accurate match scores.

Change the similarity from value to
vector, the retrieval process will take
more time.

This method first applies the vector-based similarity representations to
characterize the local and global features, which relies on the GCN to
infer the relation-aware similarity.

CGAM [56] 2021
consider the shared semantic concepts
to enhance the discriminative power
of the common space.

Ignore syntactical alignment and
other research on multi-granularity.

This method builds semantic-embedded graph for each modality, and
smooths the discrepancy through cross-graph attention module to obtain
shared semantic-enhanced features.

CSCC [57] 2021
Considering the syntactical corre-
spondence through the cross-level
consistency for Image-text matching.

Ignore the effect of global context
information on retrieval results.

This is a state-of-the-art image-text retrieval method on the MS-COCO
1K and 5K datasets in 2021, which introduces a conceptual-level image-
text alignment scheme to exploring the fine-grained correspondence.

{θi}N
i=1 =MLP

(
BiGRU

(
{pi}N

i=1

))
. (17)

Then the aggregated representation is obtained by the weighted
sum, as shown in Eq.(13). Finally, we can obtain the multi-
granularity image and text representations through the multi-
layer MFAR module.

D. Loss Function

To align the global and local information simultaneously,
we set three-level cosine similarity functions in the proposed
model. S1 calculates the similarity of image region features
VL and text features TS and S2 computes the similarity of
image unified features VU and text features TS . The similarity
of image and text features V and T refined by the MFAR
module are calculated by S3. S is the final similarity of image
and text in the multi-granularity shared space, that is, the sum
of the above three similarity functions:

S(I, T ) = S1(VL, TS) + S2(VU , TS) + S3(V, T ), (18)

where (I, T ) is the matched positive pair of image and text.
And the formulations for the three cosine similarity functions
are specified as follows:

S1(VL, TS) =
VL · TS

||VL|| × ||TS ||
, (19)

S2(VU , TS) =
VU · TS

||VU || × ||TS ||
, (20)

S3(V, T ) =
V · T

||V || × ||T ||
. (21)

Then, a bidirectional hinge-based triplet ranking loss [8], [20]
is adopted to make the matched image-text pairs have higher
similarity scores than unmatched ones.

L = [d+ S (I ′, T )− S(I, T )]+
+[d+ S (I, T ′)− S(I, T )]+,

(22)

where d denotes the margin parameter, and [x]+ ≡ max(x, 0).
I ′ = argmaxX 6=IS(X,T ) and T ′ = argmaxY 6=TS(I, Y )
denote the hardest negatives corresponding to the positive pair
(I, T ).
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TABLE II
COMPARISON WITH THE BASELINE MODELS OF IMAGE-TO-TEXT RETRIEVAL AND TEXT-TO-IMAGE RETRIEVAL ON THE 1K AND 5K TEST SET OF

MS-COCO DATASET. THE BOLD INDICATES THE OPTIMAL RESULTS, AND THE UNDERLINE INDICATES THE SUBOPTIMAL RESULTS. “-” DENOTES THE
RESULTS ARE NOT PROVIDED.

MS-COCO 1K MS-COCO 5K
Methods Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 Rsum R@1 R@5 R@10 R@1 R@5 R@10 Rsum
VSE++ [20] 64.6 90.0 95.7 52.0 84.3 92.0 478.6 41.3 71.1 81.2 30.3 59.4 72.4 355.7
SCAN [8] 72.7 94.8 98.4 58.8 88.4 94.8 507.9 50.4 82.2 90.0 38.6 69.3 80.4 410.9

CAMP [49] 72.3 94.8 98.3 58.5 87.9 95.0 506.8 50.1 82.1 89.7 39.0 68.9 80.2 410.0
RDAN [50] 74.6 96.2 98.7 61.6 89.2 94.7 515.0 - - - - - - -
VSRN [11] 76.2 94.8 98.2 62.8 89.7 95.1 516.8 53.0 81.1 89.4 40.5 70.6 81.1 415.7
MMCA [51] 74.8 95.6 97.7 61.6 89.8 95.2 514.7 54.0 82.5 90.7 38.7 69.7 80.8 416.4
CAAN [52] 75.5 95.4 98.5 61.3 89.7 95.2 515.6 52.5 83.3 90.9 41.2 70.3 82.9 421.1

IMRAM [53] 76.7 95.6 98.5 61.7 89.1 95.0 516.6 53.7 83.2 91.0 39.7 69.1 79.8 416.5
GSMN [41] 78.4 96.4 98.6 63.3 90.1 95.7 522.5 - - - - - - -

CAMERA [21] 77.5 96.3 98.8 63.4 90.9 95.8 522.7 55.1 82.9 91.2 40.5 71.7 82.5 423.9
Meta-SPN [54] 74.4 95.0 98.3 58.6 87.6 94.3 508.2 51.0 81.1 89.4 37.5 66.7 77.5 403.2
SMFEA [55] 75.1 95.4 98.3 62.5 90.1 96.2 517.6 54.2 - 89.9 41.9 - 83.7 425.3
SHAN [10] 76.8 96.3 98.7 62.6 89.6 95.8 519.8 - - - - - - -

SGRAF [27] 79.6 96.2 98.5 63.2 90.7 96.1 524.3 57.8 - 91.6 41.9 - 81.3 -
CGAM [56] 78.9 97.5 98.8 65.7 90.2 96.6 527.7 - - - - - - -
CSCC [57] 78.8 96.1 99.0 66.6 92.5 96.4 529.4 55.6 83.6 91.2 40.8 73.2 84.3 428.7

HGAN (ours) 81.1 96.9 99.0 67.4 92.2 96.6 533.2 60.0 85.8 92.8 45.4 75.3 85.1 444.4

IV. EXPERIMENT

In this section, we evaluate the proposed HGAN model
on two benchmark datasets. First, the dataset and evaluation
metrics and the implementation details are introduced. Then,
the effectiveness of our model is proved by the performance
comparison experiments and the ablation studies. Finally,
the proposed HGAN model is qualitatively analyzed through
visualization experiments.

A. Datasets and Evaluation Metric

We employ two commonly-used image-text retrieval
datasets, MS-COCO (1K and 5K) [58] and Flickr30K [59],
to evaluate our model.

The MS-COCO is a large-scale benchmark dataset used for
image recognition, segmentation and retrieval. It is composed
of 123,287 images, each with 5 corresponding captions. Fol-
lowing the experiment settings in [8], [11], we evaluate our
method on 1K and 5K test images respectively. Specifically,
the train, validation and test splits contain 113,287, 5000 and
5000 images. The 1K branch refers to the results are reported
by averaging from 5 folds of 1K test images and the 5K branch
refers to testing on the full 5K test images directly.

The Flickr30K dataset contains 31,783 images. Each image
is paired with 5 corresponding captions. Following the split
method in [20] about the Flickr30K dataset, we evaluate the
performance of our model using 29,000 images for training,
1,000 images for validation, and the remaining 1,000 ones for
testing.

For both image-to-text retrieval and text-to-image retrieval
tasks, we report the results with the standard metrics, including
R@K (Recall@K, K=1, 5, 10) and Rsum. R@K is defined as
the proportion of correct image or text being retrieved among
top K results, and Rsum is the sum of six R@K value to
evaluate performance comprehensively.

TABLE III
COMPARISON WITH THE BASELINE MODELS OF IMAGE-TO-TEXT

RETRIEVAL AND TEXT-TO-IMAGE RETRIEVAL ON THE FLICKR30K
DATASET.

Flickr30K
Methods Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 Rsum
VSE++ [20] 52.9 80.5 87.2 39.6 70.1 79.5 407.9
SCAN [8] 67.4 90.3 95.8 48.6 77.7 85.2 465.0

CAMP [49] 68.1 89.7 95.2 51.5 77.1 85.3 466.9
RDAN [50] 68.1 91.0 95.9 54.1 80.9 87.2 477.2
VSRN [11] 71.3 90.6 96.0 54.7 81.8 88.2 482.6
MMCA [51] 74.2 92.8 96.4 54.8 81.4 87.8 487.4
CAAN [52] 70.1 91.6 97.2 52.8 79.0 87.9 478.6

IMRAM [53] 74.1 93.0 96.6 53.9 79.4 87.2 484.2
GSMN [41] 76.4 94.3 97.3 57.4 82.3 89.0 496.8

CAMERA [21] 78.0 95.1 97.9 60.3 85.9 91.7 508.9
Meta-SPN [54] 72.5 93.2 96.7 53.3 80.2 87.2 483.1
SMFEA [55] 73.7 92.5 96.1 54.7 82.1 88.4 487.5
SHAN [10] 74.6 93.5 96.9 55.3 81.3 88.4 490.0

SGRAF [27] 77.8 94.1 97.4 58.5 83.0 88.8 499.6
CGAM [56] 78.7 94.5 97.9 58.2 83.6 89.6 502.5
CSCC [57] 72.7 93.4 96.5 61.2 86.7 91.5 502.0

HGAN(ours) 80.3 96.5 98.3 62.3 87.8 93.1 518.3

B. Comparable Methods

In order to prove the effectiveness of the proposed HGAN
method, we choose the models shown in Table I as the baseline
models. In the Table I, we introduce the main works in the field
of the image-text retrieval, including the publication year, the
pros and cons, and the main content of each baseline model.

C. Implementation Details

In this section, we describe the software and hardware
configuration of the experiments in detail. Our model is
evaluated in pytorch-1.7.1 with python wrapper and a machine
with Intel Xeon Gold 6226R CPU, 64GB RAM, 1T SSD and
NVIDIA Tesla A100 GPU. Specifically, for dataset Flickr30K
and MS-COCO, the model is trained for 12 and 20 epochs
with the adaptive moment estimation optimizer (Adam) [60],
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respectively. The batchsize is set to 256 and 320 for Flickr30K
and MS-COCO datasets, respectively. The warmup is set to 0.1
and the learning rate is set to 0.0002 with a decay rate of 0.1
every 6 epochs. For images, the feature dimension D0 is set
to 2048 for both global and local features. The basic version
of the pre-trained BERT [6] is used to extract text features,
which includes 12 layers, 12 heads, 768 hidden units, and
110M parameters, to get the text embeddings with D1 = 768.
The image-text shared space dimension D is set to 1024. In
our model, we set the number of MFAR layers to 2 and 4 for
the Flickr30K and MS-COCO datasets, respectively.

D. Performance Comparison

In this section, we show the experimental results on the MS-
COCO (1K and 5K) and Flickr30K datasets in Table II and
Table III. For the sake of fairness, we directly cite the sim-
ulation results of the baseline models in their corresponding
original papers. The bold indicates the optimal results, and the
underline indicates the suboptimal results. Overall, our model
achieves the state-of-the-art retrieval results on the Flickr30K
and MS-COCO 1K and 5K datasets.

Table II shows the performance of each model on the MS-
COCO dataset. CSCC [57] has the optimal performance on
the 1K test set, probably because it considers the syntactic
alignment in addition to the fine-grained alignment, which is
similar to our model. SGRAF [27] has the best performance
on the 5K test set, which utilizes a vector-based similarity rep-
resentation method to deduce more accurate matching score of
images and texts through the fine-grained alignment. Overall,
our HGAN model shows the best performance according to the
Rsum metric. As for the 1K test set of MS-COCO, our model
reaches 81.1% R@1 score and 67.4% R@1 score on image-
to-text retrieval and text-to-image retrieval respectively, both
outperforming other state-of-the-art methods. For the 5K test
set, image-to-text retrieval and text-to-image retrieval achieve
the best R@1 of 60.0% and 45.4% respectively, with 2.2% and
3.5% improvement over the SGRAF model. The performance
of R@5 and R@10 can also be seen from the Table II, both
of which achieve the optimal and suboptimal results.

Table III shows the performance of each model on the
Flickr30K dataset. CAMERA [21] has the best performance
on image-to-text retrieval, which aggregates context-enhanced
visual information from multiple views of the image. CSCC
[57] has the best performance on the text-to-image retrieval,
which simultaneously considers the semantic information of
the concept and syntactic. It is obvious that our HGAN model
outperforms existing models by a large margin, achieving
80.3%, 96.5% and 98.3% for R@1, R@5 and R@10 on
image-to-text retrieval. And the performance on text-to-image
retrieval is 62.3%, 87.8% and 93.1% for R@1, R@5 and
R@10 respectively. Compared to the CAMERA method, our
model has a significant improvement in image-to-text retrieval
and text-to-image retrieval tasks (by 2.3% and 2% on R@1). In
summary, our HGAN model outperforms other state-of-the-art
models on the Flickr30K dataset.

TABLE IV
EFFECTIVENESS ANALYSIS OF THE MFAR MODULE AND UNIFIED

FATURES ON THE MS-COCO 1K AND FLICKR30K DATASETS. “GIE”
DENOTES THE GLOBAL IMAGE EMBEDDING AND “LIE” DENOTES THE

LOCAL IMAGE EMBEDDING. “MFA” IS THE MULTI-GRANULARITY
FEATURE AGGREGATION MODULE.“MFAR” IS THE MULTI-GRANULARITY

FEATURE AGGREGATION AND REARRANGEMENT MODULE.

MS-COCO 1K
Methods Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10
MFA+GIE 73.4 94.5 97.9 60.4 89.7 95.6

MFAR+GIE 75.4 94.9 98.3 62.8 89.9 95.4
MFA+LIE 76.5 95.4 98.4 63.2 90.0 95.1

MFAR+LIE 80.0 96.6 98.9 66.8 91.8 96.6
MFA+GIE+LIE 78.3 95.7 98.6 64.5 90.9 95.9

MFAR+GIE+LIE 81.1 96.9 99.0 67.4 92.2 96.6
Flickr30K

MFA+GIE 75.4 92.6 96.3 57.4 84.1 90.7
MFAR+GIE 76.1 92.7 96.9 57.4 84.9 90.9
MFA+LIE 77.8 94.4 97.5 60.8 87.0 92.6

MFAR+LIE 79.5 95.2 97.9 61.9 87.4 92.8
MFA+GIE+LIE 78.6 94.2 97.3 61.4 87.2 92.8

MFAR+GIE+LIE 80.3 96.5 98.3 62.3 87.8 93.1

TABLE V
EFFECTIVENESS ANALYSIS OF THE HIERARCHY ON THE MS-COCO 1K

AND FLICKR30K DATASETS.

MS-COCO 1K
Methods Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10
S3 78.8 96.2 98.8 65.1 92.0 96.6

S1 + S3 79.8 96.5 98.9 66.4 91.9 96.5
S2 + S3 79.7 96.5 98.8 66.2 92.5 96.4

S1 + S2 + S3 81.1 96.9 99.0 67.4 92.2 96.6
Flickr30K

S3 79 95.4 97.6 61.1 87.0 92.7
S1 + S3 79.9 96.6 98.5 62.0 87.8 93.0
S2 + S3 79.5 96.1 98.1 61.4 87.1 92.4

S1 + S2 + S3 80.3 96.5 98.3 62.3 87.8 93.1

E. Analysis of Model

In this section, the ablation experiments are performed on
the MS-COCO 1K and Flickr30K datasets. We analyze the
effectiveness of the MFAR module and the unified features,
the influence of the different similarity functions and the
parameters of the model, respectively.

1) Effect of the MFAR module. In Table IV, the MFAR
module is the proposed multi-granularity feature aggregation
and rearrangement. The MFA module denotes the multi-
granularity feature aggregation module and the MFR mod-
ule is the multi-granularity feature rearrangement module.
To demonstrate the effectiveness of the MFAR module, we
disable the MFR module for performance testing to explore
the impact of the designed modules. We can observe that
our MFAR module has always outperformed the MFA-based
model, which brings about a 2% performance promotion on
two benchmark datasets.

2) Effect of the unified features. In Table IV, GIE de-
notes the global image embedding and LIE denotes the lo-
cal image embedding. GIE+LIE is the unified image repre-
sentation. We can observe that global matching using GIE
module is not as effective as fine-grained matching using
LIE module, and further, using the unified image feature
including GIE and LIE module in our HGAN model has
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the optimal performance. Specifically, comparing the results
of ‘MFAR+GIE’ and ‘MFAR+LIE’, it can be found that
using only local features to construct image features is much
better than using only global features, indicating that local
features describe more image details and can generate more
discriminative features. Furthermore, the comparison of the
results of ‘MFAR+LIE’ and ‘MFAR+GIE+LIE’ shows that
better results can be achieved by using both global and local
features, which means that the global features supplement the
contextual information lacked by the local features, allowing
the reconstructed features to better represent the integral image
and achieve improved retrieval results.

3) Effect of hierarchy. The hierarchy in our proposed
method is directly reflected by multiple levels of similarity.
Specifically, the three similarity functions S1, S2, and S3

corresponding to three levels of fine-grained feature, unified
feature and multi-granularity feature, respectively. In Table
V, S1 represents the similarity function between the image
local feature and text feature, and S2 works on the image
unified feature and text feature. S3 cannot be removed in
our HGAN model, which represents the similarity function
between image and text after optimization by MFAR module.
The bold font indicates the optimal results. We can find that the
application of multi-level similarity function achieves about
1.5% improvement on R@1 for image-to-text retrieval and
text-to-image retrieval. In terms of performance improvement,
S1 is more effective compared to S2, since S1 takes into
account the alignment of local features.
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Fig. 3. The results of Recall@1 with different initial learning rate and MFAR
module layers.
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Fig. 4. The results of Recall@1 with different batchsize.

4) Effect of the parameters. In this section, we analyze
the impact of model parameters on performance, including
the number of layers of the MFAR module, the learning
rate, and the batchsize. In Fig. 3, M represents the number
of layers of the MFAR module, and R denotes the initial

learning rate. First, we can see that for the MS-COCO dataset,
the performance is improved as the number of layers of the
MFAR module increases, and it has the best performance when
M = 4. Due to equipment limitations, we have no way to
conduct experiments with M = 8, but we think that M = 4
has achieved the ideal performance. For the Flickr30K dataset,
M = 2 works best because the two-layer MFAR module is
sufficient to extract the information contained in the dataset.
Also, setting an initial learning rate of 0.0002 is the most
appropriate for several datasets of our model. Furthermore,
Fig. 4 shows the optimal batchsize on several benchmark
datasets. The best batchsize value is 320 for the MS-COCO
dataset, and for the Flickr30K dataset, the optimal batchsize
is 256.
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Fig. 5. The values of Rsum when varying the number of epochs.
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Fig. 6. The variation of loss values with different iteration numbers.

F. Analysis of Training Process

In this section, we analyze the training process of the
proposed HGAN model. Firstly, in order to measure the
computational efficiency of our model, we consider the com-
putational complexity of the model (measured by FLOPs) and
the time complexity (measured by the number of parameters),
which are 36.81G and 211.29M respectively. Compared to
the trillions of parameters of large-scale pre-trained models
in the image-text cross-modal domain, our approach achieves
reasonable calculation consumption.

Subsequently, we analyze the change of Rsum values (the
sum of recall value) with epoch and the change of loss values
with iteration. Fig. 5 records the values of Rsum when varying
the number of epochs on the MS-COCO 1K and Flickr30K
test sets. The maximum value of the epoch is set to 20 and
12 for the MS-COCO 1K and Flickr30k datasets, respectively.
For MS-COCO 1K, when the epoch reaches about 10, Rsum
reaches the maximum and then stabilizes. For Flickr30k, the
model has basically converged when epoch is 6 because it
contains less image and text. Fig. 6 records the variation of
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1. Boats sitting around the side of a lake by a tree. T
2. A group of boats sitting together with no one around. T
3. A small marina with boats docked there. T
4. A harbor filled with boats floating on water. F
5. Some boats parked in the water at a dock. T

1. Boats sitting around the side of a lake by a tree. T
2. A group of boats sitting together with no one around. T
3. A small marina with boats docked there. T
4. Some boats parked in the water at a dock. T
5. A blue boat docked on a green lush shore. T

Query HGAN HGAN w/o MFR

1. Family posing on the ski slopes wearing skis. T
2. A family poses for a photo while skiing on a snowy 

mountainside. T
3. Four skiers ready to ski down a snowy mountain. F
4. Three adult and two child skiers posing on a slope. T
5. A group of young and old are skiing on the snow. T

1. Three adult and two child skiers posing on a slope. T
2. Family posing on the ski slopes wearing skis. T
3. A family poses for a photo while skiing on a snowy 

mountainside. T
4. A family of snow skiers lined up for a picture before their run. T
5. A group of young and old are skiing on the snow. T

1. A boat in the distance on a clear lake. F
2. A large body of water with small boats floating on top of it. T
3. Boats are traveling in the large open water. T
4. A cruise ship travelling out of an expansive harbor. T
5. A boat sailing on top of a body of water. F

1. Boats are traveling in the large open water. T
2. A large body of water with small boats floating on top of it. T
3. A cruise ship travelling out of an expansive harbor. T
4. A boat in the distance on a clear lake. F
5. There is a boat going across the waterway. T

Fig. 7. The qualitative results of image-to-text retrieval on the MS-COCO 1K dataset. The top-5 retrieval results are shown for each query image. The green
“T” denotes the correct sentences and the red “F” indicates the wrong sentences (best viewed in color).

Query: A bento box with rice and vegetables is 
shown with chopsticks.

HGAN:

HGAN w/o MFR:

Query: A painting of a candlestick, several pieces of 
fruit and a vase, with a gold frame around the painting.

HGAN:

HGAN w/o MFR :

Query: View from gate of jet connected to jet way for
passengers to board or deplane

HGAN:

HGAN w/o MFR :

Fig. 8. The qualitative results of text-to-image retrieval on the MS-COCO 1K dataset. The top-3 retrieval results are shown for each query text. The correct
images are highlighted in green boxes, and the wrong images are highlighted in red boxes (best viewed in color).

loss values with different iteration numbers on the MS-COCO
1K and Flickr30K test sets. It can be seen that our model can
converge to a satisfactory value on both the MS-COCO 1K
and Flickr30K, and there is no underfitting and overfitting.
Comparing the datasets MS-COCO 1K and Flickr30K, MS-
COCO 1K needs more epochs of training because of its large
amount of data and complex information. Nonetheless, the
proposed model has better performance in MS-COCO 1k
dataset because of the richer relations contained in.

G. Visualization of Retrieval Results

In this section, we discuss the qualitative results of the
proposed HGAN model. The retrieval results of two models
are visualized, including the proposed HGAN model and the
HGAN w/o MFR model. HGAN w/o MFR means that we
disabled the multi-granularity feature rearrangement (MFR)
module of the HGAN model.

In Fig. 7, we show the top 5 retrieval results for three
query images. The correct matches are marked with a green
“T”, the wrong matches are marked with a red “F”, and the
whole incorrectly matched sentences are marked in red. The
sentences on the left are the retrieval results of the proposed

HGAN model, and the sentences on the right are the retrieval
results of the HGAN model without MFR. We can observe that
the HGAN model can retrieve the correct matching sentence in
most cases, and the retrieval accuracy is significantly superior
to the latter. In Fig. 8, the top 3 retrieval results for three
query sentences are displayed. The correct retrieved images
are highlighted in green boxes, while the wrong ones in red
boxes. The upper column of images are the retrieval results of
the proposed HGAN model, and the lower column of images
are the retrieval results of the HGAN model without MFR.
We can observe that our HGAN model can match the correct
image in the top 3 results in Fig. 8. Besides, compared with
the HGAN w/o MFR model, the image that matches the query
sentence has a higher rank in our HGAN model.

We argue that there are two reasons for this phenomenon.
First, the MFR module achieves multi-granularity feature
denoising through feature rearrangement, which filters out
the noisy parts and retain the dominate parts for the multi-
granularity alignment of object-context-fused information. By
mining the multi-granularity semantic relationship of multi-
modal features, the retrieval performance is improved. Then,
the multi-level similarity functions can measure the image and
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Fig. 9. Visualization of word similarity weights. Each subplot shows the similarity (after normalization) between the image and each word in its GT text. (a)
and (b) are the samples for which our model retrieves the correct result at top-1. (c) and (d) are samples for which the top-10 items retrieved by our model
do not contain correct results, and the incorrect top-1 result given by HGAN is “A man buying some food at a food stand” for (c) and “An adult skier carries
a child skier under their arm on the slopes” for (d), respectively.

(b)
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bench while looking upward. '
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Fig. 10. T-SNE visualization of the image feature (left) and the corresponding text feature (right) on a subset of the MS-COCO test dataset. Different colors
represent the different classes of samples.

text similarity at different levels in the multi-granularity shared
space, which further improves the performance of ITR in terms
of hierarchical alignment.

H. Visualization of Features

In this section, we perform visual analyses of the features
modeled by our HGAN model to better demonstrate the effect
of our model.

First, we display the detailed matching relationships be-
tween images and words. Specifically, we calculate the scores
of image-word matching for four sample pairs, as shown in
Fig. 9, where (a) and (b) are the samples for which our model
retrieves the correct result at top-1, (c) and (d) are samples for
which the top-10 items retrieved by our model do not contain
correct results. The incorrect top-1 result given by HGAN is
‘A man buying some food at a food stand’ for (c) and ‘An
adult skier carries a child skier under their arm on the slopes’
for (d), respectively. In each subplot, the selected image is
shown on the left, the corresponding GT text is shown on the

right, and in the middle is the similarity between the image
and each word in its GT text.

All four subplots reveal that our model successfully recog-
nizes the objects with key semantics in the samples, such as
“dog”, “towl” in (a) and “women”, “donuts” in (c). Besides,
since our model relies heavily on the regions obtained by
object detection in constructing the features of images, it has
poor understanding of articles, prepositions and verbs. For
example, “the” in (b) and “with” in (d) mistakenly have the
maximum similarity with the image.

Observing (c), (d) with their corresponding incorrect top-1
retrieval results, respectively, we can find that they describe
a very similar scene, but there are detail errors and focus
deviations. For example, “woman is smelling donuts” in the
picture of (c) is wrongly judged as “the man is buying
food”, and people in the background of the picture in (d) are
mistakenly focused.

In conclusion, our model has an excellent ability to find
objects and nouns containing important semantics in the sam-
ple to achieve cross-modal image-text matching. However, the
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poor understanding of articles, prepositions and verbs can lead
to misunderstanding in semantic details, which needs further
improvement.

Then, we conduct a T-SNE visualization experiment by
using a subset of the MS-COCO test dataset as shown in Fig.
10. Concretely, we randomly chose samples from the MS-
COCO test set with four class labels (aeroplane, boat, cat, and
dog) and fed their data into our HGAN model to generate
features. The high-dimensional features of the samples are
transformed into two-dimensional by T-SNE and displayed as
points in Fig. 10, where different colors used to differentiate
their classes. For each of these four categories, a set of
corresponding image and text samples labeled with (a)∼(d)
is displayed. In each subplot, we can find that the points of
each color are aggregated in a single region, indicating that the
model has learned the discriminative information belonging to
different classes of samples. Comparing the points of same
color between the left and right subplots, it is found that they
appear in similar areas, indicating that the model achieves
cross-modal semantic matching. In addition, the distribution
of the yellow and green points is closer because the classes
they belong to (cat and dog) are more similar. Moreover, some
points appear in the wrong colour area, such as the red points
(aeroplanes) that appear in the blue area (boats). We analyze
that there are two reasons for this. One is that planes and
ships often appear in similar scenes, such as the blue sky and
the sea, which leads to the error of model judgment. Another
reason is that the selected samples may contain multiple types
of objects, so there will be some areas of color mixing in this
experiment.

V. CONCLUSION

In this paper, we propose a novel Hierarchical Graph Align-
ment Network (HGAN) for image-text retrieval, including the
following advantages:
• We construct feature graphs for the image and text

modalities respectively to capture more comprehensive
multi-modal features, and establish a multi-granularity
shared space with the designed Multi-granularity Fea-
ture Aggregation and Rearrangement (MFAR) module to
achieve multi-granularity feature filtering and fusion.

• We establish hierarchical alignment across modalities for
features of varying granularity using three-level similarity
functions, which deeply explore the feature similarity in
the multi-granularity shared space.

• Extensive experiments on the MS-COCO and Flickr30K
datasets show that the proposed HGAN method outper-
forms the state-of-the-art models for the ITR task.

In the future, for a more comprehensive feasibility analysis of
the model, we are ready to extend our model to more tasks,
such as image captioning [3] and visual question answering
[33], as well as more modalities, like video-text field [61].
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